
DEHB: Evolutionary Hyperband for Scalable, Robust and Efficient
Hyperparameter Optimization

Noor Awad1 , Neeratyoy Mallik1 , Frank Hutter1,2
1Department of Computer Science, University of Freiburg, Germany

2Bosch Center for Artificial Intelligence, Renningen, Germany
{awad, mallik, fh}@cs.uni-freiburg.de

Abstract
Modern machine learning algorithms crucially rely
on several design decisions to achieve strong per-
formance, making the problem of Hyperparame-
ter Optimization (HPO) more important than ever.
Here, we combine the advantages of the popular
bandit-based HPO method Hyperband (HB) and
the evolutionary search approach of Differential
Evolution (DE) to yield a new HPO method which
we call DEHB. Comprehensive results on a very
broad range of HPO problems, as well as a wide
range of tabular benchmarks from neural archi-
tecture search, demonstrate that DEHB achieves
strong performance far more robustly than all pre-
vious HPO methods we are aware of, especially for
high-dimensional problems with discrete input di-
mensions. For example, DEHB is up to 1000×
faster than random search. It is also efficient in
computational time, conceptually simple and easy
to implement, positioning it well to become a new
default HPO method.

1 Introduction
Many algorithms in artificial intelligence rely crucially on
good settings of their hyperparameters to achieve strong per-
formance. This is particularly true for deep learning [Hender-
son et al., 2018; Melis et al., 2018], where dozens of hyperpa-
rameters concerning both the neural architecture and the opti-
mization & regularization pipeline need to be instantiated. At
the same time, modern neural networks continue to get larger
and more computationally expensive, making the need for ef-
ficient hyperparameter optimization (HPO) more important.

We believe that a practical, general HPO method must
fulfill many desiderata, including: (1) strong anytime per-
formance, (2) strong final performance with a large bud-
get, (3) effective use of parallel resources, (4) scalability
w.r.t. the dimensionality and (5) robustness & flexibility.
These desiderata drove the development of BOHB [Falkner
et al., 2018], which satisfied them by combining the best
features of Bayesian optimization via Tree Parzen estimates
(TPE) [Bergstra et al., 2011] (in particular, strong final per-
formance), and the many advantages of bandit-based HPO
via Hyperband [Li et al., 2017]. While BOHB is among

the best general-purpose HPO methods we are aware of, it
still has problems with optimizing discrete dimensions and
does not scale as well to high dimensions as one would wish.
Therefore, it does not work well on high-dimensional HPO
problems with discrete dimensions and also has problems
with tabular neural architecture search (NAS) benchmarks
(which can be tackled as high-dimensional discrete-valued
HPO benchmarks, an approach followed, e.g., by regularized
evolution (RE) [Real et al., 2019]).

The main contribution of this paper is to further improve
upon BOHB to devise an effective general HPO method,
which we dub DEHB. DEHB is based on a combination of
the evolutionary optimization method of differential evolu-
tion (DE [Storn and Price, 1997]) and Hyperband and has
several useful properties:

1. DEHB fulfills all the desiderata of a good HPO opti-
mizer stated above, and in particular achieves more ro-
bust strong final performance than BOHB, especially for
high-dimensional and discrete-valued problems.

2. DEHB is conceptually simple and can thus be easily re-
implemented in different frameworks.

3. DEHB is computationally cheap, not incurring the over-
head typical of most BO methods.

4. DEHB effectively takes advantage of parallel resources.
After discussing related work (Section 2) and background

on DE and Hyperband (Section 3), Section 4 describes our
new DEHB method in detail. Section 5 then presents com-
prehensive experiments on artificial toy functions, surrogate
benchmarks, Bayesian neural networks, reinforcement learn-
ing, and 13 different tabular neural architecture search bench-
marks, demonstrating that DEHB is more effective and robust
than a wide range of other HPO methods, and in particular up
to 1000× times faster than random search (Figure 7) and up
to 32× times faster than BOHB (Figure 11) on HPO prob-
lems; on toy functions, these speedup factors even reached
33 440× and 149×, respectively (Figure 6)1.

2 Related Work
HPO as a black-box optimization problem can be broadly
tackled using two families of methods: model-free meth-

1Refer to Appendix here: https://ml.informatik.uni-freiburg.de/
papers/21-IJCAI-DEHB-supplementary.pdf

https://ml.informatik.uni-freiburg.de/papers/21-IJCAI-DEHB-supplementary.pdf
https://ml.informatik.uni-freiburg.de/papers/21-IJCAI-DEHB-supplementary.pdf

ods, such as evolutionary algorithms, and model-based
Bayesian optimization methods. Evolutionary Algorithms
(EAs) are model-free population-based methods which gen-
erally include a method of initializing a population; mutation,
crossover, selection operations; and a notion of fitness. EAs
are known for black-box optimization in a HPO setting since
the 1980s [Grefenstette, 1986]. They have also been popular
for designing architectures of deep neural networks [Ange-
line et al., 1994; Xie and Yuille, 2017; Real et al., 2017; Liu
et al., 2017]; recently, Regularized Evolution (RE) [Real et
al., 2019] achieved state-of-the-art results on ImageNet.

Bayesian optimization (BO) uses a probabilistic model
based on the already observed data points to model the ob-
jective function and to trade off exploration and exploita-
tion. The most commonly used probabilistic model in BO
are Gaussian processes (GP) since they obtain well-calibrated
and smooth uncertainty estimates [Snoek et al., 2012]. How-
ever, GP-based models have high complexity, do not natively
scale well to high dimensions and do not apply to complex
spaces without prior knowledge; alternatives include tree-
based methods [Bergstra et al., 2011; Hutter et al., 2011] and
Bayesian neural networks [Springenberg et al., 2016].

Recent so-called multi-fidelity methods exploit cheap ap-
proximations of the objective function to speed up the opti-
mization [Liu et al., 2016; Wang et al., 2017]. Multi-fidelity
optimization is also popular in BO, with Fabolas [Klein et
al., 2016] and Dragonfly [Kandasamy et al., 2020] being GP-
based examples. The popular method BOHB [Falkner et al.,
2018], which combines BO and the bandit-based approach
Hyperband [Li et al., 2017], has been shown to be a strong
off-the-shelf HPO method and to the best of our knowledge
is the best previous off-the-shelf multi-fidelity optimizer.

3 Background
3.1 Differential Evolution (DE)
In each generation g, DE uses an evolutionary search based
on difference vectors to generate new candidate solutions.
DE is a population-based EA which uses three basic iterative
steps (mutation, crossover and selection). At the beginning of
the search on a D-dimensional problem, we initialize a popu-
lation of N individuals xi,g = (x1i,g, x

2
i,g, ..., x

D
i,g) randomly

within the search range of the problem being solved. Each
individual xi,g is evaluated by computing its corresponding
objective function value. Then the mutation operation gener-
ates a new offspring for each individual. The canonical DE
uses a mutation strategy called rand/1, which selects three
random parents xr1 , xr2 , xr3 to generate a new mutant vector
vi,g for each xi,g in the population as shown in Eq. 1 where
F is a scaling factor parameter and takes a value within the
range (0,1].

vi,g = xr1,g + F · (xr2,g − xr3,g). (1)
The crossover operation then combines each individual

xi,g and its corresponding mutant vector vi,g to generate the
final offspring/child ui,g . The canonical DE uses a simple bi-
nomial crossover to select values from vi,g with a probability
p (called crossover rate) and xi,g otherwise. For the members
xi,g+1 of the next generations, DE then uses the better of xi,g
and ui,g . More details on DE can be found in appendix A.

3.2 Successive Halving (SH) and Hyperband (HB)
Successive Halving (SH) [Jamieson and Talwalkar, 2016] is
a simple yet effective multi-fidelity optimization method that
exploits the fact that, for many problems, low-cost approxi-
mations of the expensive blackbox functions exist, which can
be used to rule out poor parts of the search space at little com-
putational cost. Higher-cost approximations are only used for
a small fraction of the configurations to be evaluated. Specif-
ically, an iteration of SH starts by sampling N configurations
uniformly at random, evaluating them at the lowest-cost ap-
proximation (the so-called lowest budget), and forwarding a
fraction of the top 1/η of them to the next budget (function
evaluations at which are expected to be roughly η more ex-
pensive). This process is repeated until the highest budget,
used by the expensive original blackbox function, is reached.
Once the runs on the highest budget are complete, the current
SH iteration ends, and the next iteration starts with the lowest
budget. We call each such fixed sequence of evaluations from
lowest to highest budget a SH bracket. While SH is often
very effective, it is not guaranteed to converge to the optimal
configuration even with infinite resources, because it can drop
poorly-performing configurations at low budgets that actually
might be the best with the highest budget.

Hyperband (HB) [Li et al., 2017] solves this problem by
hedging its bets across different instantiations of SH with
successively larger lowest budgets, thereby being provably at
most a constant times slower than random search. In partic-
ular, this procedure also allows to find configurations that are
strong for higher budgets but would have been eliminated for
lower budgets. Algorithm 2 in Appendix B shows the pseu-
docode for HB with the SH subroutine. One iteration of HB
(also called HB bracket) can be viewed as a sequence of SH
brackets with different starting budgets and different numbers
of configurations for each SH bracket. The precise budgets
and number of configurations per budget are determined by
HB given its 3 parameters: minimum budget, maximum bud-
get, and η.

The main advantages of HB are its simplicity, theoretical
guarantees, and strong anytime performance compared to op-
timization methods operating on the full budget. However,
HB can perform worse than BO and DE for longer runs since
it only selects configurations based on random sampling and
does not learn from previously sampled configurations.

4 DEHB
We design DEHB to satisfy all the desiderata described in
the introduction (Section 1). DEHB inherits several advan-
tages from HB to satisfy some of these desiderata, includ-
ing its strong anytime performance, scalability and flexibil-
ity. From the DE component, it inherits robustness, simplic-
ity, and computational efficiency. We explain DEHB in detail
in the remainder of this section; full pseudocode can be found
in Algorithm 3 in Appendix C.

4.1 High-Level Overview
A key design principle of DEHB is to share information
across the runs it executes at various budgets. DEHB main-
tains a subpopulation for each of the budget levels, where

Figure 1: Internals of a DEHB iteration showing information flow
across fidelities (top-down), and how each subpopulation is updated
in each DEHB iteration (left-right).

the population size for each subpopulation is assigned as the
maximum number of function evaluations HB allocates for
the corresponding budget.

We borrow nomenclature from HB and call the HB itera-
tions that DEHB uses DEHB iterations. Figure 1 illustrates
one such iteration, where minimum budget, maximum bud-
get, and η are 1, 27, and 3, respectively. The topmost sphere
for SH Bracket 1, is the first step, where 27 configurations
are sampled uniformly at random and evaluated at the lowest
budget 1. These evaluated configurations now form the DE
subpopulation associated with budget 1. The dotted arrow
pointing downwards indicates that the top-9 configurations
(27/η) are promoted to be evaluated on the next higher bud-
get 3 to create the DE subpopulation associated with budget 3,
and so on until the highest budget. This progressive increase
of the budget by η and decrease of the number of configura-
tions evaluated by η is simply the vanilla SH. Indeed, each
SH bracket for this first DEHB iteration is basically execut-
ing vanilla SH, starting from different minimum budgets, just
like in HB.

One difference from vanilla SH is that random sampling of
configurations occurs only once: in the first step of the first
SH bracket of the first DEHB iteration. Every subsequent
SH bracket begins by reusing the subpopulation updated in
the previous SH bracket, and carrying out a DE evolution
(detailed in Section 4.2). For example, for SH bracket 2 in
Figure 1, the subpopulation of 9 configurations for budget 3
(topmost sphere) is propagated from SH bracket 1 and un-
dergoes evolution. The top 3 configurations (9/η) then affect
the population for the next higher budget 9 of SH bracket
2. Specifically, these will used as the so-called parent pool
for that higher budget, using the modified DE evolution to be
discussed in Section 4.2. The end of SH Bracket 4 marks the
end of this DEHB iteration. We dub DEHB’s first iteration

Figure 2: Modified SH routine under DEHB

its initialization iteration. At the end of this iteration, all DE
subpopulations associated with the higher budgets are seeded
with configurations that performed well in the lower budgets.
In subsequent SH brackets, no random sampling occurs any-
more, and the search runs separate DE evolutions at different
budget levels, where information flows from the subpopula-
tions at lower budgets to those at higher budgets through the
modified DE mutation (Fig. 3).

4.2 Modified Successive Halving using DE
Evolution

We now discuss the deviations from vanilla SH by elaborat-
ing on the design of a SH bracket inside DEHB, highlighted
with a box in Figure 1 (SH Bracket 1). In DEHB, the top-
performing configurations from a lower budget are not sim-
ply promoted and evaluated on a higher budget (except for
the Initialization SH bracket). Rather, in DEHB, the top-
performing configurations are collected in a Parent Pool (Fig-
ure 2). This pool is responsible for transfer of information
from a lower budget to the next higher budget, but not by di-
rectly suggesting best configurations from the lower budget
for re-evaluation at a higher budget. Instead, the parent pool
represents a good performing region w.r.t. the lower budget,
from which parents can be sampled for mutation. Figure 3b
demonstrates how a parent pool contributes in a DE evolu-
tion in DEHB. Unlike in vanilla DE (Figure 3a), in DEHB,
the mutants involved in DE evolution are extracted from the
parent pool instead of the population itself. This allows the
evolution to incorporate and combine information from the
current budget, and also from the decoupled search happen-
ing on the lower budget. The selection step as shown in Fig-
ure 3 is responsible for updating the current subpopulation if
the new suggested configuration is better. If not, the existing
configuration is retained in the subpopulation. This guards

Figure 3: Modified DE evolution under DEHB

Figure 4: Runtime comparison
for DEHB and BOHB based
on a single run on the Cifar-10
benchmark from NAS-Bench-
201. The x-axis shows the ac-
tual cumulative wall-clock time
spent by the algorithm (opti-
mization time) in between the
function evaluations.

against cases where performance across budget levels is not
correlated and good configurations from lower budgets do not
improve higher budget scores. However, search on the higher
budget can still progress, as the first step of every SH bracket
performs vanilla DE evolution (there is no parent pool to re-
ceive information from). Thereby, search at the required bud-
get level progresses even if lower budgets are not informative.

Additionally, we also construct a global population pool
consisting of configurations from all the subpopulations. This
pool does not undergo any evolution and serves as the parent
pool in the edge case where the parent pool is smaller than
the minimum number of individuals required for the mutation
step. For the example in Figure 2, under the rand1 mutation
strategy (which requires three parents), we see that for the
highest budget, only one configuration (3/η) is included from
the previous budget. In such a scenario, the additional two
required parents are sampled from the global population pool.

4.3 DEHB efficiency and parallelization
As mentioned previously, DEHB carries out separate DE
searches at each budget level. Moreover, the DE operations
involved in evolving a configuration are constant in opera-
tion and time. Therefore, DEHB’s runtime overhead does
not grow over time, even as the number of performed func-
tion evaluations increases; this is in stark contrast to model-
based methods, whose time complexity is often cubic in the
number of performed function evaluations. Indeed, Figure
4 demonstrates that, for a tabular benchmark with negligi-
ble cost for function evaluations, DEHB is almost 2 orders of
magnitude faster than BOHB to perform 13336 function eval-
uations. GP-based Bayesian optimization tools would require
approximations to even fit a single model with this number of

Figure 5: Results for the
OpenML Letter surrogate
benchmark where n represents
number of workers that were
used for each DEHB run. Each
trace is averaged over 10 runs.

function evaluations.
We also briefly describe a parallel version of DEHB (see

Appendix C.3 for details of its design). Since DEHB can be
viewed as a sequence of predetermined SH brackets, the SH
brackets can be asynchronously distributed over free workers.
A central DEHB Orchestrator keeps a single copy of all DE
subpopulations, allowing for asynchronous, immediate DE
evolution updates. Figure 5 illustrates that this parallel ver-
sion achieves linear speedups for similar final performance.

5 Experiments
We now comprehensively evaluate DEHB, illustrating that it
is more robust and efficient than any other HPO method we
are aware of. To keep comparisons fair and reproducible, we
use a broad collection of publicly-available HPO and NAS
benchmarks: all HPO benchmarks that were used to demon-
strate the strength of BOHB [Falkner et al., 2018]2 and also a
broad collection of 13 recent tabular NAS benchmarks repre-
sented as HPO problems [Awad et al., 2020].

In this section, to avoid cluttered plots we present a focused
comparison of DEHB with BOHB, the best previous off-
the-shelf multi-fidelity HPO method we are aware of, which
has in turn outperformed a broad range of competitors (GP-
BO, TPE, SMAC, HB, Fabolas, MTBO, and HB-LCNet) on
these benchmarks [Falkner et al., 2018]. For reference, we
also include the obligatory random search (RS) baseline in
these plots, showing it to be clearly dominated, with up to
1000-fold speedups. We also provide a comparison against a
broader range of methods at the end of this section (see Figure
13 and Table 1), with a full comparison in Appendix D. We
also compare to the recent GP-based multi-fidelity BO tool
Dragonfly in Appendix D.7. Details for the hyperparameter
values of the used algorithms can be found in Appendix D.1.

We use the same parameter settings for mutation factor
F = 0.5 and crossover rate p = 0.5 for both DE and DEHB.
The population size for DEHB is not user-defined but set by
its internal Hyperband component while we set it to 20 for DE
following [Awad et al., 2020]. Unless specified otherwise,
we report results from 50 runs for all algorithms, plotting the
validation regret3 over the cumulative cost incurred by the
function evaluations, and ignoring the optimizers’ overhead
in order to not give DEHB what could be seen as an unfair
advantage.4 We also show the speedups that DEHB achieves
compared to RS and BOHB, where this is possible without
adding clutter.

2We leave out the 2-dimensionsal SVM surrogate benchmarks
since all multi-fidelity algorithms performed similarly for this easy
task, without any discernible difference.

3This is the difference of validation score from the global best.
4Shaded bands in plots represent the standard error of the mean.

Figure 6: Results for the
Stochastic Counting Ones prob-
lem in 64 dimensional space
with 32 categorical and 32 con-
tinuous hyperparameters. All
algorithms shown were run for
50 runs.

5.1 Artificial Toy Function: Stochastic Counting
Ones

This toy benchmark by Falkner et al. [2018] is useful to assess
scaling behavior and ability to handle binary dimensions. The
goal is to minimize the following objective function:

f(x) = −

(∑
x∈Xcat

x+
∑

x∈Xcont

Eb[(Bp=x)]

)
,

where the sum of the categorical variables (xi ∈ {0, 1}) rep-
resents the standard discrete counting ones problem. The
continuous variables (xj ∈ [0, 1]) represent the stochastic
component, with the budget b controlling the noise. The
budget here represents the number of samples used to es-
timate the mean of the Bernoulli distribution (B) with pa-
rameters xj . Following Falkner et al. [2018], we run 4 sets
of experiments with Ncont = Ncat = {4, 8, 16, 32}, where
Ncont = |Xcont| and Ncat = |Xcat|, using the same bud-
get spacing and plotting the normalized regret: (f(x)+d)/d,
where d = Ncat+Ncont. Although this is a toy benchmark it
can offer interesting insights since the search space has mixed
binary/continuous dimensions which DEHB handles well (re-
fer to C.2 in Appendix for more details). In Figure 6, we con-
sider the 64-dimensional space Ncat = Ncont = 32; results
for the lower dimensions can be found in Appendix D.2. Both
BOHB and DEHB begin with a set of randomly sampled indi-
viduals evaluated on the lowest budget. It is therefore unsur-
prising that in Figure 6 (and in other experiments too), these
two algorithms follow a similar optimization trace at the be-
ginning of the search. Given the high dimensionality, BOHB
requires many more samples to switch to model-based search
which slows its convergence in comparison to the lower di-
mensional cases (Ncont = Ncat = {4, 8, 16}). In contrast,
DEHB’s convergence rate is almost agnostic to the increase
in dimensionality.

5.2 Surrogates for Feedforward Neural Networks
In this experiment, we optimize six architectural and training
hyperparameters of a feed-forward neural network on six dif-
ferent datasets from OpenML [Vanschoren et al., 2014], us-
ing a surrogate benchmark built by Falkner et al. [2018]. The
budgets are the training epochs for the neural networks. For
all six datasets, we observe a similar pattern of the search tra-
jectory, with DEHB and BOHB having similar anytime per-
formance and DEHB achieving the best final score. An ex-
ample is given in Figure 7, also showing a 1000-fold speedup
over random search; qualitatitvely similar results for the other
5 datasets are in Appendix D.3.

5.3 Bayesian Neural Networks
In this benchmark, introduced by Falkner et al. [2018], a two-
layer fully-connected Bayesian Neural Network is trained us-

Figure 7: Results for the
OpenML Adult surrogate
benchmark for 6 continuous
hyperparameters for 50 runs of
each algorithm.

Figure 8: Results for tuning 5
hyperparameters of a Bayesian
Neural Network on the Boston
Housing regression dataset for
50 runs each.

ing stochastic gradient Hamiltonian Monte-Carlo sampling
(SGHMC) [Chen et al., 2014] with scale adaptation [Sprin-
genberg et al., 2016]. The budgets were the number of
MCMC steps (500 as minimum; 10000 as maximum). Two
regression datasets from UCI [Dua and Graff, 2017] were
used for the experiments: Boston Housing and Protein Struc-
ture. Figure 8 shows the results (for Boston housing; the re-
sults for Protein Structure are in Appendix D.4). For this
extremely noisy benchmark, BOHB and DEHB perform sim-
ilarly, and both are about 2× faster than RS.

5.4 Reinforcement Learning
For this benchmark used by Falkner et al. [2018]), a proxi-
mal policy optimization (PPO) [Schulman et al., 2017] im-
plementation is parameterized with 7 hyperparameters. PPO
is used to learn the cartpole swing-up task from the OpenAI
Gym [Brockman et al., 2016] environment. We plot the mean
number of episodes needed until convergence for a configura-
tion over actual cumulative wall-clock time in Figure 9. De-
spite the strong noise in this problem, BOHB and DEHB are
able to improve continuously, showing similar performance,
and speeding up over random search by roughly 2×.

5.5 NAS Benchmarks
In this series of experiments, we evaluate DEHB on a broad
range of NAS benchmarks. We use a total of 13 tabular
benchmarks from NAS-Bench-101 [Ying et al., 2019], NAS-
Bench-1shot1 [Zela et al., 2020], NAS-Bench-201 [Dong
and Yang, 2020] and NAS-HPO-Bench [Klein and Hutter,
2019]. For NAS-Bench-101, we show results on CifarC (a
mixed data type encoding of the parameter space [Awad et
al., 2020]) in Figure 10; BOHB and DEHB initially perform
similarly as RS for this dataset, since there is only little corre-
lation between runs with few epochs (low budgets) and many
epochs (high budgets) in NAS-Bench-101. In the end, RS

Figure 9: Results for tuning
PPO on OpenAI Gym cartpole
environment with 7 hyperpa-
rameters. Each algorithm was
run for 50 runs.

Figure 10: Results for Cifar C
from NAS-Bench-101 for a 27-
dimensional space — 22 con-
tinuous + 5 categorical hyper-
parameters)

Figure 11: Results for
ImageNet16-120 from NAS-
Bench-201 for 50 runs of
each algorithm. The search
space contains 6 categorical
parameters.

stagnates, BOHB stagnates at a slightly better performance,
and DEHB continues to improve. In Figure 11, we report re-
sults for ImageNet16-120 from NAS-201. In this case, DEHB
is clearly the best of the methods, quickly converging to a
strong solution.

Finally, Figure 12 reports results for the Protein Struc-
ture dataset provided in NAS-HPO-Bench. DEHB makes
progress faster than BOHB to reach the optimum. The results
on other NAS benchmarks are qualitatively similar to these 3
representative benchmarks, and are given in Appendix D.6.

5.6 Results summary
We now compare DEHB to a broader range of baseline al-
gorithms, also including HB, TPE [Bergstra et al., 2011],
SMAC [Hutter et al., 2011], regularized evolution (RE) [Real
et al., 2019], and DE. Based on the mean validation regret, all
algorithms can be ranked for each benchmark, for every sec-
ond of the estimated wallclock time. Arranging the mean re-
gret per timepoint across all benchmarks (except the Stochas-
tic Counting Ones and the Bayesian Neural Network bench-
marks, which do not have runtimes as budgets), we compute
the average relative rank over time for each algorithm in Fig-
ure 13, where all 8 algorithms were given the mean rank of
4.5 at the beginning. The shaded region clearly indicates that
DEHB is the most robust algorithm for this set of bench-
marks (discussed further in Appendix D.8). In the end, RE
and DE are similarly good, but these blackbox optimization
algorithms perform worst for small compute budgets, while
DEHB’s multi-fidelity aspect makes it robust across compute
budgets. In Table 1, we show the average rank of each algo-
rithm based on the final validation regret achieved across all
benchmarks (now also including Stochastic Counting Ones
and Bayesian Neural Networks; data derived from Table 1
in Appendix D.8). Next to its strong anytime performance,
DEHB also yields the best final performance in this compar-

Figure 12: Results for the
Protein Structure dataset from
NAS-HPO-Bench for 50 runs
of each algorithm. The search
space contains 9 hyperparame-
ters.

Figure 13: Average rank of the mean validation regret of 50 runs of
each algorithm, averaged over the NAS-Bench-101, NAS-Bench-
1shot1, NAS-HPO-Bench, NAS-Bench-201, OpenML surrogates,
and the Reinforcement Learning benchmarks.

ison, thus emerging as a strong general optimizer that works
consistently across a diverse set of benchmarks. Result tables
and figures for all benchmarks can be found in Appendix D.

RS HB BOHB TPE SMAC RE DE DEHB

Avg. rank 7.46 6.54 4.42 4.35 4.73 3.16 2.96 2.39

Table 1: Mean ranks based on final mean validation regret for all
algorithms tested for all benchmarks.

6 Conclusion
We introduced DEHB, a new, general HPO solver, built to
perform efficiently and robustly across many different prob-
lem domains. As discussed, DEHB satisfies the many re-
quirements of such an HPO solver: strong performance with
both short and long compute budgets, robust results, scal-
ability to high dimensions, flexibility to handle mixed data
types, parallelizability, and low computational overhead. Our
experiments show that DEHB meets these requirements and
in particular yields much more robust performance for dis-
crete and high-dimensional problems than BOHB, the previ-
ous best overall HPO method we are aware of. Indeed, in
our experiments, DEHB was up to 32× faster than BOHB
and up to 1000× faster than random search. DEHB does
not require advanced software packages, is simple by de-
sign, and can easily be implemented across various platforms
and languages, allowing for practical adoption. We thus
hope that DEHB will become a new default HPO method.
Our reference implementation of DEHB is available at https:
//github.com/automl/DEHB.

Acknowledgements. The authors acknowledge funding by
the Robert Bosch GmbH, by the German Federal Ministry
of Education and Research (BMBF, grant Renormalized-
Flows 01IS19077C), and support by the state of Baden-
Württemberg through bwHPC and the German Research
Foundation (DFG) through grant no INST 39/963-1 FUGG.

https://github.com/automl/DEHB
https://github.com/automl/DEHB

References
P.J. Angeline, G.M. Saunders, and J.B. Pollack. An evo-

lutionary algorithm that constructs recurrent neural net-
works. IEEE transactions on Neural Networks, 5(1):54–
65, 1994.

N. Awad, N. Mallik, and F. Hutter. Differential evolution
for neural architecture search. In First ICLR Workshop on
Neural Architecture Search, 2020.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms
for hyper-parameter optimization. In Proc. of NeurIPS’11,
pages 2546–2554, 2011.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

T. Chen, E. Fox, and C. Guestrin. Stochastic gradient hamil-
tonian monte carlo. In International conference on ma-
chine learning, pages 1683–1691, 2014.

X. Dong and Y. Yang. Nas-bench-102: Extending the scope
of reproducible neural architecture search. arXiv preprint
arXiv:2001.00326, 2020.

D. Dua and C. Graff. Uci machine learning repository, 2017.
S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and ef-

ficient hyperparameter optimization at scale. In Proc. of
ICML’18, pages 1437–1446, 2018.

J. J. Grefenstette. Optimization of control parameters for ge-
netic algorithms. IEEE Transactions on Systems, Man, and
Cybernetics, 16:341–359, 1986.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup,
and D. Meger. Deep reinforcement learning that matters.
In Proc. of AAAI’18, 2018.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-
based optimization for general algorithm configuration. In
Proc. of LION’11, pages 507–523, 2011.

K. Jamieson and A. Talwalkar. Non-stochastic best arm iden-
tification and hyperparameter optimization. In Proc. of
AISTATS’16, 2016.

K. Kandasamy, K. R. Vysyaraju, W. Neiswanger, B. Paria,
C. R. Collins, J. Schneider, B. Poczos, and E. P. Xing.
Tuning hyperparameters without grad students: Scalable
and robust bayesian optimisation with dragonfly. Journal
of Machine Learning Research, 21(81):1–27, 2020.

A. Klein and F. Hutter. Tabular benchmarks for joint archi-
tecture and hyperparameter optimization. arXiv preprint
arXiv:1905.04970, 2019.

A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast
bayesian optimization of machine learning hyperparame-
ters on large datasets. arXiv:1605.07079 [cs.LG], 2016.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and
A. Talwalkar. Hyperband: Bandit-based configuration
evaluation for hyperparameter optimization. In Proc. of
ICLR’17, 2017.

B. Liu, S. Koziel, and Q. Zhang. A multi-fidelity surrogate-
model-assisted evolutionary algorithm for computationally

expensive optimization problems. Journal of computa-
tional science, 12:28–37, 2016.

H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and
K. Kavukcuoglu. Hierarchical representations for efficient
architecture search. arXiv preprint arXiv:1711.00436,
2017.

G. Melis, C. Dyer, and P. Blunsom. On the state of the art of
evaluation in neural language models. In Proc. of ICLR’18,
2018.

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan,
Q. V. Le, and A. Kurakin. Large-scale evolution of image
classifiers. In Proc. of ICML, pages 2902–2911. JMLR.
org, 2017.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regular-
ized evolution for image classifier architecture search. In
Proc. of AAAI, volume 33, pages 4780–4789, 2019.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347, 2017.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian
optimization of machine learning algorithms. In Proc. of
NeurIPS’12, pages 2951–2959, 2012.

J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter.
Bayesian optimization with robust bayesian neural net-
works. In Proc. of NeurIPS, pages 4134–4142, 2016.

R. Storn and K. Price. Differential evolution–a simple and
efficient heuristic for global optimization over continuous
spaces. Journal of global optimization, 11(4):341–359,
1997.

J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo.
Openml: networked science in machine learning. ACM
SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

H. Wang, Y. Jin, and J. Doherty. A generic test suite for evo-
lutionary multifidelity optimization. IEEE Transactions on
Evolutionary Computation, 22(6):836–850, 2017.

L. Xie and A. Yuille. Genetic cnn. In Proc. of ICCV, pages
1379–1388, 2017.

C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and
F. Hutter. Nas-bench-101: Towards reproducible neural ar-
chitecture search. arXiv preprint arXiv:1902.09635, 2019.

A. Zela, J. Siems, and F. Hutter. Nas-bench-1shot1: Bench-
marking and dissecting one-shot neural architecture search.
arXiv preprint arXiv:2001.10422, 2020.

	Introduction
	Related Work
	Background
	Differential Evolution (DE)
	Successive Halving (SH) and Hyperband (HB)

	DEHB
	High-Level Overview
	Modified Successive Halving using DE Evolution
	DEHB efficiency and parallelization

	Experiments
	Artificial Toy Function: Stochastic Counting Ones
	Surrogates for Feedforward Neural Networks
	Bayesian Neural Networks
	Reinforcement Learning
	NAS Benchmarks
	Results summary

	Conclusion

