Menu

PhD Student

Samuel Müller

Postal address
Institut für Informatik
Albert-Ludwigs-Universität Freiburg
Sekretariat Hutter/Maschinelles Lernen
Georges-Köhler-Allee 074
79110 Freiburg, Germany
Fax
+49 761 203-74217
Office
Building 74, Room 00-014
Personal Website
Building 74, Room 00-017

Publications

2025

Hollmann, Noah; Müller, Samuel; Purucker, Lennart; Krishnakumar, Arjun; Körfer, Max; Hoo, Shi Bin; Schirrmeister, Robin Tibor; Hutter, Frank

Accurate predictions on small data with a tabular foundation model Journal Article

In: Nature, vol. 637, iss. 8045, pp. 319–326, 2025, (Nature).

2024

Hoo, Shi Bin; Müller, Samuel; Salinas, David; Hutter, Frank

The Tabular Foundation Model TabPFN Outperforms Specialized Time Series Forecasting Models Based on Simple Features Inproceedings

In: NeurIPS 2024 TRL Workshop, 2024.

Helli, Kai; Schnurr, David; Hollmann, Noah; Müller, Samuel; Hutter, Frank

Drift-Resilient TabPFN: In-Context Learning Distribution Shifts on Tabular Data Inproceedings

In: 38th Conference on Neural Information Processing Systems (NeurIPS), 2024.

Helli, Kai; Schnurr, David; Hollmann, Noah; Müller, Samuel; Hutter, Frank

Drift-Resilient TabPFN: In-Context Learning Distribution Shifts on Tabular Data Inproceedings

In: Proceedings of the Third International Conference on Automated Machine Learning (AutoML 2024), Workshop Track, 2024.

2023

Hollmann, Noah; Müller, Samuel; Hutter, Frank

Large Language Models for Automated Data Science: Introducing CAAFE for Context-Aware Automated Feature Engineering Inproceedings

In: Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), 2023.

Adriaensen, Steven; Rakotoarison, Herilalaina; Müller, Samuel; Hutter, Frank

Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks Inproceedings

In: Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), 2023.

Müller, Samuel; Feurer, Matthias; Hollmann, Noah; Hutter, Frank

PFNs4BO: In-Context Learning for Bayesian Optimization Inproceedings

In: Proceedings of the 40th International Conference on Machine Learning (ICML 2023), 2023.

Hollmann, Noah; Müller, Samuel; Eggensperger, Katharina; Hutter, Frank

TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second Inproceedings

In: The Eleventh International Conference on Learning Representations (ICLR), 2023, ( top-25% of accepted papers ).

Hollmann, Noah; Müller, Samuel; Hutter, Frank

LLMs for Semi-Automated Data Science: Introducing CAAFE for Context-Aware Automated Feature Engineering Inproceedings

In: Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), 2023.

2022

Wagner, Diane; Ferreira, Fabio; Stoll, Danny; Schirrmeister, Robin Tibor; Müller, Samuel; Hutter, Frank

On the Importance of Hyperparameters and Data Augmentation for Self-Supervised Learning Workshop

ICML Pre-training Workshop, 2022.

Müller, Samuel; Hollmann, Noah; Arango, Sebastian Pineda; Grabocka, Josif; Hutter, Frank

Transformers Can Do Bayesian Inference Inproceedings

In: 10th International Conference on Learning Representations, ICLR 2022, 2022.

Müller, Samuel; Arango, Sebastian Pineda; Feurer, Matthias; Grabocka, Josif; Hutter, Frank

Bayesian Optimization with a Neural Network Meta-learned on Synthetic Data Only Workshop

Sixth Workshop on Meta-Learning at the Conference on Neural Information Processing Systems, 2022.

Adriaensen, Steven; Rakotoarison, Herilalaina; Müller, Samuel; Hutter, Frank

Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks Inproceedings

In: Sixth Workshop on Meta-Learning at the Conference on Neural Information Processing Systems, 2022.

Hollmann, Noah; Müller, Samuel; Eggensperger, Katharina; Hutter, Frank

TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second Inproceedings

In: NeurIPS 2022 First Table Representation Workshop, 2022.

2021

Müller, Samuel; Hutter, Frank

TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation Inproceedings

In: ICCV, 2021, (Oral Presentation (Top 3%)).

Müller, Samuel; Biedenkapp, André; Hutter, Frank

In-Loop Meta-Learning with Gradient-Alignment Reward Inproceedings

In: AAAI workshop on Meta-Learning Challenges, 2021.