PhD Student

Raghu Rajan

Postal address
Institut für Informatik
Albert-Ludwigs-Universität Freiburg
Sekretariat Hutter/Maschinelles Lernen
Georges-Köhler-Allee 074
79110 Freiburg, Germany
+49 761 203-74217
Building 74, Room 00-010


PhD student at the Machine Learning Group under the supervision of Frank Hutter.
I obtained my Master's degree in Computer Science with honours at the University of Freiburg with a final grade of 1.0 under the German grading system.
Previously, I have also obtained All India Ranks of top-100 twice in the GATE Computer Science examination (out of more than 115,000-150,000 candidates).
GRE Score: 170 (Quantitative), 164 (Verbal), 4.0 (Analytical Writing Assessment).

Research Interests

Reinforcement Learning, Automated Reinforcement Learning, Artificial General Intelligence



Parker-Holder, Jack; Rajan, Raghu; Song, Xingyou; Biedenkapp, André; Miao, Yingjie; Eimer, Theresa; Zhang, Baohe; Nguyen, Vu; Calandra, Roberto; Faust, Aleksandra; Hutter, Frank; Lindauer, Marius

Automated Reinforcement Learning (AutoRL): A Survey and Open Problems Journal Article

In: Journal of Artificial Intelligence Research (JAIR), vol. 74, pp. 517-568, 2022.


Biedenkapp, André; Rajan, Raghu; Hutter, Frank; Lindauer, Marius

TempoRL: Learning When to Act Inproceedings

In: Proceedings of the 38th International Conference on Machine Learning (ICML 2021), 2021.

Rajan, Raghu; Diaz, Jessica Lizeth Borja; Guttikonda, Suresh; Ferreira, Fabio; Biedenkapp, André; von Hartz, Jan Ole; Hutter, Frank

MDP Playground: A Design and Debug Testbed for Reinforcement Learning Inproceedings

In: arXiv:1909.07750, 2021.

Zhang, Baohe; Rajan, Raghu; Pineda, Luis; Lambert, Nathan; Biedenkapp, André; Chua, Kurtland; Hutter, Frank; Calandra, Roberto

On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning Inproceedings

In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS)'21, 2021.


Biedenkapp, André; Rajan, Raghu; Hutter, Frank; Lindauer, Marius

Towards TempoRL: Learning When to Act Inproceedings

In: Workshop on Inductive Biases, Invariances and Generalization in RL (BIG@ICML'20), 2020.


Rajan, Raghu; Hutter, Frank

MDP Playground: Meta-Features in Reinforcement Learning Inproceedings

In: NeurIPS 2019 Deep RL Workshop, 2019.