
Journal of Machine Learning Research 1 (2000) 1-48 Submitted 4/00; Published 10/00

Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning

Matthias Feurer1 feurerm@cs.uni-freiburg.de

Katharina Eggensperger1 eggenspk@cs.uni-freiburg.de

Stefan Falkner2 Stefan.Falkner@de.bosch.com

Marius Lindauer3 lindauer@tnt.uni-hannover.de

Frank Hutter1,2 fh@cs.uni-freiburg.de
1Department of Computer Science, Albert-Ludwigs-Universität Freiburg
2Bosch Center for Artificial Intelligence, Renningen, Germany
3Institute of Information Processing, Leibniz University Hannover

Editor: unknown

Abstract

Automated Machine Learning (AutoML) supports practitioners and researchers with the
tedious task of designing machine learning pipelines and has recently achieved substantial
success. In this paper we introduce new AutoML approaches motivated by our winning
submission to the second ChaLearn AutoML challenge. We develop PoSH Auto-sklearn,
which enables AutoML systems to work well on large datasets under rigid time limits using
a new, simple and meta-feature-free meta-learning technique and employ a successful bandit
strategy for budget allocation. However, PoSH Auto-sklearn introduces even more ways of
running AutoML and might make it harder for users to set it up correctly. Therefore, we
also go one step further and study the design space of AutoML itself, proposing a solution
towards truly hands-free AutoML. Together, these changes give rise to the next generation
of our AutoML system, Auto-sklearn 2.0 . We verify the improvements by these additions
in a large experimental study on 39 AutoML benchmark datasets and conclude the paper
by comparing to other popular AutoML frameworks and Auto-sklearn 1.0 , reducing the
relative error by up to a factor of four, and yielding a performance in 10 minutes that is
substantially better than what Auto-sklearn 1.0 achieves within an hour.

Keywords: Automated Machine Learning, Hyperparameter Optimization, Meta-Learning

1. Introduction

The recent substantial progress in machine learning (ML) has led to a growing demand
for hands-free ML systems that can support developers and ML novices in efficiently cre-
ating new ML applications. Since different datasets require different ML pipelines, this
demand has given rise to the area of automated machine learning (AutoML; Hutter et al.
(2019)). Popular AutoML systems, such as Auto-WEKA (Thornton et al., 2013), hyperopt-
sklearn (Komer et al., 2014), Auto-sklearn (Feurer et al., 2015a), TPOT (Olson et al.,
2016a) and Auto-Keras (Jin et al., 2019) perform a combined optimization across different
preprocessors, classifiers or regressors and their hyperparameter settings, thereby reducing
the effort for users substantially.

To assess the current state of AutoML and, more importantly, to foster progress in
AutoML, ChaLearn conducted a series of AutoML challenges (Guyon et al., 2019), which

c©2000 Matthias Feurer and Katharina Eggensperger and Stefan Falkner and Marius Lindauer and Frank Hutter.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v1/feurer00a.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v1/feurer00a.html

Feurer, Eggensperger, Falkner, Lindauer and Hutter

evaluated AutoML systems in a systematic way under rigid time and memory constraints.
Concretely, in these challenges, the AutoML systems were required to deliver predictions in
less than 20 minutes, which would allow for an efficient development of new ML applications
on-the-fly and help to democratize ML.

We won both the first and second AutoML challenge with modified versions of Auto-
sklearn. In this work, we describe in detail how we improved Auto-sklearn from the first
version (Feurer et al., 2015a) to construct PoSH Auto-sklearn, which won the second com-
petition and then describe how we improved PoSH Auto-sklearn further to yield our current
approach for Auto-sklearn 2.0 .

Particularly, while AutoML reliefs the user from making low-level design decisions (e.g.
which model to use), AutoML itself opens a myriad of high-level design decisions, e.g.
which model selection strategy to use (Guyon et al., 2010, 2015; Raschka, 2018). Whereas
our submissions to the AutoML challenges were mostly hand-designed, in this work we go
one step further by automating AutoML itself to fully unfold the potential of AutoML in
practice.1

After detailing the AutoML problem we consider in Section 2, we present two main
parts making the following contributions:

Part I: Portfolio Successive Halving in PoSH Auto-sklearn. In this part (see Sec-
tion 3), we introduce budget allocation strategies as a complementary design choice to
model selection strategies holdout (HO) and cross-validation (CV) for AutoML sys-
tems, also using successive halving (SH) as an alternative to allocate more resources
to promising ML pipelines. Furthermore, we introduce both the practical approach as
well as the theory behind building better portfolios for the meta-learning component
of Auto-sklearn. We show that this combination substantially improves performance,
yielding stronger results in 10 minutes than Auto-sklearn 1.0 achieved in 60 minutes.

Part II: Automating AutoML in Auto-sklearn 2.0 . In this part (see Section 4), we
propose a meta-learning technique based on algorithm selection to construct a model-
based policy selector to automatically choose the best optimization policy π for an
AutoML system for a given dataset, further robustifying AutoML itself. We dub the
resulting system Auto-sklearn 2.0 and depict the evolution from Auto-sklearn 1.0 via
PoSH Auto-sklearn to Auto-sklearn 2.0 in Figure 1.

In Section 5, we additionally use the AutoML benchmark (Gijsbers et al., 2019) to evaluate
Auto-sklearn 2.0 against other popular AutoML systems and show improved performance
under rigid time constraints. Section 6 then puts our work into the context of related works
and Section 7 concludes the paper with open questions, limitations and future work.

2. Problem Statement and Background

AutoML is a widely used term, so, here we first define the problem we consider in this work.
Then, we discuss the building blocks of AutoML systems before we provide an overview of
existing AutoML methods and systems, including Auto-sklearn.

1. The work presented in this paper is in part based on two earlier workshop papers introducing some of
the presented ideas in preliminary form (Feurer et al., 2018; Feurer and Hutter, 2018).

2

Auto-sklearn 2.0

Auto-sklearn 2.0
{Xtrain, Ytrain,
Xtest, b,L}

Selector selects
π ∈ {HO,CV } ×
{SH,FB}

Portfolio for π
AutoML system

using π Ŷtest

PoSH Auto-sklearn
{Xtrain, Ytrain,
Xtest, b,L} π = (HO,SH) Portfolio for π

AutoML system
using π Ŷtest

Auto-sklearn 1.0
{Xtrain, Ytrain,
Xtest, b,L}

User selects∗

π ∈ {HO,CV } KND
AutoML system

using π Ŷtest
∗ by default select HO

Figure 1: Schematic overview of Auto-sklearn 1.0 , PoSH Auto-sklearn, and Auto-sklearn
2.0 . Orange rectangular boxes refer to input and output data, while rounded
purple boxes denote parts of the AutoML system (surrounded by a green dashed
line). The pink, rounded box refers to human in the loop required for manual
design decisions. The newer AutoML system simplify the usage of Auto-sklearn
and reduce the required user input.

2.1 Problem Statement

Let P (D) be a distribution of datasets from which we can sample an individual dataset’s
distribution Pd = Pd(x, y). The AutoML problem we consider is to generate a trained
pipeline Mλ : x 7→ y, hyperparameterized by λ ∈ Λ that automatically produces predic-
tions for samples from the distribution Pd minimizing the expected generalization error:2

GE(Mλ) = E(x,y)∼Pd
[L(Mλ(x), y)] . (1)

Since a dataset can only be observed through a set of n independent observations Dd =
{(x1, y1), . . . , (xn, yn)} ∼ Pd, we can only empirically approximate the generalization error
on sample data:

GE
∧

(Mλ,Dd) =
1

n

n∑
i=1

L(Mλ(xi), yi). (2)

In practice we have access to two disjoint, finite samples which we from now on denote
Dtrain and Dtest (Dd,train and Dd,test in case we reference a specific dataset drawn from Pd).
For searching the best ML pipeline, we only have access to Dtrain, however, in the end
performance is estimated on Dtest.

AutoML systems use this to automatically search for the best Mλ∗ :

Mλ∗ ∈ argmin
λ∈Λ

GE
∧

(Mλ,Dtrain) (3)

2. Our notation follows Vapnik (1991).

3

Feurer, Eggensperger, Falkner, Lindauer and Hutter

and estimate GE, e.g., by a K-fold cross-validation:

GE
∧

CV(Mλ,Dtrain) =
1

K

K∑
k=1

GE
∧

(MD
(train,k)
train

λ ,D(val,k)
train) (4)

whereMD
(train,k)
train

λ denotes thatMλ was trained on the training split of k-th fold D(train,k)
train ⊂

Dtrain, and it is then evaluated on the validation split of the k-th fold D(val,k)
train = Dtrain \

D(train,k)
train .3 Assuming that, via λ, an AutoML system can select both, an algorithm and

its hyperparameter settings, this definition using GE
∧

CV is equivalent to the definition
of the CASH (C ombined Algorithm Selection and H yperparameter optimization) prob-
lem (Thornton et al., 2013; Feurer et al., 2015a).

2.1.1 Time-bounded AutoML

In practice, users are not only interested to obtain an optimal pipeline Mλ∗ eventually,
but have constraints on how much time and compute resources they are willing to invest.
We denote the time it takes to evaluate GE

∧
(Mλ,Dtrain) as tλ and the overall optimization

budget by T . Our goal is to find

Mλ∗ ∈ argmin
λ∈Λ

GE
∧

(Mλ,Dtrain) s.t.
(∑

tλi

)
< T (5)

where the sum is over all evaluated pipelines λi, explicitly honouring the optimization
budget T .

2.1.2 Generalization of AutoML

Ultimately, an AutoML system A : D 7→ MDλ should not only perform well on a single
dataset but on the entire distribution over datasets P (D). Therefore, the meta-problem of
AutoML can be formalized as minimizing the generalization error over this distribution of
datasets:

GE(A) = EDd∼P (D)

[
GE
∧

(A(Dd),Dd)
]
, (6)

which in turn can again only be approximated by a finite set of meta-train datasets Dmeta

(each with a finite set of observations):

GE
∧

(A,Dmeta) =
1

| Dmeta |

|Dmeta|∑
d=1

GE
∧

(A(Dd),Dd). (7)

Having set up the problem statement, we can use this to further formalize our goals.
Instead of using a single, fixed AutoML system A, we will introduce optimization poli-
cies π, a combination of hyperparameters of the AutoML system and specific components
to be used in a run, which can be used to configure an AutoML system for specific use
cases. We then denote such a configured AutoML system as Aπ. We will first construct
π manually in Section 3, introduce a novel system for designing π from data in Section 4

3. Alternatively, one could use holdout to estimate GE with GE
∧

HO(Mλ,Dtrain) = GE
∧

(MDtrain
train

λ ,Dval
train).

4

Auto-sklearn 2.0

and then extend this to a (learned) mapping Ξ : D → π which automatically suggests
an optimization policy for a new dataset using algorithm selection. This problem setup
can also be used to introduce generalizations of the algorithm selection problem such as
algorithm configuration (Birattari et al., 2002; Hutter et al., 2009; Kleinberg et al., 2017),
per-instance algorithm configuration (Xu et al., 2010; Malitsky et al., 2012) and dynamic
algorithm configuration (Biedenkapp et al., 2020) on a meta-level; but we leave these for
future work. Also, instead of selecting between multiple policies of a single AutoML system
the presented method can be applied to choose between different AutoML without adjust-
ments. However, our goal is to improve single AutoML systems to make them easier to use
instead of maximizing performance by invocing many AutoML systems, thereby increasing
the complexity.

3. Part I: Portfolio Successive Halving in PoSH Auto-sklearn

In this section we introduce our winning solution for the second AutoML competition (Guyon
et al., 2019), PoSH Auto-sklearn, short for POrtfolio Successive Halving. We first describe
our use of portfolios to warmstart an AutoML system and then motivate the use of the
successive halving bandit strategy. Next, we describe practical considerations for building
PoSH Auto-sklearn. We end this first part of our main contributions by an experimental
evaluation demonstrating the performance of PoSH Auto-sklearn.

3.1 Portfolio Building

Finding the optimal solution to the time-bounded optimization problem from Eq. (5) re-
quires searching a large space of possible ML pipelines as efficiently as possible. BO is a
strong approach for this, but in its vanilla version starts from scratch for every new problem.
A better solution is to warmstart BO with ML pipelines that are expected to work well,
as done in the k-nearest dataset (KND) approach of Auto-sklearn 1.0 (Reif et al. (2012);
Feurer et al. (2015b,a), see also the related work in Section 6.4.1). However, we found this
solution to introduce new problems:

1. It is time consuming since it requires to compute meta-features describing the charac-
teristics of datasets, where good meta-features are often quite expensive to compute.

2. It adds complexity to the system as the computation of the meta-features must also
be done with a time and memory limit.

3. Many meta-features are not defined with respect to categorical features and missing
values, making them hard to apply for most datasets.

4. It is not immediately clear which meta-features work best for which problem.

5. In the KND approach, there is no mechanism to guarantee that we do not execute
redundant ML pipelines.

We indeed suffered from these issues in the first AutoML challenge, failing on one track
due to running over time for the meta-feature generation, although we had already removed
landmarking meta-features due to their potentially high runtime. Therefore, here we pro-
pose a meta-feature-free approach which does not warmstart with a set of configurations

5

Feurer, Eggensperger, Falkner, Lindauer and Hutter

specific to a new dataset, but which uses a static portfolio – a set of complementary config-
urations that covers as many diverse datasets as possible and minimizes the risk of failure
when facing a new task.

So, instead of evaluating configurations chosen online by the KND method, we construct
a portfolio consisting of high-performing and complementary ML pipelines to perform well
on as many datasets as possible offline. Then for a dataset at hand all pipelines in this
portfolio are simply evaluated one after the other and if time left afterwards, we continue
with pipelines suggested by BO warmstarted with the evaluated portfolio pipelines. The
portfolio can thus be seen as an optimized initial design for the BO method.

In the following, we describe our offline procedure how to construct such a portfolio.

3.1.1 Approach

We first describe how we construct a portfolio given a finite set of candidate pipelines C =
{λ1, ...,λl} and later describe how we generate this set from our infinitely large configuration
space. Additionally, we assume that there exists a set of datasets Dmeta = {D1, . . . ,D|Dmeta|}
and we wish to build a portfolio P consisting of a subset of the pipelines in C that performs
well on Dmeta. We outline the process to build such a portfolio in Algorithm 1. First,
we initialize our portfolio P to the empty set (Line 2). Then, we repeat the following
procedure until |P| reaches a pre-defined limit: From a set of candidate ML pipelines C, we
greedily add a candidate λ∗ ∈ C to P that reduces the estimated generalization error over
all meta-datasets most (Line 4), and then remove λ∗ from C (Line 5).

The estimated generalization error of a portfolio P on a single dataset D is the per-
formance of the best pipeline λ ∈ P on D according to the model selection and budget
allocation strategy. This can be described via a function S(·, ·, ·), which takes as input a
function to compute the estimated generalization error (e.g., as defined in Equation 4), a
set of machine learning pipelines to train, and a dataset. It then returns the pipeline with
the lowest estimated generalization error as

MDλ∗ = S(GE
∧

,P,D) ∈ argmin
MDλ∈P

GE
∧

(MDλ ,D). (8)

In case argmin is not unique we return the model that was evaluated first. The estimated
generalization error of P across all meta-datasets Dmeta = {D1, . . . ,D|Dmeta|} is then

GE
∧

S(P,Dmeta) =

|Dmeta|∑
d=1

GE
∧(

S
(
GE
∧

,P,Dd
)
,Dval

d

)
, (9)

Here, we give the equation for using holdout and in Appendix A we give the exact
notation for cross-validation and successive halving.

Given a way how to construct the portfolio, we now detail how to construct the set
of candidate pipelines C. We limit ourselves to a finite set of portfolio candidates C that
we compute offline before performing Algorithm 1; we defer the use of other candidate
generation mechanisms, for example the method of Hydra (Xu et al., 2010, 2011), to future
work. To create our portfolio candidates, we first run BO on each meta-dataset in Dmeta

and use the best found pipelines. Then, we evaluate each of these candidates on each
meta-dataset to obtain a performance matrix which we use as a lookup table to construct

6

Auto-sklearn 2.0

Algorithm 1: Greedy Portfolio Building

1: Input: Set of candidate ML pipelines C, Dmeta = {D1, . . . ,D|Dmeta|}, maximal portfolio
size p, model selection strategy S

2: P = ∅
3: while |P| < p do

4: λ∗ = argminλ∈C GE
∧

S(P ∪ {λ},Dmeta)
// Ties are broken favoring the model trained first.

5: P = P ∪ λ∗, C = C \ {λ∗}
6: end while
7: return Portfolio P

the portfolio. To build a portfolio across datasets, we need to take into account that the
generalization errors for different datasets live on different scales (Bardenet et al., 2013).
Thus, before taking averages, for each dataset we transform the generalization errors to the
distance to the best observed performance scaled between zero and one, a metric named
distance to minimum; which when averaged across all datasets is known as average distance
to the minimum (ADTM) (Wistuba et al., 2015a, 2018). We compute the statistics for
zero-one scaling by taking the results of all model selection and budget allocation strategies
into account (i.e., we use the lowest observed test loss and the largest observed test loss for
each meta-dataset).

For each meta-dataset Dd ∈ Dmeta we have access to both Dd,train and Dd,test. In the
case of holdout, we split the training set Dd,train into two smaller disjoint sets Dtrain

d,train and

Dval
d,train. We usually train models using Dtrain

d,train, use Dval
d,train to choose a ML pipeline Mλ

from the portfolio by means of the model selection strategy S, and judge the portfolio
quality by the generalization loss of Mλ on Dval

d,train (instead of holdout we can of course
also use cross-validation to compute the validation loss). However, if we instead choose the
ML pipeline on the test set Dd,test, Equation 9 becomes a monotone and submodular set
function, which results in favorable guarantees for the greedy algorithm that we detail in
Section 3.1.2. We follow this approach for the portfolio construction in the offline phase; we
emphasize that for a new dataset, we of course do not require access to the test set Dnew,test.

3.1.2 Theoretical Properties of the Greedy Algorithm

Besides the already mentioned practical advantages of the proposed greedy algorithm, this
algorithm also enjoys a bounded worst-case error.

Proposition 1 Minimizing the test loss of a portfolio P on a set of datasets D1, . . . ,D|Dmeta|,
when choosing an ML pipeline from P for Dd using holdout or cross-validation based on
its performance on Dd,test, is equivalent to the sensor placement problem for minimizing
detection time (Krause et al., 2008).

We detail this equivalence in Appendix C.2. Thereby, we can apply existing results for the
sensor placement problem to our problem. Using the test set of the meta-datasets Dmeta to
construct a portfolio is perfectly fine as long as we do not use the meta-test datasets Dtest.

Corollary 1 The penalty function for all meta-datasets is submodular.

7

Feurer, Eggensperger, Falkner, Lindauer and Hutter

We can directly apply the proof from Krause et al. (2008) that the so-called penalty func-
tion (maximum estimated generalization error minus the observed estimated generalization
error) is submodular and monotone to our problem setup. Since linear combinations of sub-
modular functions are also submodular (Krause and Golovin, 2014), the penalty function
is also submodular.

Corollary 2 The problem of finding an optimal portfolio P∗ is NP-hard (Nemhauser et al.,
1978; Krause et al., 2008).

Corollary 3 The portfolio obtained by the greedy algorithm reduces the penalty (as defined
in the explanation of Corollary 1) such that R(P∗) ≥ R(P) ≥ (1− 1

e)R(P∗), where R is the
expected penalty reduction across all datasets.

This means that there is at most an additional ADTM 37% of what the best possible
portfolio P∗ of size |P| would achieve (Nemhauser et al., 1978; Krause and Golovin, 2014).
A generalization of this result given by Krause and Golovin (2014) also tighten the bound
to 1% of what the optimal portfolio P∗ of size |P∗| would achieve by extending the portfolio
constructed by the greedy algorithm to size 5|P|. This means that we can find a close-to-
optimal portfolio on the meta-train datasets Dmeta. Under the assumption that we apply
the portfolio to datasets from the same distribution of datasets, we have a strong set of
default ML pipelines.

We can also apply other strategies for the sensor set placement in our problem setting,
such as mixed integer programming strategies, which can solve it optimally; however, these
do not scale to portfolio sizes of a dozen ML pipelines (Krause et al., 2008; Pfisterer et al.,
2018).

The same proposition (with the same proof) and corollaries apply if we select a ML
pipeline based on an intermediate step in a learning curve or use cross-validation instead of
holdout. We discuss using the validation set and other model selection and budget allocation
strategies in Appendix C.3 and Appendix C.4.

3.2 Budget Allocation using Successive Halving

Two key components of any efficient AutoML system are its model selection and budget
allocation strategies, which serve the following purposes: 1) approximate the generalization
error of a single ML pipeline and 2) decide how many resources to allocate for each pipeline
evaluation. The first point is typically tackled by using a holdout set or K-fold cross-
validation (see Section 6.4.1). Here, we focus on the second point.

A key issue we identified during the last AutoML challenge was that training expensive
configurations on the complete training set, combined with a low time budget, does not
scale well to large datasets. At the same time, we noticed that our (then manual) strategy
to run predefined pipelines on subsets of the data already yielded predictions good enough
for ensemble building.

This questions the common choice of assigning to all pipeline evaluations the same
amount of resources, i.e. time, compute and data. As a principled alternative we used the
successive halving bandit (SH, Karnin et al. (2013); Jamieson and Talwalkar (2016)), which
assigns more budget to promising machine learning pipelines and can easily be combined
with iterative algorithms.

8

Auto-sklearn 2.0

3.2.1 Approach

AutoML systems evaluate each pipeline under the same resource limitations and on the
same budget (e.g., number of iterations using iterative algorithms). To increase efficiency
for cases with tight resource limitations, we suggest to allocate more resources to promising
pipelines by using SH (Karnin et al., 2013; Jamieson and Talwalkar, 2016) to aggressively
prune poor-performing pipelines.

Given a minimal and maximal budget per ML pipeline, SH starts by training a fixed
number of ML pipelines for the smallest budget. Then, it iteratively selects 1

η of the pipelines
with lowest generalization error, multiplies their budget by η, and re-evaluates. This process
is continued until only a single ML pipeline is left or the maximal budget is spent. While
SH itself chooses new pipelines Mλ to evaluate at random, we follow work combining SH
with BO (Falkner et al., 2018).4 Specifically, we use BO to iteratively suggest new ML
pipelines Mλ, which we evaluate on the lowest budget until a fixed number of pipelines
has been evaluated. Then, we run SH as described above. The implementation by Falkner
et al. (2018) builds the model for BO on the highest available budget when there are n+ 1
finished pipelines where n is the number of hyperparameters to be optimized. As this is
a mathematical requirement by their model, we can reduce this number and set it to n

2 .
Since we use only iterative ML models in our configuration space, we rely on the number
of iterations as the budget.

SH potentially provides large speedups, but it could also too aggressively cut away good
configurations that need a higher budget to perform best. Thus, we expect SH to work best
for large datasets, for which there is not enough time to train many ML pipelines for the
full budget, but for which training a ML pipeline on a small budget already yields a good
indication of the generalization error.

We note that SH can be used in combination with both, holdout or cross-validation, and
thus indeed adds another hyper-hyperparameter to the AutoML system, namely whether
to use SH or always evaluate the algorithm on the full budget (FB). However, it also adds
more flexibility to tackle a broader range of problems.

3.3 Practical Considerations and Challenge Results

In order to make best of the given budgets and the successive halving algorithm we had to
do certain adjustments to obtain high performance.

First, we restricted the search space to contain only iterative algorithms and no more
feature preprocessing. This simplifies the usage of SH as we only have to deal with a single
type of fidelity, the number of iterations, while we would otherwise have to also consider
dataset subsets as an alternative. This leaves us with extremely randomized trees (Geurts
et al., 2006), random forests (Breimann, 2001), histogram-based gradient boosting (Fried-
man, 2001; Ke et al., 2017), a linear model fitted with a passive aggressive algorithm (Cram-
mer et al., 2006) or stochastic gradient descent and a multi-layer perceptron. The exact
configuration space can be found in Table 16 of the appendix.

4. Falkner et al. (2018) proposed using Hyperband (Li et al., 2018) together with BO, however, we use
only SH as we expect it to work better in the extreme of having very little time, as it more aggressively
reduces the budget per ML pipeline.

9

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Second, because of using only iterative algorithms, we are able to store partially fitted
models to disk to prevent having no predictions in case of time- and memouts. That is,
after 2, 4, 8, . . . iterations we make predictions for the validation set and dump the model
for later usage.

We give further details, such as the restricted search space, in Appendix B. For our
submission to the second AutoML challenge, we implemented the following safeguards and
tricks (Feurer et al., 2018), which we do not use in this paper since we instead focus on
automatically designing a robust AutoML system:

• For the submission we also employed support vector machines using subsets of the
dataset as lower fidelities. As none of the support vector machines was chosen for a
final ensemble in the competition, we did not consider them any more for this paper,
simplifying our methodology.

• We developed an additional library pruning method for ensemble selection. However,
in preliminary experiments, we found that this at most provides an unsignificant boost
for area under curve and not balanced accuracy, which we use in this work and thus
did not follow that any further.

• To increase robustness against arbitrarily large datasets, we reduced all datasets to
have at most 500 features using univariate feature selection. Similarly, we also reduced
all datasets to have at most 45 000. We do not think these are good strategies in gen-
eral and only implemented them as we had no information about the dimensionality
of the datasets used in the challenge and to prevent running out of time and memory.

• In case the datasets had less than 1000 datapoints, we would have reverted from hold-
out to cross-validation. This fallback was however not triggered due to the datasets
being larger.

• We manually added a linear regression fitted with stochastic gradient descent with
its hyperparameters optimized for fast runtime as the first entry in the portfolio to
maximize the chances of fitting a model within the given time.

Our submission, PoSH Auto-sklearn, was the overall winner of the second AutoML
challenge. We give the results of the competition in Table 1 and refer to Feurer et al. (2018)
and Guyon et al. (2019) for further details, especially for information on our competitors.

3.4 Experimental Setup

So far, AutoML systems were designed without any optimization budget or with a single,
fixed optimization budget T in mind (see Equation 5).5 Our system takes the optimiza-
tion budget into account when constructing the portfolio. We will study two optimiza-
tion budgets: a short, 10 minute optimization budget and a long, 60 minute optimization
budget as in the original Auto-sklearn paper. To have a single metric for binary classi-
fication, multiclass classification and unbalanced datasets, we report the balanced error

5. The OBOE AutoML system (Yang et al., 2019) is a potential exception that takes the optimization
budget into consideration, but the experiments by Yang et al. (2019) were only conducted for a single
optimization budget, not demonstrating that the system adapts itself to multiple optimization budgets.

10

Auto-sklearn 2.0

Name Rank Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5

PoSH Auto-sklearn 2.8 0.5533(3) 0.2839(4) 0.3932(1) 0.2635(1) 0.6766(5)
narnars0 3.8 0.5418(5) 0.2894(2) 0.3665(2) 0.2005(9) 0.6922(1)
Malik 5.4 0.5085(7) 0.2297(7) 0.2670(6) 0.2413(5) 0.6853(2)
wlWangl 5.4 0.5655(2) 0.4851(1) 0.2829(5) −0.0886(16) 0.6840(3)
thanhdng 5.4 0.5131(6) 0.2256(8) 0.2605(7) 0.2603(2) 0.6777(4)

Table 1: Results for the second AutoML challenge (Guyon et al., 2019). Name is the team
name, Rank the final rank of the submission, followed by the individual results on
the five datasets used in the competition. All performances are the normalized area
under the ROC curve (Guyon et al., 2015) with the per-dataset rank in brackets.

rate (1− balanced accuracy), following the 1st AutoML challenge (Guyon et al., 2019). As
different datasets can live on different scales, we apply a linear transformation to obtain
comparable values. Concretely, we obtain the minimal and maximal error obtained by ex-
ecuting Auto-sklearn with portfolios and using ensembles for each combination of model
selection and budget allocation strategies per dataset, and rescale by subtracting the mini-
mal error and dividing by the difference between the maximal and minimal error (ADTM,
as introduced in Section 3.1.1).6 With this transformation, we obtain a normalized error
which can be interpreted as the regret of our method.

We also limit the time and memory for each ML pipeline evaluation. For the time limit
we allow for at most 1/10 of the optimization budget, while for the memory we allow the
pipeline 4GB before forcefully terminating the execution.

3.4.1 Datasets

We require two disjoint sets of datasets for our setup: (i) Dmeta, on which we build portfolios
and the model-based policy selector that we will introduce in Section 4, and (ii) Dtest, on
which we evaluate our method. The distribution of both sets ideally spans a wide variety of
problem domains and dataset characteristics. For Dtest, we rely on 39 datasets selected for
the AutoML benchmark proposed by Gijsbers et al. (2019), which consists of datasets for
comparing classifiers (Bischl et al., 2019) and datasets from the AutoML challenges (Guyon
et al., 2019).

We collected the meta datasets Dmeta based on OpenML (Vanschoren et al., 2014)
using the OpenML-Python API (Feurer et al., 2021). To obtain a representative set, we
considered all datasets on OpenML with more than 500 and less than 1 000 000 samples
with at least two attributes. Next, we dropped all datasets that are sparse, contain time
attributes or string type attributes as Dtest does not contain any such datasets. Then, we
dropped synthetic datasets and subsampled clusters of highly similar datasets. Finally, we
manually checked for overlap with Dtest and ended up with a total of 208 training datasets
and used them to train our method.

6. We would like to highlight that this is slightly different than in Section 3.1.1 where we did not have
access to the ensemble performance, and also only normalized per model selection strategy.

11

Feurer, Eggensperger, Falkner, Lindauer and Hutter

We show the distribution of the datasets in Figure 2. Green points refer to Dmeta

and orange crosses to Dtest. We can see that Dmeta spans the underlying distribution
of Dtest quite well, but that there are several datasets which are outside of the Dmeta

distribution, which are marked with a black cross and for which our AutoML system selected
a backup strategy (see Section 4.1.1). We give the full list of datasets for Dmeta and Dtest

in Appendix E.

Figure 2: Distribution of meta and test datasets. We visualize each dataset w.r.t. its
metafeatures and highlight the datasets that lie outside our meta distribution;
for these, we apply a backup strategy.

For all datasets we use a single holdout test set of 33.33% which is defined by the
corresponding OpenML task. The remaining 66.66% are the training data of our AutoML
systems, which handle further splits for model selection themselves based on the chosen
model selection strategy.

3.4.2 Meta-data Generation

For each optimization budget we created four performance matrices, see Section 3.1.1 for
details on performance matrices. Each matrix refers to one way of assessing the generaliza-
tion error of a model: holdout, 3-fold CV, 5-fold CV or 10-fold CV. To obtain each matrix,
we did the following. For each dataset D in Dmeta, we used combined algorithm selection
and hyperparameter optimization to find a customized ML pipeline. In practice, we ran
SMAC (Hutter et al., 2011; Lindauer et al., 2017a) three times and picked the best resulting
ML pipeline on the test split of D. To ensure that SMAC finds a good configuration, we
run it for ten times the optimizationbudget given by the user (see Equation 5). Then, we
ran the cross-product of all ML pipelines and datasets to obtain the performance matrix.

12

Auto-sklearn 2.0

We also stored intermediate results for the iterative algorithms so that we can build custom
portfolios for SH, too.

3.4.3 Other Experimental Details

We always report results averaged across 10 repetitions to account for randomness and
report the mean and standard deviation over these repetitions. To check whether perfor-
mance differences are significant, where possible, we ran the Wilcoxon signed rank test as a
statistical hypothesis test with α = 0.05 (Demšar, 2006). In addition, we plot the average
rank as follows. For each dataset, we draw one run per method (out of 10 repetitions)
and rank these draws according to performance, using the average rank in case of ties. We
repeat this sampling 200 times to obtain the average rank on a dataset, before averaging
these into the total average.

We conducted all experiments using ensemble selection, and we construct ensembles of
size 50 with replacement. We give results without ensemble selection in the Appendix B.2.

All experiments were conducted on a compute cluster with machines equipped with
2 Intel Xeon Gold 6242 CPUs with 2.8GHz (32 cores) and 192 GB RAM, running Ubuntu
20.04.01. We provide scripts for reproducing all our experimental results at https://

github.com/automl/ASKL2.0_experiments and provide a clean integration of our methods
into the official Auto-sklearn repository.

3.5 Experimental Results

In this subsection we now validate the improvements for PoSH Auto-sklearn. First, we will
qualitatively show that different model selection strategies are required for different dataset
sizes and time horizons. Then, we will compare the performance of using a portfolio to the
previous KND approach and no warmstarting.

3.5.1 Using different model selection strategies

Choosing the correct model selection and budget allocation strategy not only depends on
the characteristics of the dataset at hand, but also on the given time-limit. While there exist
general recommendations, we observed in practice that this is a crucial design decision that
drastically impacts performance. To highlight this effect, in Figure 3 we show exemplary
results comparing the balanced error rates of the best found ML pipeline found by searching
our configuration space with BO using holdout, 3CV, 5CV and 10CV with SH and FB on
different optimization budgets and datasets. We give details on the SH hyperparameters in
Appendix D.3.

The top row shows results obtained using the same optimization budget of 10 minutes
on two different datasets. While FB; 10CV is best on dataset sylvine (top left) the same
strategy on median performs amongst the worst strategies on dataset adult (top right). Also,
on sylvine, SH performs overall slightly worse in contrast to adult, where SH performs better
on average. The bottom rows shows how the given time-limit impacts the performance on
the dataset jungle chess 2pcs raw endgame complete. Using a quite restrictive optimization
budget of 10 minutes (bottom left), SH; 3CV, which aggressively cuts ML pipelines on lower
budgets, performs best on average. With a higher optimization budget (bottom right), the

13

https://github.com/automl/ASKL2.0_experiments
https://github.com/automl/ASKL2.0_experiments

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Figure 3: Final performance for BO using different model selection strategies averaged
across 10 repetitions. Top row: Results for a optimization budget of 10 min-
utes on two different datasets. Bottom row: Results for a optimization budget of
10 and 60 minutes on the same dataset.

overall results improve and more strategies become competitive. We will demonstrate in
Section 4.3 that using both, FB and SH, has advantages over using only one of them.

3.5.2 Using Portfolios instead of a k-nearest datasets approach

Portfolio vs. KND. We introduced the portfolio-based warmstarting to avoid comput-
ing meta-features for a new dataset. However, the portfolios work inherently differently.
While KND aimed at using only well performing configurations, a portfolio is built such that
there is a diverse set of configurations, starting with ones that perform well on average and
then moving to more specialized ones, which also provides a different form of initial design
for BO. Here, we study the performance of the learned portfolio and compare it against
Auto-sklearn 1.0 ’s default meta-learning strategy using 25 configurations. Additionally, we
also study how pure BO would perform. We give results in Table 2.

14

Auto-sklearn 2.0

10 minutes 60 minutes
BO KND Port BO KND Port

holdout 5.98 5.29 3.70 3.84 3.98 3.08
SH; holdout 5.15 4.82 4.11 3.77 3.55 3.19
3CV 8.52 7.76 6.90 6.42 6.31 4.96
SH; 3CV 7.82 7.67 6.16 6.08 5.91 5.17
5CV 9.48 9.45 7.93 6.64 6.47 5.05
SH; 5CV 9.48 8.85 7.05 6.19 5.83 5.40
10CV 16.10 15.11 12.42 10.82 10.44 9.68
SH; 10CV 16.14 15.10 12.61 10.54 10.33 9.23

Table 2: Averaged normalized balanced error rate. We report the aggregated performance
across 10 repetitions and 39 datasets of our AutoML system using only Bayesian
optimization (BO), or BO warmstarted with k-nearest-datasets (KND) or a greedy
portfolio (Port). Per line, we boldface the best mean value (per model selection and
budget allocation strategy and optimization budget, and underline results that are
not statistically different according to a Wilcoxon-signed-rank Test (α = 0.05)).

For the new AutoML-hyperparameter |P| we chose 32 to allow two full iterations of SH
with our hyperparameter setting of SH. Unsurprisingly, warmstarting in general improves
the performance on all optimization budgets and most model selection strategies, often by
a large margin. The portfolios always improve over BO, while KND does so in all but one
case. When comparing the portfolios to the KND approach, we find that the raw results
are always favorable, and that for more than half of the settings the differences are also
significant.

PoSH Auto-sklearn vs Auto-sklearn 1.0 . Lastly, we can have a look at the perfor-
mance of PoSH Auto-sklearn (SH; holdout and Port) compared to Auto-sklearn 1.0 (hold-
out and KND). For both time horizons there is a strong reduction in the loss (10min:
5.29 → 4.11 and 60min: 3.98 → 3.19), indicating that the proposed PoSH Auto-sklearn is
indeed an improvement over the existing solution. In combination with the portfolio, the
average results are inconclusive about whether our use of successive halving was the right
choice or whether plain holdout would have been better. We also provide the raw numbers
in Appendix B.3, but they are inconclusive, too.

4. Part II: Automating Design Decisions in AutoML

The goal of AutoML is to yield state-of-the-art performance without requiring the user to
make low-level decisions, e.g., which model and hyperparameter configurations to apply.
Using a portfolio and SH, PoSH Auto-sklearn is already an improvement over Auto-sklearn
1.0 in terms of efficiency and scalability. However, high-level design decisions, such as
choosing between cross-validation and holdout or whether to use SH or not, remain. Thus,
PoSH Auto-sklearn, and AutoML systems in general, suffer from a similar problem as they
are trying to solve, as users have to manually set their arguments. Thus, we propose to ex-

15

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Dnew

Optional

TR1: Obtain
set of candidate
ML pipelines C

TR2: Evaluate full
performance matrix

of shape |C| × |Dmeta|
TR3: Build
policies π

Representative
set of datasets
{D1, . . . ,D|Dmeta|}

TR4: Execute AutoML
systems Aπ∀π ∈ π

on {D1, . . . ,D|Dmeta|}

TR5: Compute
meta-features of
{D1, . . . ,D|Dmeta|}

TR6: Con-
struct selector Ξ

TRain (offline)

TEst (online)
Dnew,train Dnew,test

TE1: Compute meta-
features of Dnew,train

TE2: Apply selector
to choose policy π

TE3: Apply
Aπ to Dnew,train

TE4.1: Return best
found pipeline Mλ∗ or
ensemble of pipelines

TE4.2: Report
loss on Dnew,test

Figure 4: Schematic overview of the proposed Auto-sklearn 2.0 system with the training
phase (TR1-TR6) above and the test phase (TE1-TE4) below the dashed line.
Rounded boxes refer to computational steps while rectangular boxes depict the
input data to the AutoML system.

tend AutoML systems with a policy selector to automatically choose an optimization policy
given a dataset (see Figure 1 in Section 1 for a schematic overview). In this second part, we
discuss the resulting approach, which led to Auto-sklearn 2.0 as the first implementation
of it.

4.1 Automated Policy Selection

Specifically, we consider the case, where an AutoML system can be run with different
optimization policies π ∈ Π and study how to further automate AutoML using algorithm
selection on this meta-meta level. In practice, we extend the formulation introduced in Eq. 7
to not use an AutoML system Aπ with a fixed policy π, but to contain a policy selector
Ξ : D → π:

GE
∧

(A,Ξ,Dmeta) =
1

| Dmeta |

|Dmeta|∑
d=1

GE
∧

(AΞ(Dd)(Dd),Dd). (10)

In the remainder of this section, we describe how to construct such a policy selector.

4.1.1 Approach

Optimization strategies in AutoML itself are often heavily hyperparameterized. In our case,
we deem the model selection strategy and budget allocation strategy (see Sections 6.4.1
and 3.2) as important choices the user has to make when using an AutoML system to ob-
tain high performance. These decisions depend on both the given dataset and the available
resources. As there is also an interaction between the two strategies and the optimal portfo-
lio P, we consider here that the optimization policy π is parameterized by a combination of
(i) model selection strategy, (ii) budget allocation strategy and (iii) a portfolio constructed
for the choice of the two strategies. In our case these are eight different policies ({3-fold
CV, 5-fold CV, 10-fold CV, holdout} × {SH, FB}).

We introduce a new layer on top of AutoML systems that automatically selects a policy π
for a new dataset. We show an overview of this system in Figure 4 which consists of
a training (TR1–TR6) and a testing stage (TE1–TE4). In brief, in training steps TR1–

16

Auto-sklearn 2.0

TR3, we obtain a performance matrix of size |C| × |Dmeta|, where C is a set of candidate
ML pipelines, and |Dmeta| is the number of representative meta-datasets. Having collected
datasets Dmeta (we describe in Section 3.4.1 how we did this for our experiments), we obtain
the candidate ML pipelines (TR1) by running Auto-sklearn on each dataset and build the
performance matrix as described in Section 3.1.1 by evaluating each of these candidate
pipelines on each dataset (TR2) as described in Section 3.4.2. This matrix is used to build
a portfolio as described in Section 3.1 for each combination of model selection and budget
allocation strategy in training step TR3. These combinations of portfolio, model selection
strategy and budget allocation strategy are our policies. We then execute the full AutoML
system for each such policy in step TR4 to obtain a realistic performance estimate. In step
TR5 we compute meta-features and use them together with the performance estimate from
TR4 in step TR6 to train a model-based policy selector Ξ, which will be used in the online
test phase.

In order to not overestimate the performance of π on a dataset Dd, dataset Dd must not
be part of the meta-data for constructing the portfolio. To overcome this issue, we perform
an inner 5-fold cross-validation and build each π on four fifths of the meta-datasets and
evaluate it on the left-out fifth of meta-datasets. For the final AutoML system we then use
a portfolio built on all meta-datasets.

For a new dataset Dnew ∈ Dtest, we first compute meta-features describing Dnew (TE1)
and use the model-based policy selector from step TR7 to automatically select an appropri-
ate policy for Dnew based on the meta-features (TE2). This will relieve users from making
this decision on their own. Given an optimization policy π, we then apply the AutoML
system Aπ to Dnew (TE3). Finally, we return the best found pipeline Mλ∗ based on the
training set of Dnew (TE4.1). Optionally, we can then compute the loss ofMλ∗ on the test
set of Dnew (TE4.2); we emphasize that this would be the only time we ever access the test
set of Dnew.

In the following, we describe two ways to construct a policy selector and introduce an
additional backup strategy to make it robust towards failures.

Constructing the single best policy A straight-forward way to construct a selector
relies on the assumption that the meta-datasets Dmeta are homogeneous and that a new
dataset is similar to these. In such a case we can use per-set algorithm selection (Kerschke
et al., 2019), which aims to find the best algorithm for a set of problem instances; in our case
it aims to find the best combination of model selection and budget allocation for a given set
of meta-datasets Dmeta. This single best policy is then the automated replacement for our
manual selection of SH and holdout in PoSH Auto-sklearn. While this seems to be a trivial
baseline, it actually requires the same amount of compute power as the more elaborate
strategy we introduce next.

Constructing the per-dataset Policy Selector Instead of using a fixed, learned policy,
we now propose to adapt the policy to the dataset at hand. To construct the meta selection
model (TR6), we follow the policy selector design of HydraMIP (Xu et al., 2011): for each
pair of AutoML policies, we fit a random forest to predict whether policy πA outperforms
policy πB given the current dataset’s meta-features. Since the misclassification loss depends
on the difference of the losses of the two policies (i.e. the ADTM when choosing the wrong
policy), we weight each meta-observation by their loss difference. To make errors comparable

17

Feurer, Eggensperger, Falkner, Lindauer and Hutter

hyperparameter type values

Min. number of samples to create a further split int [3, 20]
Min. number of samples to create a new leaf int [2, 20]
Max. depth of a tree int [0, 20]
Max. number of features to be used for a split int [1, 2]
Bootstrapping in the random forest cat {yes, no}
Soft or hard voting when combining models cat {soft, hard}
Error value scaling to compute dataset weights cat see text

Table 3: configuration space of the model-based policy selector.

across different datasets (Bardenet et al., 2013), we scale the individual error values for each
dataset. At test time (TE2), we query all pairwise models for the given meta-features, and
use voting to choose a policy π. We will refer to this strategy as the Policy Selector.

To improve the performance of the model-based policy selector, we applied BO to op-
timize the model-based policy selector’s hyperparameters to minimize the cross-validation
error (Lindauer et al., 2015). We optimized in total seven hyperparameters, five of which
are related to the random forest, one is how to combine the pairwise models to get a pre-
diction and the last one is the strategy of how to scale error values to compute weights for
comparing datasets, i.e. using the raw observations, scale with [min,max] / [min, 1] across
a pair or all policies or use the difference in ranks as the weight (see Table 3). Hyperpa-
rameters are shared between all pairwise models to avoid factorial growth of the number of
hyperparameters with the number of new model selection strategies.

Meta-Features. To train our model-based policy selector and to select a policy, as well
to use the backup strategy, we use meta-features (Brazdil et al., 2008; Vanschoren, 2019)
describing all meta-train datasets (TR5) and new datasets (TE1). To avoid the problems
discussed in Section 3.1 we only use very simple and robust meta-features, which can be
reliably computed in linear time for every dataset: 1) the number of data points and 2) the
number of features. In fact, these are most often already stored as meta-data for the data
structure holding the dataset. In our experiments we will show that even with only these
trivial and cheap meta-features we can substantially improve over a static policy.

Backup strategy. Since there is no guarantee that our model-based policy selector will
extrapolate well to datasets outside of the meta-datasets, we implement a fallback measure
to avoid failures. Such failures can be harmful if a new dataset is, e.g., much larger than any
dataset in the meta-dataset and the model-based policy selector proposes to use a policy
that would time out without any solution. More specifically, if there is no dataset in the
meta-datasets that has higher or equal values for each meta-feature (i.e. dominates the
dataset meta-features), our system falls back to use holdout with SH, which is the most
aggressive and cheapest policy we consider.

4.2 Experimental Results

To study the performance of the policy selector, we compare it to PoSH Auto-sklearn as
described in Section 4 and Auto-sklearn 1.0 . From now on we refer to PoSH Auto-sklearn

18

Auto-sklearn 2.0

10MIN 60MIN
∅ std ∅ std

(1) Auto-sklearn (2.0) 3.58 0.23 2.47 0.18
(2) PoSH-Auto-sklearn 4.11 0.09 3.19 0.12
(3) Auto-sklearn (1.0) 16.21 0.27 7.17 0.30

Table 4: Final performance of Auto-sklearn 2.0 , PoSH Auto-sklearn and Auto-sklearn 1.0 .
We report the normalized balanced error rate averaged across 10 repetitions on
39 datasets. We boldface the best mean value (per optimization budget) and
underline results that are not statistically different according to a Wilcoxon-signed-
rank Test (α = 0.05).

0 10 20 30 40 50 60
time [min]

1.6

1.8

2.0

2.2

2.4

2.6

av
er

ag
e

ra
nk

Auto-sklearn (2.0)
PoSH-Auto-sklearn
Auto-sklearn (1.0)

Figure 5: Performance over time. We report the normalized BER and the rank over time
averaged across 10 repetitions and 39 datasets comparing our system to our pre-
vious AutoML systems.

equipped with a policy selector as Auto-sklearn 2.0 . As before, we study two horizons, 10
minutes and 60 minutes, and use versions of Auto-sklearn 2.0 tuned specifically for these
time horizons.

Looking at Table 4, we see that Auto-sklearn 2.0 achieves the lowest error, being signif-
icantly better for both optimization budgets. Most notably, Auto-sklearn 2.0 reduces the
relative error compared to Auto-sklearn 1.0 by 78% (10MIN) and 65%, respectively, which
means a reduction by a factor of four and three.

It turns out that these results are skewed by several large datasets (task IDs 189873
and 75193) for both horizons; 189866, 189874, 168796 and 168797 only for the ten minutes

19

https://www.openml.org/t/189873
https://www.openml.org/t/75193
https://www.openml.org/t/189866
https://www.openml.org/t/189874
https://www.openml.org/t/168796
https://www.openml.org/t/168797

Feurer, Eggensperger, Falkner, Lindauer and Hutter

horizon) on which the KND initialization of Auto-sklearn 1.0 only suggests ML pipelines
that time out or hit the memory limit and thus exhaust the optimization budget for the
full configuration space. Our new AutoML system does not suffer from this problem as it
a) selects SH to avoid spending too much time on unpromising ML pipelines and b) can
return predictions and results even if a ML pipeline was not evaluated for the full budget
or converged early; and even after removing the datasets in question from the average, the
performance of Auto-sklearn 1.0 is substantially worse than that Auto-sklearn 2.0 .

When looking at the intermediate system, i.e. PoSH Auto-sklearn, we find that it
outperforms Auto-sklearn 1.0 in terms of the normalized balanced error rate, but that the
additional step of selecting the model selection and budget allocation strategy gives Auto-
sklearn 2.0 an edge. When not considering the large datasets Auto-sklearn 1.0 failed on,
their performance becomes very similar.

Figure 5 provides another view on the results, presenting average ranks (where failures
obtain less weight compared to the averaged performance). Auto-sklearn 2.0 is still able
to deliver best results, PoSH Auto-sklearn should be preferred to Auto-sklearn 1.0 for the
first 30 minutes and then converges to the roughly the same ranking.

4.3 Ablation

Now, we study the contribution of each of our improvements in an ablation study. We
iteratively disable one component and compare the performance to the full system. These
components are (1) using a per-dataset model-based policy selector to choose a policy, (2)
using only a subset of the available policies, and (3) warmstarting BO with a portfolio.

4.3.1 Do we need per-dataset selection?

We first examine how much performance we gain by having a model-based policy selector to
decide between different AutoML strategies based on meta-features and how to construct
this model-based policy selector, or whether it is sufficient to select a single strategy based
on meta-training datasets. We compare the performance of the full system using a model-
based policy selector to using (1) a single, static strategy (single best) and (2) both, the
model-based policy selector and the single best, without the fallback mechanism for out-of-
distribution datasets and give all results in Table 5. We also provide two further baselines.
First, a random baseline, which randomly assigns a policy to a run. Second, an oracle
baselines, which marks the lowest possible error that we practically achieved by a model.7

First, we compare the performance of the model-based policy selector with the single
best. We can observe that for 10 minutes there is a slight improvement in terms of perfor-
mance, while the performance for 60 minutes is almost equal. While there is no significant
difference to the single best for 10 minutes, there is for 60 minutes. These numbers can be
compared with Table 2 to see how we fare against picking a single policy by hand. We find
that our proposed algorithm selection compares favorably, especially for the longer time
horizon.

7. We would like to note that the oracle performance can be unequal to zero, because we normalize the
results using the single best test loss found for a single model to normalize the results. When evaluating
the best policy on a dataset this most likely results in selecting a model on the validation set that is not
the single best model on the test set we use to normalize data.

20

Auto-sklearn 2.0

10 Min 60 Min

oracle 2.33 1.22
random 8.32 6.18

trained on P P+BO P+BO+E P P+BO P+BO+E

single best 3.88 3.67 3.69 2.49 2.38 2.44
single best w/o fallback 5.18 6.38 6.40 5.10 5.01 5.07
model-based policy selector 3.58 3.56 3.58 2.53 2.32 2.47
model-based policy selector w/o fallback 5.43 5.68 4.79 4.98 5.36 5.43

Table 5: Final performance (averaged normalized balanced error rate) for 10 and 60 min-
utes. We report the theoretical best results (oracle) and results for choosing a
random policy (random) as baselines. The second part of the table shows the
performance for the single best policy and the model-based policy selector when
trained on different data obtained on Dmeta (P = Portfolio, BO = Bayesian Op-
timization, E = Ensemble) as well as the model-based policy selector without the
fallback. We boldface the best mean value (per optimization budget) and under-
line results that are not statistically different according to a Wilcoxon-signed-rank
Test (α = 0.05).

Second, to study how much resources we need to spend on generating training data for
our model-based policy selector, we consider three approaches: (P) only using the portfolio
performance, (P+BO) actually running the portfolio and BO for 10 and 60 minutes, re-
spectively, and (P+BO+E) additionally also constructing ensembles, which yield the most
realistic meta-data. Running BO on all 208 datasets (P+BO) is by far more expensive
than the table lookups (P); building an ensemble (P+BO+E) adds only several seconds to
minutes on top compared to (P+BO).

For both optimization budgets using P+BO yields the best results using the model-
based policy selector closely followed by P+BO+ENS, see Table 5. The cheapest method,
P, yields the worst results showing that it is worth to invest resources into computing
good meta-data. Looking at the single best, surprisingly, performance gets worse when
using seemingly better meta-data. We investigated the reason why P+BO performs slightly
better than P+BO+ENS. When using a model-based policy selector this can be explained
by a single dataset for both time horizons for which the chosen policy is worse than the
single best. When looking at the single best, there is no single datasets which stands
out. To summarize, investing additional resources to compute realistic meta-data results in
improved performance, but so far it appears that this is mostly to have the effect of BO in
the meta-data, while the ensemble appears to lead to lower meta-data quality.

Finally, we also take a closer look at the impact of the fallback mechanism to verify that
our improvements are not solely due to this component. We observe that the performance
drops for all policy selection strategies when we not include this fallback mechanism. For the
shorter 10 minutes setting we find that the model-based policy selector still outperforms
the single best, while for the longer 60 minutes setting the single best leads to better

21

Feurer, Eggensperger, Falkner, Lindauer and Hutter

10 Min 60 Min
∅ std ∅ std

All
selector 3.58 0.23 2.47 0.18
random 7.46 2.02 5.64 1.95
oracle 2.33 0.06 1.22 0.08

Only Holdout
selector 4.03 0.14 3.18 0.15
random 3.78 0.23 3.13 0.12
oracle 3.23 0.10 2.62 0.07

Only CV
selector 6.11 0.11 5.09 0.19
random 8.66 0.70 6.85 0.86
oracle 5.28 0.06 3.94 0.10

Full budget
selector 3.50 0.20 2.39 0.18
random 7.64 2.00 5.46 1.52
oracle 2.59 0.09 1.51 0.06

Only SH
selector 3.63 0.19 2.44 0.24
random 6.95 1.98 5.13 1.72
oracle 2.75 0.07 1.68 0.12

Table 6: Final performance (averaged normalized balanced error rate) for the full system
and when not considering all model selection strategies.

performance. The rather stark performance degradation compared to the regular model-
based policy selector can mostly be explained by a few, huge datasets, to which the model-
based policy selector cannot extrapolate (and which the single best does not account for).
Based on these observations we suggest research into an adaptive fallback strategy which
can change the model selection strategy during the execution of the AutoML system so
that a policy selector can be used on out-of-distribution datasets. We conclude that using
a model-based policy selector is very beneficial, and using a fallback strategy to cope with
out-of-distribution datasets can substantially improve performance.

4.3.2 Do we need different model selection strategies?

Next, we study whether we need the different model selection strategies. For this, we
build model-based policy selectors on different subsets of the available eight combinations
of model selection strategies and budget allocations: {3-fold CV, 5-fold CV, 10-fold CV,
holdout} × {SH, FB}. Only Holdout consists of holdout with SH or FB (2 combinations),
Only CV comprises 3-fold CV, 5-fold CV and 10-fold CV, all of them with SH or FB
(6 combinations), Full budget contains both holdout and cross-validation and assigns each
pipeline evaluation the same budget (4 combinations) and Only SH uses SH to assign
budgets (4 combinations).

In Table 4.3.2, we compare the performance of selecting a policy at random (random),
the performance of selecting the best policy on the test set and thus giving a lower bound

22

Auto-sklearn 2.0

10min 60min
∅ std ∅ std

With Portfolio
Policy selector 3.58 0.23 2.47 0.18
Single best 3.69 0.14 2.44 0.12

Without Portfolio
Policy selector 5.63 0.89 3.42 0.32
Single best 5.37 0.58 3.61 0.61

Table 7: Final performance (ADTM) after 10 and after 60 minutes with portfolios (top)
and without (bottom). The row ”with portfolio” and ”policy selector” constitutes
the full AutoML system including portfolios, BO and ensembles) and the row
”without portfolios” and ”policy selector” only removes the portfolios (both from
the meta-data for model-based policy selector construction and at runtime). We
boldface the best mean value (per optimization budget) and underline results that
are not statistically different according to a Wilcoxon-signed-rank Test (α = 0.05).

on the ADTM (oracle) and our model-based policy selector. The oracle indicates the best
possible performance with each of these subsets of model selection strategies. It turns out
that both Only Holdout and Only CV have a much worse oracle performance than All,
with the oracle performance of Only CV being even worse than the performance of the
model-based policy selector for All. Looking at Full budget, it turns out that this subset
would be slightly preferable in terms of performance with a policy selector, however, the
oracle performance is worse than that of All which shows that there is some complementarity
between the different policies which cannot yet be exploited by the policy selector. For Only
Holdout surprisingly the random policy selector performs slightly better than the model-
based policy selector. We attribute this to the fact that both holdout with SH and FB
peform very similar and that the choice between these two cannot yet be learned, possibly
also indicated by the close performance of the random selector.

These results show that a large variety of available model selection strategies to choose
from increases best possible performances. However, they also show that a model-based
policy selector cannot yet necessarily leverage this potential. This questions the usefulness
of choosing from all model selection strategies, similar to a recent finding which proves
that increasing the number of different policies a policy selector can choose from leads
to reduced generalization (Balcan et al., 2020). However, we believe this points to the
research question whether we can learn on the meta-datasets which model selection and
budget allocation strategies to include in the set of strategies to choose from. Also, with an
ever-growing availability of meta-datasets and continued research on robust policy selectors,
we expect this flexibility to eventually yield improved performance.

4.3.3 Do we still need to warm-start Bayesian optimization?

Last, we analyse the impact of the portfolio. Given the other improvements, we now discuss
the question whether we still need to add the additional complexity and invest resources
to warm-start BO (and can therefore save the time to build the performance matrices to

23

Feurer, Eggensperger, Falkner, Lindauer and Hutter

construct the portfolios). For this study, we completely remove the portfolio from our
AutoML system, meaning that we directly start with BO and construct ensembles – both
for creating the data we train our policy selector on and for reporting performance. We
report the results in Table 7.

Comparing the performance of an AutoML system with a model-based policy selector
with and without portfolios (Row 1 and 3), there is a clear drop in performance showing the
benefit of using portfolios in our system. Comparing Rows 2 and 4 also demonstrates that
a portfolio is necessary when using the single best policy. This ablation demonstrates the
importance of initializing the search procedure of AutoML systems with well-performing
pipelines.

5. Comparison to other AutoML systems

Having established that Auto-sklearn 2.0 does indeed improve over Auto-sklearn 1.0 , we now
compare our system to other well established AutoML systems. For this, we use the publicly
available AutoML benchmark suite which defines a fixed benchmarking environment for
AutoML systems (Gijsbers et al., 2019) comparisons. We use the original implementation
of the benchmark and compare Auto-sklearn 1.0 and Auto-sklearn 2.0 to the provided
implementations of Auto-WEKA (Thornton et al., 2013), TPOT (Olson et al., 2016a,b),
H2O AutoML (LeDell and Poirier, 2020) and a TunedRF on 39 datasets as implemented
by the benchmark suite. These 39 are the same datasets as in Dtest and we provide details
in Table 18 in the appendix.

5.1 Integration and setup

To avoid hardware-dependent performance differences, we (re-)ran all AutoML systems on
our local hardware (see Section 3.4.3). We used the pre-defined 1h8c setting, which divides
each dataset into ten folds and gives each framework one hour on eight CPU cores to pro-
duce a final model. We furthermore assigned each run 32GB of RAM which is controlled by
the SLURM cluster manager. In addition, we conducted three repeats to account for ran-
domness. The benchmark comes with Docker containers (Merkel, 2014). However, Docker
requires super user access on the execution nodes, which is not available on our compute
cluster. Therefore, we extended the AutoML benchmark with support for Singularity im-
ages (Kurtzer et al., 2017), and used them to isolate the framework installations from each
other.

The default resource allocation of the AutoML benchmark is a highly parallel set-
ting with eight cores. We chose the most straight-forward way of making use of these
resources for Auto-sklearn and evaluate eight ML pipelines in parallel, assigning each
total memory/num cores RAM, which are 4GB. This allows us to evaluate configurations
obtained from the portfolio or KND in parallel, but also requires a parallel strategy for
running BO afterwards. In preliminary experiments we found that the inherent random-
ness of the random forest used by SMAC combined with the interleaved random search of
SMAC is sufficient to obtain results which perform a lot better than the previous paral-
lelism implemented in Auto-sklearn (Ramage, 2015). Whenever a pipeline finishes training,
Auto-sklearn checks whether there is an instance of the ensemble construction running, and
if not, it uses one of the eight slots to conduct ensemble building, and otherwise continues to

24

Auto-sklearn 2.0

fit a new pipeline. We implemented this version of parallel Auto-sklearn using Dask (Dask
Development Team, 2016).

5.2 Results

We give results for the AutoML benchmark in Table 8. For each dataset we give the average
performance of the AutoML systems across all ten folds and three repetitions and boldface
the one with the lowest error, but cannot give any information about whether these results
are significant as we cannot compute significances on cross-validation folds as described by
Bengio and Grandvalet (2004).

We report the log loss for multiclass datasets and 1 − AUC for binary datasets (lower
is better). We provide two variants of the rank over datasets as an aggregate measure:
1) Average: we first average the loss on the ten folds per dataset, compute the rank per
dataset and average these 39 numbers. 2) Per fold: we compute the rank per fold and
average these 390 numbers. Furthermore, we count how often each framework is the winner
on a dataset (champion), and give the losses, wins and ties against Auto-sklearn 2.0 . We
then use these to perform a binomial sign test (Demšar, 2006) to compare the individual
algorithms against Auto-sklearn 2.0 .

The results in Table 8 show that none of the AutoML systems is best on all datasets and
even the TunedRF performs best on a few datasets. However, we can also observe that the
proposed Auto-sklearn 2.0 has the lowest average rank. It is followed by H2O AutoML and
Auto-sklearn 1.0 which perform roughly en par wrt the ranking scores and the number of
times they are the winner on a dataset. According to both aggregate metrics, the TunedRF,
Auto-WEKA and TPOT cannot keep up and lead to substantially worse results. Finally,
both version of Auto-sklearn appear more robust than TPOT and H2O as they reliably
provide results on the largest dataset dionis with 355-classes.

6. Related Work

We now present related work on our individual contributions (portfolios, model-selection
strategies, and algorithm selection) as well as on related AutoML systems.

6.1 Related Work on Portfolios

Portfolios were introduced for hard combinatorial optimization problems, where the run-
time between different algorithms varies drastically and allocating time shares to multiple
algorithms instead of allocating all available time to a single one reduces the average cost
for solving a problem (Huberman et al., 1997; Gomes and Selman, 2001), and had applica-
tions in different sub-fields of AI (Smith-Miles, 2008; Kotthoff, 2014; Kerschke et al., 2019).
Algorithm portfolios were introduced to ML by the name of algorithm ranking with the
goal of reducing the required time to perform model selection compared to running all algo-
rithms under consideration (Brazdil and Soares, 2000; Soares and Brazdil, 2000), ignoring
redundant ones (Brazdil et al., 2001). ML portfolios can be superior to hyperparameter op-
timization with Bayesian optimization (Wistuba et al., 2015b), Bayesian optimization with
a model which takes past performance data into account (Wistuba et al., 2015a) or can be
applied when there is simply no time to perform full hyperparameter optimization (Feurer

25

Feurer, Eggensperger, Falkner, Lindauer and Hutter

AS 2.0 AS 1.0 AW TPOT H2O TunedRF

adult 0.0692 0.0701 0.0926 0.0769 0.0691 0.0903
airlines 0.2725 0.2728 0.3216 0.2755 0.2682 -
albert 0.2413 0.2388 - 0.2686 0.2530 0.2615
amazon 0.1226 0.1412 0.1846 0.1351 0.1219 0.1379
apsfailure 0.0086 0.0079 0.0344 0.0098 0.0082 0.0088
australian 0.0596 0.0702 0.0714 0.0674 0.0603 0.0613
bank-marketing 0.0607 0.0617 0.1440 0.0659 0.0611 0.0692
blood-transfusion 0.2431 0.2500 0.2622 0.2723 0.2449 0.3129
car 0.0014 0.0049 0.2010 2.6530 0.0033 0.0420
christine 0.1819 0.1708 0.2006 0.1824 0.1763 0.1907
cnae-9 0.1448 0.1784 0.6972 0.1510 0.1876 0.3164
connect-4 0.3356 0.3536 2.0405 0.3936 0.3122 0.4777
covertype 0.1094 0.1455 3.3422 0.5348 0.1274 -
credit-g 0.2038 0.2165 0.2520 0.2149 0.2077 0.1982
dilbert 0.0380 0.0331 2.1825 0.1155 0.0366 0.3284
dionis 0.5735 0.6595 - - - -
fabert 0.7421 0.7466 5.9815 0.8412 0.7281 0.8055
fashion-mnist 0.2518 0.2523 0.9592 0.4259 0.2768 0.3610
guillermo 0.0945 0.0871 0.1254 0.1651 0.0909 0.0972
helena 2.4975 2.5428 14.6759 2.8813 2.7759 -
higgs 0.1824 0.1848 0.3315 0.1967 0.1846 0.1966
jannis 0.6701 0.6642 2.4168 0.7247 0.6695 0.7291
jasmine 0.1141 0.1211 0.1388 0.1125 0.1147 0.1119
jungle chess 0.2109 0.1891 1.7751 0.6018 0.1468 0.4023
kc1 0.1615 0.1597 0.1782 0.1538 0.1787 0.1589
kddcup09 0.1579 0.1638 - 0.1692 0.1635 0.2064
kr-vs-kp 0.0001 0.0003 0.0183 0.0002 0.0002 0.0005
mfeat-factors 0.0733 0.0913 0.5619 0.1038 0.0987 0.2116
miniboone 0.0121 0.0128 0.0359 0.0178 0.0129 0.0183
nomao 0.0035 0.0039 0.0160 0.0046 0.0036 0.0049
numerai28.6 0.4696 0.4706 0.4724 0.4747 0.4693 0.4792
phoneme 0.0298 0.0366 0.0441 0.0308 0.0322 0.0347
riccardo 0.0002 0.0002 0.0021 0.0020 0.0003 0.0002
robert 1.4176 1.3799 - 1.8832 1.4977 1.6872
segment 0.1482 0.1767 1.1884 0.1638 0.1582 0.1720
shuttle 0.0002 0.0004 0.0097 0.0007 0.0005 0.0006
sylvine 0.0106 0.0091 0.0292 0.0074 0.0107 0.0159
vehicle 0.3359 0.3636 1.7837 0.4156 0.3077 0.4834
volkert 0.7493 0.7872 3.9654 0.9888 0.8148 0.9790

Rank 1.77 2.69 5.71 4.01 2.45 4.37

Best performance 19 8 0 2 8 2
Wins/Losses/Ties of AS 2.0 - 28/11/0 39/0/0 36/3/0 26/13/0 36/3/0
P-values (AS 2.0 vs. other methods), - 0.009 0.000 0.000 0.053 0.000
based on a Binomial sign test

Table 8: Results of the AutoML benchmark averaged across three repetitions. We report
log loss for multiclass datasets and 1−AUC for binary classification datasets (lower
is better). AS is short for Auto-sklearn and AW for Auto-WEKA. Auto-sklearn
has the best overall ranks, the best performance in most datasets and, based on
a Binomial sign test, statistically significantly outperforms four out of five of the
other methods.

26

Auto-sklearn 2.0

and Hutter, 2018). Furthermore, such a portfolio-based model-free optimization is both
easier to implement than regular Bayesian optimization and meta-feature based solutions,
and the portfolio can be shared easily across researchers and practitioners without the ne-
cessity of sharing meta-data (Wistuba et al., 2015a,b; Pfisterer et al., 2018) or additional
hyperparameter optimization software. Here, our goal is to have strong hyperparameter
settings when there is no time to do optimization with a typical blackbox algorithm.

The efficient creation of algorithm portfolios is an active area of research with the Greedy
Algorithm being a popular choice (Xu et al., 2010, 2011; Seipp et al., 2015; Wistuba et al.,
2015b; Lindauer et al., 2017b; Feurer et al., 2018; Feurer and Hutter, 2018) due to its
simplicity. Wistuba et al. (2015b) first proposed the use of the Greedy Algorithm for
pipelines of ML portfolios, minimizing the average rank on meta-datasets for a single ML
algorithm. Later, they extended their work to update the members of a portfolio in a
round-robin fashion, this time using the average normalized misclassification error as a
loss function and relying on a Gaussian process model (Wistuba et al., 2015a). The loss
function of the first method does not optimize the metric of interest, while the second
method does not guarantee that well-performing algorithms are executed early on, which
could be harmful under time constraints.

Research into the Greedy Algorithm continued after our submission to the second Au-
toML challenge and the publication of the employed methods (Feurer et al., 2018; Feurer
and Hutter, 2018). Pfisterer et al. (2018) suggested using a set of default values to sim-
plify hyperparameter optimization. They argued that constructing an optimal portfolio of
hyperparameter settings is a generalization of the Maximum coverage problem and propose
two solutions based on Mixed Integer Programming and the Greedy Algorithm which we also
use as the base of our algorithm. The greedy algorithm recently also drew interest in deep
learning research where it was applied in its basic form for the tuning the hyperparameters
of the popular ADAM algorithm (Metz et al., 2020).

Extending these portfolio strategies which are learned offline, there are online portfolios
which can select from a fixed set of machine learning pipelines, taking previous evaluations
into account (Leite et al., 2013; Wistuba et al., 2015a,b; Fusi et al., 2018; Yang et al.,
2019, 2020). However, such methods cannot be directly combined with all budget alloca-
tion strategies as they require the definition of a special model for extrapolating learning
curves (Klein et al., 2017b; Falkner et al., 2018) and also introduce additional complexity
into AutoML systems.

There exists other work on building portfolios without prior discretization (which we do
for our work and was done for most work mentioned above), which directly optimizes the
hyperparameters of ML pipelines to add next to the portfolio in a greedy fashion (Xu et al.,
2010, 2011; Seipp et al., 2015), to jointly optimize all configurations of the portfolio with
global optimization (Winkelmolen et al., 2020), and to also build parallel portfolios (Lin-
dauer et al., 2017b). We consider these to be orthogonal to using portfolios in the first place
and plan to study improved optimization strategies in future work.

6.2 Related Work on Successive Halving

Large datasets, expensive ML pipelines and tight resource limitations demand for sophisti-
cated methods developed to speed up pipeline selection. One line of research, multi-fidelity

27

Feurer, Eggensperger, Falkner, Lindauer and Hutter

optimization methods, tackle this problem by using cheaper approximations of the objective
of interest. Practical examples are evaluating a pipeline only on a subset of the dataset or
for iterative algorithms limit the number of iterations. There exists a large body of research
on optimization methods leveraging lower fidelities, for example working with a fixed set of
auxiliary tasks (Forrester et al., 2007; Swersky et al., 2013; Poloczek et al., 2017; Moss et al.,
2020), solutions for specific model classes (Swersky et al., 2014; Domhan et al., 2015; Chan-
drashekaran and Lane, 2017) and selecting a fidelity value from a continuous range (Klein
et al., 2017a; Kandasamy et al., 2017; Wu et al., 2020; Takeno et al., 2020). Here, we focus
on a methodologically simple bandit strategy, SH (Karnin et al., 2013; Jamieson and Tal-
walkar, 2016), which successively reduces the number of candidates and at the same time
increases the allocated resources per run till only one candidate remains. Our use of SH
in the 2nd AutoML challenge also inspired work on combining a genetic algorithm with
SH (Parmentier et al., 2019). Another way of quickly discarding unpromising pipelines is
the intensify procedure which was used by Auto-WEKA (Thornton et al., 2013) to speed
up cross-validation. Instead of evaluating all folds at once, it evaluates the folds in an
iterative fashion. After each evaluation, the average performance on the evaluated folds is
compared to the performance of the so-far best pipeline on these folds, and the evaluation
is only continued if the performance is equal or better. While this allows evaluating many
configurations in a short time, it cannot be combined with post-hoc ensembling and reduces
the cost of a pipeline to at most the cost of holdout, which might already be too high.

6.3 Related Work on Algorithm Selection

Automatically choosing a model selection strategy to assess the performance of an ML
pipeline for hyperparameter optimization has not previously been tackled, and only Guyon
et al. (2015) acknowledge the lack of such an approach. However, treating the choice of
model selection strategy as an algorithm selection problem allows us to apply methods from
the field of algorithm selection (Smith-Miles, 2008; Kotthoff, 2014; Kerschke et al., 2019)
and we can in future work reuse existing techniques besides the pairwise classification we
employ in this paper (Xu et al., 2011), such as the AutoAI system AutoFolio (Lindauer
et al., 2015).

6.4 Background on AutoML Systems and Their Components

AutoML systems have recently gained traction in the research community and there exists
a multitude of approaches, often accompanied by open-source software. In the following
we provide background on the main components of AutoML frameworks before describing
several prominent instantiations in more depth.

6.4.1 Components of AutoML systems

AutoML systems require a flexible pipeline configuration space and are driven by an efficient
method to search this space. Furthermore, they rely on model selection and budget allo-
cation strategies when evaluating different pipelines. Additionally, to speed up the search
procedure, information gained on other datasets can be used to kick-start or guide the
search procedure (i.e. meta-learning). Finally, one can also combine the models trained
during the search phase in a post-hoc ensembling step.

28

Auto-sklearn 2.0

Configuration Space and Search Mechanism While there are configuration space
formulations that allow the application of multiple search mechanisms, not all formula-
tions of a configuration space and a search mechanism can be mixed and matched, and we
therefore describe the different formulations and the applicable search mechanisms in turn.

The most common description of the search space is the CASH formulation. There
is a fixed amount of hyperparameters, each with a range of legal values or categorical
choices, and some of them can be conditional, meaning that they are only active if other
hyperparameters fulfill certain conditions. One such example is the choice of a classification
algorithm and its hyperparameters. The hyperparameters of an SVM are only active if the
categorical hyperparameter of the classification algorithm is set to SVM.

The CASH problem can be solved by standard blackbox optimization algorithms, and
it was first proposed to use SMAC (Hutter et al., 2011) and TPE (Bergstra et al., 2011).
Others proposed the use of evolutionary algorithms (Bürger and Pauli, 2015) and random
search (LeDell and Poirier, 2020). It is also known as the full model selection problem (Es-
calante et al., 2009), and solutions in that strain of work proposed the use of particle swarm
optimization (Escalante et al., 2009) and a combination of a genetic algorithm with particle
swarm optimization (Sun et al., 2013). To improve performance one can prune the configu-
ration space to reduce space to search through (Zhang et al., 2016), split the configuration
space into smaller, more managable subspaces (Alaa and van der Schaar, 2018; Liu et al.,
2020), or heavily employ expert knowledge (LeDell and Poirier, 2020).

Instead of a fixed configuration space, genetic programming can make use of a flexible,
and possibly infinite space of components to be connected (Olson et al., 2016b,a). This
approach can be formalized further by using grammar-based genetic programming (de Sa
et al., 2017). Context-free grammars can also be searched by model-based reinforcement
learning algorithms (Drori et al., 2019).

Formalizing the search problem as a search tree allows the application of a custom
Monte-Carlo tree search (Rakotoarison et al., 2019) and hierarchical task networks with
best-first search (Mohr et al., 2018). With discrete spaces it is also possible to use combina-
tions of meta-learning and matrix factorization (Yang et al., 2019, 2020; Fusi et al., 2018).
In the special case of using only neural networks in an AutoML system it is possible to stick
with standard blackbox optimization (Mendoza et al., 2016, 2019; Zimmer et al., 2021), but
one can also employ recent advances in neural architecture search (Elsken et al., 2019).

Meta-Learning. When there is knowledge about previous runs of the AutoML system
on other datasets available, it is possible to employ meta-learning. One option is to define
a dataset similarity measure, often by using hand-crafted meta-features which describe the
datasets (Brazdil et al., 1994), to use the best solutions on the closest seen datasets to
warmstart the search algorithm (Feurer et al., 2015a). While this way of meta-learning can
be seen as an add-on to existing methods, other works use search strategies designed to
take meta-learning into account, for example matrix factorization (Yang et al., 2019, 2020;
Fusi et al., 2018) or reinforcement learning (Drori et al., 2019; Heffetz et al., 2020).

Model Selection. Given training data, the goal of an AutoML system is to find the best
performing ML pipeline. Doing so, requires to best approximate the generalization error

29

Feurer, Eggensperger, Falkner, Lindauer and Hutter

to 1) provide a reliable and precise signal for the optimization procedure8 and 2) select the
model to be returned in the end. Typically, the generalization error is assessed via the train-
validation-test protocol (Bishop, 1995; Raschka, 2018). This means that several models are
trained on a training set, the best one is selected via holdout (using a single split) or the
K-fold cross-validation, and the generalization error is then reported on the test set. The
AutoML system then returns a single model in case of holdout, and a combination of K
models in case of K-fold cross-validation (Caruana et al., 2006). One could also use model
selection strategies aiming to reduce the effect of overfitting to the validation set (Dwork
et al., 2015; Tsamardinos et al., 2018), but while such model selection strategies are an
important area of research, houldout or K-fold cross-validation remain the most prominent
choices (Henery, 1994; Kohavi and John, 1995; Hastie et al., 2001; Guyon et al., 2010; Bischl
et al., 2012; Raschka, 2018).

The influence of the model selection strategy on the performance is well known (Kalousis
and Hilario, 2003) and researchers have studied their impact (Kohavi, 1995). However, there
is no single best strategy and since there is a tradeoff between approximation quality and
time required to compute the validation loss.

Post-hoc Ensembling. AutoML systems evaluate dozens or hundreds of models during
their optimization procedure. Thus, it is a natural next step to not only use a single model
at the end, but to ensemble multiple for improved performance and reduced overfitting.

This was first proposed to combine the solutions found by particle swarm optimiza-
tion (Escalante et al., 2010) and then by an evolutionary algorithm (Bürger and Pauli,
2015). While these works used heuristic methods to combine multiple models into a final
ensemble, it is also possible to treat this as another optimization problem (Feurer et al.,
2015a) and solve it with ensemble selection (Caruana et al., 2004) or stacking (LeDell and
Poirier, 2020).

Instead of using a single layer of machine learning models, Automatic Frankenstein-
ing (Wistuba et al., 2017) proposed two-layer stacking, applying AutoML to the outputs
of an AutoML system instead of a single layer of ML algorithms followed by an ensem-
bling mechanism. Auto-Stacker went one step further, directly optimizing for a two-layer
AutoML system (Chen et al., 2018).

6.4.2 AutoML systems

To the best of our knowledge, the first AutoML system which tunes both hyperparameters
and chooses algorithms was an ensemble method (Caruana et al., 2004). This system
randomly produces 2 000 classifiers from a wide range of ML algorithms and constructs
a post-hoc ensemble. It was later robustified (Caruana et al., 2006) and employed in a
winning submission to the KDD challenge (Niculescu-Mizil et al., 2009).

The first AutoML system to jointly optimize the whole pipeline was Particle Swarm
Model Selection (Escalante et al., 2007, 2009). It used a fixed-length representation of

8. Different model selection strategies could be ignored from an optimization point of view, where the goal
is to optimize performance given a loss function, as is often done in the research fields of meta-learning
and hyperparameter optimization. However, for AutoML systems this is highly relevant as we are not
interested in the optimization performance (of some subpart) of these systems, but the final estimated
generalization performance when applied to new data.

30

Auto-sklearn 2.0

the pipeline and contained feature selection, feature processing, classification and post-
processing implemented in the CLOP package9 and was developed for the IJCNN 2007
agnostic learning vs. prior knowledge challenge (Guyon et al., 2008). It placed 2nd among
the solutions using the CLOP package provided by the organizers, only loosing to a sub-
mission based on robust hyperparameter optimization and ensembling (Reunanen, 2007).
Later systems started employing model-based global optimization algorithms, such as Auto-
WEKA (Thornton et al., 2013; Kotthoff et al., 2019), which is built around the WEKA
software (Hall et al., 2009) and SMAC (Hutter et al., 2011) and uses cross-validation with
racing for model evaluation, and Hyperopt-sklearn (Komer et al., 2014), which was the first
tool to use the now-popular scikit-learn (Pedregosa et al., 2011) and paired it with the TPE
algorithm from the hyperopt package (Bergstra et al., 2011, 2013) and holdout.

We extended the approach of parametrizing a popular machine learning library and
optimizing its hyperparameters with a blackbox optimization algorithm using meta-learning
and post-hoc ensembles in Auto-sklearn (Feurer et al., 2015a, 2019). For classification,
the space of possible ML pipelines currently spans 16 classifiers, 14 feature preprocessing
methods and numerous data preprocessing methods, adding up to 122 hyperparameters for
the latest release. Auto-sklearn uses holdout as a default model selection strategy, but allows
for other strategies such as cross-validation. Auto-sklearn was the dominating solution of
the first AutoML challenge (Guyon et al., 2019).

The tree-based pipeline optimization tool (TPOT (Olson et al., 2016b; Olson and Moore,
2019)) uses grammatical evolution to construct ML pipelines of arbitrary length. Currently,
it uses scikit-leearn (Pedregosa et al., 2011) and XGBoost (Chen and Guestrin, 2016) for
its ML building blocks and 5-fold cross-validation to evaluate individual solutions. TPOT-
SH (Parmentier et al., 2019), inspired by our submission to the second AutoML challenge,
uses successive halving to speed up TPOT on large datasets.

The H2O AutoML package takes a radically different approach, building on a manually
designed set of defaults and random search combined with stacking. It uses building blocks
from the H2O library(H2O.ai, 2020) and XGBoost (Chen and Guestrin, 2016) and cross-
validation.

Finally, there is also work on creating AutoML systems that can leverage recent ad-
vancements in deep learning, using either blackbox optimization (Mendoza et al., 2016;
Zimmer et al., 2021) or neural architecture search (Jin et al., 2019).

Of course, there are also many techniques related to AutoML which are not used in one
of the AutoML systems discussed in this section and we refer to Hutter et al. (2019) for an
overview of the field of Automated Machine Learning and to Brazdil et al. (2008) for an
overview on meta-learning research which pre-dates the work on AutoML.

7. Discussion and Conclusion

In this paper we introduced our winning entry to the 2nd ChaLearn AutoML challenge,
PoSH Auto-sklearn, and automated its internal settings further, resulting in the next gen-
eration of our AutoML system: Auto-sklearn 2.0 . Auto-sklearn 2.0 provides a truly hands-
free solution, which, given a new task and resource limitations, automatically chooses the
best setup. Specifically, we introduce three improvements for faster and more efficient Au-

9. http://clopinet.com/CLOP/

31

http://clopinet.com/CLOP/

Feurer, Eggensperger, Falkner, Lindauer and Hutter

toML: (i) to get strong results quickly we propose to use portfolios, which can be built offline
and thus reduce startup costs, (ii) to reduce time spent on poorly performing pipelines we
propose to add successive halving (SH) as a budget allocation strategy to the configuration
space of our AutoML system and (iii) to close the design space we opened up for AutoML
we propose to automatically select the best configuration of our system.

We conducted a large-scale study based on 208 meta-datasets and 39 datasets for testing
and obtained substantially improved performance compared to Auto-sklearn 1.0 , reducing
the ADTM by up to a factor of four and achieving a lower loss after 10 minutes than
Auto-sklearn 1.0 after 60 minutes. Our ablation study showed that using a model-based
policy selector to choose the model selection strategy has the greatest impact on perfor-
mance and allows Auto-sklearn 2.0 to run robustly on new, unseen datasets. Furthermore,
we showed that our method is highly competitive and outperforms other state-of-the-art
AutoML systems in the OpenML AutoML benchmark.

However, our system also introduces some shortcomings since it optimizes performance
towards a given optimization budget, performance metric and configuration space. Although
all of these, along with the meta datasets, could be provided by a user to automatically
build a customized version of Auto-sklearn 2.0 , it would be interesting whether we can learn
how to transfer a specific AutoML system to different optimization budgets and metrics.
Also, there still remain several hand-picked hyperparameters on the level of the AutoML
system, which we would like to automate in future work, too, for example by automatically
learning the portfolio size, learning more hyper-hyperparameters of the different budget
allocation strategies (for example of SH) and proposing suitable configuration spaces given
a dataset and resources. Finally, building the training data is currently quite expensive.
Even though this has to be done only once, it will be interesting to see whether we can
take shortcuts here, for example by using a joint ranking model (Tornede et al., 2020) or
non-linear collaborative filtering (Fusi et al., 2018).

Acknowledgments

The authors acknowledge support by the state of Baden-Württemberg through bwHPC
and the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG.
This work has partly been supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme under grant no.
716721. Robert Bosch GmbH is acknowledged for financial support. We furthermore thank
all contributors to Auto-sklearn for their help in making it a useful AutoML tool and also
thank Francisco Rivera for providing a Singularity integration for the AutoML benchmark.

References

A. Alaa and M. van der Schaar. AutoPrognosis: Automated Clinical Prognostic Modeling
via Bayesian Optimization with Structured Kernel Learning. In Proc. of ICML’18, pages
139–148, 2018.

M. Balcan, T. Sandholm, and E. Vitercik. Generalization in portfolio-based algorithm
selection. arXiv:2012.13315 [cs.AI], 2020.

32

Auto-sklearn 2.0

R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyperparameter tuning. In
Proc. of ICML’13, pages 199–207, 2013.

Y. Bengio and Y. Grandvalet. No unbiased estimator of the variance of k-fold cross-
validation. JMLR, 4:1089–1105, 2004.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter opti-
mization. In Proc. of NeurIPS’11, pages 2546–2554, 2011.

J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In Proc. of ICML’13,
pages 115–123, 2013.

A. Biedenkapp, H. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer. Dynamic algorithm
configuration: Foundation of a new meta-algorithmic framework. In Proceedings of the
Twenty-fourth European Conference on Artificial Intelligence (ECAI’20), 2020.

M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In Proc. of GECCO’02, pages 11–18, 2002.

B. Bischl, O. Mersmann, H. Trautmann, and C. Weihs. Resampling methods for meta-model
validation with recommendations for evolutionary computation. Evolutionary Computa-
tion, 20(2):249–275, 2012.

B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. Mantovani, J. N. van Rijn,
and J. Vanschoren. Openml benchmarking suites. arXiv:1708.03731v2, 2019.

C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Inc., 1995.

P. Brazdil and C. Soares. A comparison of ranking methods for classification algorithm
selection. In Proc. of ECML’00, pages 63–74, 2000.

P. Brazdil, J. Gama, and B. Henery. Characterizing the applicability of classification al-
gorithms using meta-level learning. In F. Bergadano and L. De Raedt, editors, Machine
Learning: ECML-94, pages 83–102. Springer Berlin Heidelberg, 1994.

P. Brazdil, C. Soares, and R. Pereira. Reducing rankings of classifiers by eliminating re-
dundant classifiers. In Proc. of EPAI’01, pages 14–21, 2001.

P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. Metalearning: Applications to
Data Mining. Springer-Verlag, 1 edition, 2008.

L. Breimann. Random forests. MLJ, 45:5–32, 2001.

F. Bürger and J. Pauli. A Holistic Classification Optimization Framework with Feature
Selection, Preprocessing, Manifold Learning and Classifiers., pages 52–68. 2015.

R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection from libraries
of models. In Proc. of ICML’04, 2004.

33

Feurer, Eggensperger, Falkner, Lindauer and Hutter

R. Caruana, A. Munson, and A. Niculescu-Mizil. Getting the most out of ensemble selection.
In Proc. of ICDM’06, pages 828–833, 2006.

A. Chandrashekaran and I. Lane. Speeding up Hyper-parameter Optimization by Extrap-
olation of Learning Curves using Previous Builds. In Proc. of ECML/PKDD’17, pages
477–492, 2017.

B. Chen, H. Wu, W. Mo, I. Chattopadhyay, and H. Lipson. Autostacker: A Compositional
Evolutionary Learning System. In Proc. of GECCO’18, pages 402–409, 2018.

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proc. of KDD’16,
pages 785–794, 2016.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-
aggressive algorithms. JMLR, 7(19):551–585, 2006.

Dask Development Team. Dask: Library for dynamic task scheduling, 2016. URL https:

//dask.org.

A. de Sa, W. Pinto, L. Oliveira, and G. Pappa. RECIPE: A grammar-based framework
for automatically evolving classification pipelines. In M. Castelli, J. McDermott, and
L. Sekanina, editors, EuroGP 2017: Proceedings of the 20th European Conference on Ge-
netic Programming, volume 10196 of LNCS, pages 246–261, Amsterdam, 2017. Springer
Verlag.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. JMLR, 7:1–30,
2006.

T. Domhan, J. Springenberg, and F. Hutter. Speeding up automatic hyperparameter op-
timization of deep neural networks by extrapolation of learning curves. In Proc. of IJ-
CAI’15, pages 3460–3468, 2015.

I. Drori, Y. Krishnamurthy, R. Lourenco, R. Rampin, K. Cho, C. Silva, and J. Freire. Au-
tomatic machine learning by pipeline synthesis using model-based reinforcement learning
and a grammar. In ICML Workshop on AutoML, 2019.

C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth. The reusable
holdout: Preserving validity in adaptive data analysis. Science, 349(6248):636–638, 2015.

T. Elsken, J. Metzen, and F. Hutter. Neural Architecture Search, pages 63–77. In Hutter
et al. (2019), 2019. Available for free at http://automl.org/book.

H. Escalante, M. Gomez, and L. Sucar. PSMS for neural networks on the ijcnn 2007 agnostic
vs prior knowledge challenge. In Proc. of IJCNN’07, pages 678–683. IEEE, 2007.

H. Escalante, M. Montes, and E. Sucar. Particle Swarm Model Selection. JMLR, 10:
405–440, 2009.

H. Escalante, M. Montes, and E. Sucar. Ensemble particle swarm model selection. In Proc.
of IJCNN’10, pages 1–8. IEEE, 2010.

34

https://dask.org
https://dask.org

Auto-sklearn 2.0

S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient hyperparameter optimiza-
tion at scale. In Proc. of ICML’18, pages 1437–1446, 2018.

M. Feurer and F. Hutter. Ptowards further automation in automl. In ICML Workshop on
AutoML, 2018.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient
and robust automated machine learning. In Proc. of NeurIPS’15, pages 2962–2970, 2015a.

M. Feurer, J. Springenberg, and F. Hutter. Initializing Bayesian hyperparameter optimiza-
tion via meta-learning. In Proc. of AAAI’15, pages 1128–1135, 2015b.

M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. Practical automated
machine learning for the automl challenge 2018. In AutoML workshop at international
conference on machine learning (ICML), 2018.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Auto-
sklearn: Efficient and robust automated machine learning. In Hutter et al. (2019), pages
113–134. Available for free at http://automl.org/book.

M. Feurer, J. van Rijn, A. Kadra, P. Gijsbers, N. Mallik, S. Ravi, A. Müller, J. Vanschoren,
and F. Hutter. OpenML-Python: an extensible Python API for OpenML. JMLR, 22
(100):1–5, 2021.

A. Forrester, A. Sóbester, and A. Keane. Multi-fidelity optimization via surrogate modelling.
Proceedings of the royal society a: mathematical, physical and engineering sciences, 463
(2088):3251–3269, 2007.

J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

N. Fusi, R. Sheth, and M. Elibol. Probabilistic matrix factorization for automated machine
learning. In Proc. of NeurIPS’18, pages 3348–3357. 2018.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. MLJ, 63(1):3–42, 2006.

P. Gijsbers, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Vanschoren. An open source
automl benchmark. In ICML Workshop on AutoML, 2019.

C. Gomes and B. Selman. Algorithm portfolios. AIJ, 126(1-2):43–62, 2001.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Analysis of the ijcnn 2007 agnostic learning
vs. prior knowledge challenge. Neural Networks, 21(2):544–550, 2008. Advances in Neural
Networks Research: IJCNN ’07.

I. Guyon, A. Saffari, G. Dror, and G. Cawley. Model selection: Beyond the
Bayesian/Frequentist divide. JMLR, 11:61–87, 2010.

I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, Tin Kam Ho, N. Macià,
B. Ray, M. Saeed, A. Statnikov, and E. Viegas. Design of the 2015 chalearn automl
challenge. In Proc. of IJCNN’15, pages 1–8. IEEE, 2015.

35

Feurer, Eggensperger, Falkner, Lindauer and Hutter

I. Guyon, L. Sun-Hosoya, M. Boullé, H. Escalante, S. Escalera, Z. Liu, D. Jajetic, B. Ray,
M. Saeed, M. Sebag, A. Statnikov, W. Tu, and E. Viegas. Analysis of the AutoML
Challenge Series 2015-2018. In Hutter et al. (2019), chapter 10, pages 177–219. Available
for free at http://automl.org/book.

H2O.ai. H2O: Scalable Machine Learning Platform, 2020. URL https://github.com/

h2oai/h2o-3. version 3.30.0.6.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. The WEKA
data mining software: An update. SIGKDD, 11(1):10–18, 2009.

C. Harris, K. Millman, S. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. Smith, R. Kern, M. Picus, S. Hoyer, M. van Kerkwijk,
M. Brett, A. Haldane, J. Fernández del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. Oliphant. Array
programming with NumPy. Nature, 585:357–362, 2020.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-
Verlag, 2001.

Y. Heffetz, R. Vainshtein, G. Katz, and L. Rokach. DeepLine: AutoML Tool for Pipelines
Generation using Deep Reinforcement Learning and Hierarchical Actions Filtering. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 2103–2113. ACM, 2020.

R. Henery. Methods for comparison. In Machine Learning, Neural and Statistical Classifi-
cation, chapter 7, pages 107–124. Ellis Horwood, 1994.

B. Huberman, R. Lukose, and T. Hogg. An economic approach to hard computational
problems. Science, 275:51–54, 1997.

J. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: An automatic algorithm
configuration framework. JAIR, 36:267–306, 2009.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In Proc. of LION’11, pages 507–523, 2011.

F. Hutter, L. Kotthoff, and J. Vanschoren, editors. Automated Machine Learning: Methods,
Systems, Challenges, 2019. Springer. Available for free at http://automl.org/book.

K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Proc. of AISTATS’16, 2016.

H. Jin, Q. Song, and X. Hu. Auto-Keras: An efficient neural architecture search system. In
Proc. of KDD’19, pages 1946–1956, 2019.

A. Kalousis and M. Hilario. Representational Issues in Meta-Learning. In Proc. of ICML’03,
pages 313–320. Omnipress, 2003.

36

https://github.com/h2oai/h2o-3
https://github.com/h2oai/h2o-3

Auto-sklearn 2.0

K. Kandasamy, G. Dasarathy, J. Schneider, and B. Póczos. Multi-fidelity Bayesian Op-
timisation with Continuous Approximations. In Proc. of ICML’17, pages 1799–1808,
2017.

Z. Karnin, T. Koren, and O. Somekh. Almost optimal exploration in multi-armed bandits.
In Proc. of ICML’13, pages 1238–1246, 2013.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm:
A highly efficient gradient boosting decision tree. In Proc. of NeurIPS’17, 2017.

P. Kerschke, H. Hoos, F. Neumann, and H. Trautmann. Automated algorithm selection:
Survey and perspectives. Evolutionary Computation, 27(1):3–45, 2019.

A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian optimization of
machine learning hyperparameters on large datasets. In Proc. of AISTATS’17, 2017a.

A. Klein, S. Falkner, J. Springenberg, and F. Hutter. Learning curve prediction with
Bayesian neural networks. In Proc. of ICLR’17, 2017b.

R. Kleinberg, K. Leyton-Brown, and B. Lucier. Efficiency through procrastination: Approx-
imately optimal algorithm configuration with runtime guarantees. In Proc. of IJCAI’17,
pages 2023–2031, 2017.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In Proc. of IJCAI’95, pages 1137–1143, 1995.

R. Kohavi and G. John. Automatic Parameter Selection by Minimizing Estimated Error.
In Proc. of ICML’95, pages 304–312. 1995.

B. Komer, J. Bergstra, and C. Eliasmith. Hyperopt-sklearn: Automatic hyperparameter
configuration for scikit-learn. In ICML Workshop on AutoML, 2014.

L. Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI Magazine,
35(3):48–60, 2014.

L. Kotthoff, C. Thornton, H. Hoos, F. Hutter, and K. Leyton-Brown. Auto-WEKA: au-
tomatic model selection and hyperparameter optimization in WEKA. In Hutter et al.
(2019), pages 81–95. Available for free at http://automl.org/book.

J. Krarup and P. Pruzan. The simple plant location problem: Survey and synthesis. Euro-
pean Journal of Operations Research, 12:36–81, 1983.

A. Krause and D. Golovin. Submodular function maximization. In L. Bordeaux, Y. Hamadi,
and P. Kohli, editors, Tractability: Practical Approaches to Hard Problems, pages 71–104.
Cambridge University Press, 2014.

A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos. Efficient sensor
placement optimization for securing large water distribution networks. JWRPM, 134:
516–526, 2008.

37

Feurer, Eggensperger, Falkner, Lindauer and Hutter

G. Kurtzer, V. Sochat, and M. Bauer. Singularity: Scientific containers for mobility of
compute. PloS one, 12(5), 2017.

E. LeDell and S. Poirier. H2o automl: Scalable automatic machine learning. In ICML W
on AautoML, 2020.

R. Leite, P. Brazdil, and J. Vanschoren. Selecting classification algorithms with active
testing. In Proc. of MLDM, pages 117–131, 2013.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. JMLR, 18(185):1–52, 2018.

M. Lindauer, H. Hoos, F. Hutter, and T. Schaub. Autofolio: An automatically configured
algorithm selector. JAIR, 53:745–778, 2015.

M. Lindauer, K. Eggensperger, M. Feurer, S. Falkner, A. Biedenkapp, and F. Hutter. Smac
v3: Algorithm configuration in python. https://github.com/automl/SMAC3, 2017a.

M. Lindauer, H. Hoos, K. Leyton-Brown, and T. Schaub. Automatic construction of parallel
portfolios via algorithm configuration. AIJ, 244:272–290, 2017b.

S. Liu, P. Ram, D. Vijaykeerthy, D. Bouneffouf, G. Bramble, H. Samulowitz, D. Wang,
A. Conn, and A. Gray. An ADMM based framework for automl pipeline configuration. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages 4892–4899. AAAI Press, 2020.

Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann. Parallel SAT solver selection
and scheduling. In Proc. of CP’12, pages 512–526, 2012.

W. McKinney. Data structures for statistical computing in Python. In Proceedings of the
9th Python in Science Conference, pages 51–56, 2010.

H. Mendoza, A. Klein, M. Feurer, J. Springenberg, and F. Hutter. Towards automatically-
tuned neural networks. In ICML 2016 AutoML Workshop, 2016.

H. Mendoza, A. Klein, M. Feurer, J. Springenberg, M. Urban, M. Burkart, M. Dippel,
M. Lindauer, and F. Hutter. Towards automatically-tuned deep neural networks. In
Hutter et al. (2019), pages 135–149. Available for free at http://automl.org/book.

D. Merkel. Docker: lightweight linux containers for consistent development and deployment.
Linux journal, 2014(239), 2014.

L. Metz, N. Maheswaranathan, R. Sun, C. Freeman, B. Poole, and J. Sohl-Dickstein. Using a
thousand optimization tasks to learn hyperparameter search strategies. arXiv:2002.11887
[cs.LG], 2020.

F. Mohr, M. Wever, and E. Hüllermeier. ML-Plan: Automated machine learning via hier-
archical planning. Machine Learning, 107(8-10):1495–1515, 2018.

38

https://github.com/automl/SMAC3

Auto-sklearn 2.0

H. Moss, D. Leslie, and P. Rayson. MUMBO: Multi-task max-value Bayesian optimization.
In Proc. of ECML/PKDD’20, 2020.

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing
submodular set functions. Mathematical Programming, 14(1):265–294, 1978.

A. Niculescu-Mizil, C. Perlich, G. Swirszcz, V. Sindhwani, Y. Liu, P. Melville, D. Wang,
J. Xiao, J. Hu, M. Singh, W. Shang, and Y. Zhu. Winning the KDD cup orange challenge
with ensemble selection. In Proceedings of KDD-Cup 2009 Competition, volume 7, pages
23–34, 2009.

R. Olson and J. Moore. TPOT: A tree-based pipeline optimization tool for automat-
ing machine learning. In Hutter et al. (2019), pages 151–160. Available for free at
http://automl.org/book.

R. Olson, N. Bartley, R. Urbanowicz, and J. Moore. Evaluation of a Tree-based Pipeline
Optimization Tool for Automating Data Science. In Proc. of GECCO’16, pages 485–492,
2016a.

R. Olson, R. Urbanowicz, P. Andrews, N. Lavender, L. Kidd, and J. Moore. Automating
biomedical data science through tree-based pipeline optimization. In Proc. of EvoAppli-
cations’16, pages 123–137, 2016b.

L. Parmentier, O. Nicol, L. Jourdan, and M. Kessaci. Tpot-sh: A faster optimization
algorithm to solve the automl problem on large datasets. In Proc. of ICTAI’19, pages
471–478, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
JMLR, 12:2825–2830, 2011.

F. Pfisterer, J. van Rijn, P. Probst, A. Müller, and B. Bischl. Learning multiple defaults
for machine learning algorithms. arXiv:1811.09409 [stat.ML] , 2018.

M. Poloczek, J. Wang, and P. Frazier. Multi-Information Source Optimization. In Proc. of
NeurIPS’17, pages 4288–4298, 2017.

H. Rakotoarison, M. Schoenauer, and M. Sebag. Automated machine learning with Monte-
Carlo tree search. In Proc of. IJCAI’19, pages 3296–3303, 2019.

S. Ramage. Advances in meta-algorithmic software libraries for distributed automated
algorithm configuration. PhD thesis, University of British Columbia, 2015. URL
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0167184.

S. Raschka. Model evaluation, model selection, and algorithm selection in machine learning.
arXiv:1811.12808 [stat.ML], 2018.

M. Reif, F. Shafait, and A. Dengel. Meta-learning for evolutionary parameter optimization
of classifiers. Machine Learning, 87:357–380, 2012.

39

https://open.library.ubc.ca/collections/ubctheses/24/items/1.0167184

Feurer, Eggensperger, Falkner, Lindauer and Hutter

J. Reunanen. Model selection and assessment using cross-indexing. In Proc. of IJCNN’07,
pages 2581–2585. IEEE, 2007.

J. Seipp, S. Sievers, M. Helmert, and F. Hutter. Automatic configuration of sequential
planning portfolios. In Proc. of AAAI’15, 2015.

K. Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm selection.
ACM, 41(1), 2008.

C. Soares and P. Brazdil. Zoomed ranking: Selection of classification algorithms based on
relevant performance information. In Proc. of PKDD’00, pages 126–135. 2000.

Q. Sun, B. Pfahringer, and M. Mayo. Towards a Framework for Designing Full Model
Selection and Optimization Systems. In Multiple Classifier Systems, volume 7872, pages
259–270. Springer-Verlag, 2013.

K. Swersky, J. Snoek, and R. Adams. Multi-task Bayesian optimization. In Proc. of
NeurIPS’13, pages 2004–2012, 2013.

K. Swersky, J. Snoek, and R. Adams. Freeze-thaw Bayesian optimization. arXiv:1406.3896
[stats.ML], 2014.

S. Takeno, H. Fukuoka, Y. Tsukada, T. Koyama, M. Shiga, I. Takeuchi, and M. Kara-
suyama. Multi-fidelity Bayesian optimization with max-value entropy search and its
parallelization. In Proc. of ICML’20, pages 9334–9345, 2020.

C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: combined selection
and hyperparameter optimization of classification algorithms. In Proc. of KDD’13, pages
847–855, 2013.

A. Tornede, M. Wever, and E. Hüllermeier. Extreme algorithm selection with dyadic feature
representation. arXiv:2001.10741 [cs.LG], 2020.

I. Tsamardinos, E. Greasidou, and G. Borboudakis. Bootstrapping the out-of-sample pre-
dictions for efficient and accurate cross-validation. Machine Learning, 107(12):1895–1922,
2018.

J. Vanschoren. Meta-learning. In Hutter et al. (2019), pages 35–61. Available for free at
http://automl.org/book.

J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine
learning. SIGKDD Explor. Newsl., 15(2):49–60, 2014.

V. Vapnik. Principles of risk minimization for learning theory. In Proc. of NeurIPS’91,
1991.

P. Virtanen, R. Gommers, T. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. van der Walt, M. Brett, J. Wilson,
K. Millman, N. Mayorov, A. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat,
Y. Feng, E. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,

40

Auto-sklearn 2.0

E. Quintero, C. Harris, A. Archibald, A. Ribeiro, F. Pedregosa, P. van Mulbregt, and
SciPy 1.0 contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272, 2020.

F. Winkelmolen, N. Ivkin, H. Bozkurt, and Z. Karnin. Practical and sample efficient zero-
shot HPO. arXiv:2007.13382 [stat.ML], 2020.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Learning hyperparameter optimization
initializations. In Proc. of DSAA’15, pages 1–10, 2015a.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Sequential Model-Free Hyperparameter
Tuning. In Proc. of ICDM ’15, pages 1033–1038, 2015b.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Automatic Frankensteining: Creating
Complex Ensembles Autonomously. In Proc. of SDM’17, pages 741–749, 2017.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Scalable Gaussian process-based transfer
surrogates for hyperparameter optimization. Machine Learning, 107(1):43–78, 2018.

J. Wu, S. Toscano-Palmerin, P. Frazier, and A. Wilson. Practical multi-fidelity Bayesian
optimization for hyperparameter tuning. In Proc. of UAI’20, volume 115, pages 788–798,
2020.

L. Xu, H. Hoos, and K. Leyton-Brown. Hydra: Automatically configuring algorithms for
portfolio-based selection. In Proc. of AAAI’10, pages 210–216, 2010.

L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. Hydra-MIP: Automated algorithm
configuration and selection for mixed integer programming. In Proc. of RCRA workshop
at IJCAI, 2011.

C. Yang, J. Akimoto, D. Kim, and M. Udell. OBOE: Collaborative filtering for AutoML
model selection. In Proc. of KDD’19, pages 1173–1183, 2019.

C. Yang, J. Fan, Z. Wu, and M. Udell. AutoML pipeline selection: Efficiently navigating
the combinatorial space. In Proc. of KDD’20, pages 1446–1456, 2020.

Y. Zhang, M. Bahadori, H. Su, and J. Sun. FLASH: Fast Bayesian Optimization for Data
Analytic Pipelines. In Proc. of KDD’16, pages 2065–2074, 2016.

L. Zimmer, M. Lindauer, and F. Hutter. Auto-Pytorch: Multi-fidelity metalearning for
efficient and robust AutoDL. TPAMI, pages 1–1, 2021.

41

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Appendix A. Additional pseudo-code

We give pseudo-code for computing the estimated generalization error of P across all meta-
datasets Dmeta for K-folds cross-validation in Algorithm 2 and successive halving in Algo-
rithm 3.

Algorithm 2: Estimating the generalization error of a portfolio with K-Fold Cross-
Validation

1: Input: Ordered set of ML pipelines P, datasets Dmeta, number of folds K,
2: L = 0
3: for d ∈ (1, 2, . . . , |Dmeta|) do
4: ld =∞
5: for p ∈ P do
6: l = 0
7: for k ∈ (1, 2, . . . ,K) do

8: l = l +GE
∧

(MD
(train,k)
train

λ ,D(val,k)
train)

9: end for
10: l = l/K
11: if l < ld then
12: ld = l
13: end if
14: end for
15: L = L+ ld
16: end for
17: return L/|Dmeta|

Appendix B. Additional results and experiments

In this section we will give additional results backing up our findings. Concretely, we will
give further details on the reduced search space and provide further experimental evidence,
we will provide the main results from the main paper without post-hoc ensembles, and we
will give the raw numbers before averaging.

B.1 Early Stopping and Retrieving Intermittent Results

Estimating the generalization error of a pipeline Mλ practically requires to restrict the
CPU-time per evaluation to prevent that one single, very long algorithm run stalls the
optimization procedure (Thornton et al., 2013; Feurer et al., 2015a). If an algorithm does
not return a result within the assigned time limit, it is terminated and the worst possible
generalization error is assigned. If the time limit is set too low, a majority of the algorithms
do not return a result and thus provide very scarce information for the optimization pro-
cedure. A too high time limit, however, might as well not return any meaningful results
since all time may be spent on long-running, under-performing pipelines. Additionally,
for iterative algorithms (e.g., gradient boosting and linear models trained with stochastic

42

Auto-sklearn 2.0

Algorithm 3: Estimating the generalization error of a portfolio with Successive
Halving

1: Input: Ordered set of ML pipelines P, datasets Dmeta, minimal budget bmin,
maximal budget bmax, downsampling rate η

2: L =∞
3: R = bmax/bmin
4: smax = blogη(R)c
5: B = (smax + 1)R
6: n = dBR

ηsmax

(smax+1)e
7: r = Rη−smax

8: for d ∈ (1, 2, . . . , |Dmeta|) do
9: ld =∞

10: Pd = P
11: while True do
12: P ′ = P.pop(r) # Pop top r machine learning pipelines
13: l = []
14: for i ∈ (0, . . . , smax) do
15: ni = bnη−ic
16: ri = rηi

17: for p ∈ P ′ do

18: l = GE
∧

(MD
train
train

λ ,Dval
train)

19: l = l ∪ l
20: if l < ld then
21: ld = l
22: end if
23: end for
24: P ′ = top(P ′, l, b(ni/eta)c), where top(P, l, k) returns the top k performing

machine learning pipelines.
25: end for
26: if |Pd| == 0 then
27: break
28: end if
29: end while
30: L = L+ ld
31: end for
32: return L/|Dmeta|

43

Feurer, Eggensperger, Falkner, Lindauer and Hutter

10 STD 10 60 STD 60

(1) Auto-sklearn (1.0) 16.21 0.27 7.17 0.30
(2) Auto-sklearn (1.0) ISS 18.10 0.13 9.57 0.22
(3) Auto-sklearn (1.0) ISS + IRR 5.29 0.13 3.98 0.21
(4) Auto-sklearn (1.0) ISS + IRR + Port 3.70 0.14 3.08 0.13

Table 9: Comparison of Auto-sklearn 1.0 (1) with using only the iterative search space (2),
using the iterative search space and iterative results retrieval (3) and also using a
portfolio (4).

gradient descent), it is important to set the number of iterations such that the training
converges and does not overfit, but most importantly finishes within this timelimit. Setting
this number too high (training exceeds time limit and/or overfit) or too low (training has
not yet converged although there is time left) has detrimental effects to the final perfor-
mance of the AutoML system. To mitigate this risk we implemented two measures for
iterative algorithms. Firstly, we use the early stopping mechanisms implemented by scikit-
learn. Specifically, training stops if the loss on the training or validation set (depending on
the model and the configuration) increases or stalls, which prevents overfitting (i.e. early
stopping). Secondly, we make use of intermittent results retrieval, e.g., saving the results
at checkpoints spaced at geometrically increasing iteration numbers, thereby ensuring that
every evaluation of an iterative algorithm returns a performance and thus yields information
for the optimizer. With this, our AutoML tool can robustly tackle large datasets without
the necessity to finetune the number of iterations dependent on the time limit.

To study the effect of using the iterative results retrieval we compare Auto-sklearn 1.0
we one by one make the following changes: 1) move to a configuration space which consists
only of iterative algorithms 2) enable intermittent results retrieval and 3) replace the KND
by the portfolio. We give results in Table 9 and note that the KND uses meta-data gathered
specifically for use with the reduced configuration space. Only restricting the configuration
space leads to decreased performance which we attribute to the reduced hypothesis space.
Intermittently writing results to disk reduces the amount of failures, and using a portfolio
instead of the KND results in the best overall performance.

Once again, we also view the results through the eyes of a ranking plot in Figure 6.
These results demonstrate that the iterative search space combined with intermittent results
retrieval and a portfolio is especially dominating in the short term, and it takes a total of
50 minutes for Auto-sklearn 1.0 to catch up. We would like to note that the performance of
Auto-sklearn 2.0 is even better as can be seen in Table 4, but it would be interesting to see
how a portfolio of the full configuration space would perform, which we note as a further
research question.

B.2 Performance Without Post-Hoc Ensembling

We first give numbers comparing only Bayesian optimization, k-nearest datasets (KND)
and a greedy portfolio. These results are similar to Table 2, but do not show the results of
post-hoc ensembling, but using the single best model. Overall, they are qualitatively very

44

Auto-sklearn 2.0

0 10 20 30 40 50 60
time [min]

1.8
2.0
2.2
2.4
2.6
2.8
3.0

av
er

ag
e

ra
nk

Auto-sklearn (1.0)
Auto-sklearn (1.0) ISS
Auto-sklearn (1.0) ISS + IRR
Auto-sklearn (1.0) ISS + IRR + Port

Figure 6: Ranking plot comparing Auto-sklearn 1.0 (1) with using only the iterative search
space (2), using the iterative search space and iterative results retrieval (3) and
also using a portfolio (4).

10 minutes 60 minutes
BO KND Port BO KND Port

holdout 7.27 6.43 4.76 4.58 4.99 4.02
SH; holdout 6.61 6.70 5.76 4.70 4.63 3.97
3CV 9.58 8.95 7.88 7.10 7.12 5.98
SH; 3CV 8.88 8.97 7.20 6.81 6.47 6.01
5CV 10.48 15.24 13.77 7.34 7.47 5.66
SH; 5CV 11.70 13.29 8.06 7.05 6.69 5.93
10CV 23.20 27.45 18.73 17.59 17.47 16.17
SH; 10CV 23.98 27.70 18.84 16.94 16.98 16.07

Table 10: Results from Table 2 without post-hoc ensembles.

similar, but it can be observed that the ensemble improves the average normalized balanced
error rate in every case.

Next, we compare Auto-sklearn 2.0 with PoSH Auto-sklearn and Auto-sklearn 1.0 , but
again only show the performance of the single best model and not of an ensemble as in
the main paper. Again, the ensemble result in uniform performance improvements with
Auto-sklearn 2.0 still leading in terms of performance.

45

Feurer, Eggensperger, Falkner, Lindauer and Hutter

10MIN 60MIN
∅ std ∅ std

Auto-sklearn (2.0) 5.01 0.18 3.18 0.31
PoSH-Auto-sklearn 5.76 0.12 3.97 0.22
Auto-sklearn (1.0) 23.24 0.29 8.68 0.21

Table 11: Results from Table 4 without post-hoc ensembles.

B.3 Unaggregated results

To allow the readers to asses the performance of the individual methods on the individual
datasets we present the balanced error rates before normalizing and averaging them. We
give the raw results for portfolios from Table 2 in Tables 12 and 13. Additionally, we give
the raw results for Auto-sklearn 2.0 , PoSH Auto-sklearn and Auto-sklearn 1.0 in Tables 14
and 15.

Appendix C. Theoretical properties of the greedy algorithm

C.1 Definitions

Definition 1 (Discrete derivative, from Krause & Golovin (Krause and Golovin, 2014))
For a set function f : 2V → R,S ⊆ V and e ∈ V let ∆f (e|S) = f(S ∪ {e}) − f(S) be the
discrete derivative of f at S with respect to e.

Definition 2 (Submodularity, from Krause & Golovin (Krause and Golovin, 2014)): A
function f : 2V → R is submodular if for every A ⊆ B ⊆ V and e ∈ V \ B it holds that
∆f (e|A) ≥ ∆f (e|B).

Definition 3 (Monotonicity, from Krause & Golovin (Krause and Golovin, 2014)): A
function f : 2V → R is monotone if for every A ⊆ B ⊆ V, f(A) ≤ f(B).

C.2 Choosing on the test set

In this section we give a proof of Proposition 1 from the main paper:

Proposition 2 Minimizing the test loss of a portfolio P on a set of datasets D1, . . . ,D|Dmeta|,
when choosing a ML pipeline from P for Dd based on performance on Dd,test, is equivalent
to the sensor placement problem for minimizing detection time (Krause et al., 2008).

Following Krause et al. (Krause et al., 2008), sensor set placement aims at maximizing
a so-called penalty reduction R(A) =

∑
i∈I P (i)R(A, i), where I are intrusion scenarios

following a probability distribution P with i being a specific intrusion. A ⊂ C is a sensor
placement, a subset of all possible locations C where sensors are actually placed. Penalty
reduction R is defined as the reduction of the penalty when choosing A compared to the
maximum penalty possible on scenario i: R(A, i) = penaltyi(∞) − penaltyi(T (A, i)). In
the simplest case where action is taken upon intrusion detection, the penalty is equal to the

46

Auto-sklearn 2.0

Task ID Name holdout SH; holdout 3CV SH; 3CV 5CV SH; 5CV 10CV SH; 10CV

167104 Australian 0.1721 0.1569 0.1622 0.1617 0.1583 0.1602 0.1556 0.1559
167184 blood-transfusion 0.3641 0.3610 0.3725 0.3666 0.3689 0.3722 0.3674 0.3689
167168 vehicle 0.2211 0.2267 0.2017 0.2093 0.2172 0.2052 0.2310 0.1870
167161 credit-g 0.2942 0.2841 0.2939 0.2955 0.2942 0.2911 0.2939 0.2934
167185 cnae-9 0.0658 0.0680 0.0651 0.0616 0.0550 0.0629 0.0626 0.0553
189905 car 0.0049 0.0049 0.0097 0.0029 0.0047 0.0017 0.0023 0.0009
167152 mfeat-factors 0.0152 0.0164 0.0141 0.0107 0.0150 0.0117 0.0153 0.0149
167181 kc1 0.2735 0.2688 0.2720 0.2713 0.2547 0.2660 0.2477 0.2719
189906 segment 0.0666 0.0687 0.0681 0.0620 0.0664 0.0621 0.0643 0.0671
189862 jasmine 0.2044 0.2051 0.1982 0.1986 0.2010 0.2027 0.2043 0.2027
167149 kr-vs-kp 0.0067 0.0077 0.0093 0.0085 0.0079 0.0078 0.0071 0.0080
189865 sylvine 0.0592 0.0594 0.0600 0.0608 0.0582 0.0582 0.0560 0.0578
167190 phoneme 0.1231 0.1245 0.1168 0.1160 0.1152 0.1136 0.1129 0.1144
189861 christine 0.2670 0.2621 0.2608 0.2556 0.2517 0.2567 0.2587 0.2645
189872 fabert 0.3387 0.3399 0.3140 0.3120 0.3096 0.3204 0.3180 0.3172
189871 dilbert 0.0241 0.0248 0.0258 0.0220 0.0191 0.0211 0.0303 0.0647
168794 robert 0.5489 0.5861 0.5762 0.5583 0.5854 0.5873 0.6230 0.6230
168797 riccardo 0.0035 0.0052 0.0067 0.0054 0.0027 0.0027 0.5000 0.5000
168796 guillermo 0.2186 0.2102 0.2311 0.2228 0.2165 0.2837 0.5000 0.5000
75097 Amazon 0.2361 0.2431 0.2526 0.2526 0.2379 0.2385 0.2448 0.2443

126026 nomao 0.0353 0.0381 0.0360 0.0345 0.0312 0.0331 0.0403 0.0401
189909 jungle chess 0.1212 0.1251 0.1232 0.1156 0.1280 0.1180 0.1134 0.1141
126029 bank-marketing 0.1397 0.1436 0.1402 0.1407 0.1352 0.1435 0.1378 0.1362
126025 adult 0.1579 0.1575 0.1553 0.1540 0.1591 0.1562 0.1545 0.1585
75105 KDDCup09 0.2450 0.2495 0.2449 0.2512 0.2525 0.2487 0.2497 0.2456

168795 shuttle 0.0093 0.0086 0.0085 0.0084 0.0085 0.0087 0.0088 0.0084
168793 volkert 0.3735 0.3724 0.3939 0.3703 0.3720 0.3775 0.3867 0.3957
189874 helena 0.7483 0.7624 0.7475 0.7478 0.7483 0.7534 0.7476 0.7575
167201 connect-4 0.2629 0.2721 0.2653 0.2630 0.2537 0.2565 0.3003 0.2771
189908 Fashion-MNIST 0.1050 0.1098 0.1217 0.1195 0.1181 0.1153 0.1437 0.1437
189860 APSFailure 0.0384 0.0402 0.0355 0.0364 0.0355 0.0354 0.0410 0.0455
168792 jannis 0.3654 0.3685 0.3648 0.3655 0.3651 0.3567 0.3912 0.3881
167083 numerai28.6 0.4776 0.4765 0.4752 0.4749 0.4747 0.4775 0.4789 0.4788
167200 higgs 0.2736 0.2764 0.2730 0.2742 0.2724 0.2744 0.2832 0.2844
168798 MiniBooNE 0.0581 0.0589 0.0691 0.0633 0.0585 0.0644 0.0691 0.0685
189873 dionis 0.1172 0.1205 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
189866 albert 0.3135 0.3171 0.3469 0.3277 0.5000 0.3354 0.3714 0.3703
75127 airlines 0.3423 0.3424 0.3450 0.3384 0.3419 0.3429 0.3408 0.3456
75193 covertype 0.0568 0.0564 0.0683 0.0600 0.0548 0.0556 0.2519 0.2527

Table 12: Results from Table 2 for 10 minutes using portfolios. Numbers are the balanced
error rate. We boldface the lowest error.

47

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Task ID Name holdout SH; holdout 3CV SH; 3CV 5CV SH; 5CV 10CV SH; 10CV

167104 Australian 0.1742 0.1674 0.1623 0.1626 0.1598 0.1608 0.1625 0.1557
167184 blood-transfusion 0.3648 0.3618 0.3631 0.3641 0.3689 0.3692 0.3684 0.3692
167168 vehicle 0.2125 0.2344 0.1702 0.1944 0.1657 0.1960 0.1959 0.2151
167161 credit-g 0.2922 0.2895 0.3035 0.2957 0.3056 0.2978 0.3008 0.2931
167185 cnae-9 0.0733 0.0761 0.0560 0.0616 0.0537 0.0536 0.0675 0.0518
189905 car 0.0036 0.0013 0.0037 0.0098 0.0007 0.0012 0.0008 0.0010
167152 mfeat-factors 0.0169 0.0186 0.0130 0.0117 0.0139 0.0132 0.0151 0.0122
167181 kc1 0.2728 0.2739 0.2680 0.2724 0.2678 0.2804 0.2546 0.2576
189906 segment 0.0708 0.0692 0.0647 0.0635 0.0588 0.0596 0.0621 0.0613
189862 jasmine 0.2048 0.2049 0.1995 0.1989 0.1995 0.1976 0.1995 0.1980
167149 kr-vs-kp 0.0060 0.0080 0.0081 0.0068 0.0064 0.0068 0.0055 0.0053
189865 sylvine 0.0590 0.0591 0.0584 0.0587 0.0577 0.0578 0.0573 0.0573
167190 phoneme 0.1222 0.1237 0.1152 0.1155 0.1111 0.1130 0.1117 0.1105
189861 christine 0.2673 0.2666 0.2575 0.2584 0.2532 0.2575 0.2549 0.2588
189872 fabert 0.3381 0.3319 0.3099 0.3097 0.3119 0.3080 0.3027 0.3071
189871 dilbert 0.0200 0.0200 0.0132 0.0146 0.0185 0.0209 0.0212 0.0149
168794 robert 0.5273 0.5199 0.5238 0.5183 0.5456 0.5605 0.5652 0.5407
168797 riccardo 0.0029 0.0016 0.0018 0.0019 0.0025 0.0076 0.5000 0.5000
168796 guillermo 0.2012 0.2025 0.2057 0.2081 0.2100 0.2039 0.5000 0.5000
75097 Amazon 0.2376 0.2394 0.2338 0.2381 0.2431 0.2384 0.2312 0.2324

126026 nomao 0.0352 0.0353 0.0334 0.0331 0.0320 0.0327 0.0313 0.0319
189909 jungle chess 0.1214 0.1221 0.1154 0.1172 0.1171 0.1153 0.1108 0.1141
126029 bank-marketing 0.1388 0.1398 0.1380 0.1392 0.1382 0.1382 0.1370 0.1380
126025 adult 0.1546 0.1541 0.1550 0.1540 0.1550 0.1550 0.1539 0.1538
75105 KDDCup09 0.2492 0.2461 0.2477 0.2532 0.2466 0.2488 0.2617 0.2485

168795 shuttle 0.0136 0.0107 0.0125 0.0093 0.0084 0.0063 0.0127 0.0087
168793 volkert 0.3600 0.3673 0.3449 0.3551 0.3496 0.3487 0.3581 0.3563
189874 helena 0.7449 0.7494 0.7331 0.7369 0.7407 0.7404 0.7562 0.7452
167201 connect-4 0.2539 0.2556 0.2382 0.2428 0.2370 0.2373 0.2416 0.2369
189908 Fashion-MNIST 0.1010 0.0971 0.1046 0.1066 0.1102 0.1105 0.1191 0.1075
189860 APSFailure 0.0362 0.0374 0.0345 0.0364 0.0372 0.0347 0.0343 0.0334
168792 jannis 0.3670 0.3638 0.3589 0.3576 0.3584 0.3565 0.3473 0.3572
167083 numerai28.6 0.4765 0.4763 0.4774 0.4770 0.4750 0.4767 0.4755 0.4743
167200 higgs 0.2712 0.2734 0.2718 0.2680 0.2696 0.2680 0.2701 0.2683
168798 MiniBooNE 0.0576 0.0583 0.0560 0.0536 0.0571 0.0565 0.0560 0.0608
189873 dionis 0.0961 0.1068 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
189866 albert 0.3116 0.3168 0.3170 0.3172 0.3094 0.3199 0.3183 0.3186
75127 airlines 0.3403 0.3410 0.3375 0.3401 0.3388 0.3390 0.3398 0.3399
75193 covertype 0.0537 0.0519 0.0496 0.0496 0.0454 0.0461 0.0458 0.0459

Table 13: Results from Table 2 for 60 minutes using portfolios. Numbers are the balanced
error rate. We boldface the lowest error.

48

Auto-sklearn 2.0

Task ID Name Auto-sklearn (2.0) PoSH-Auto-sklearn Auto-sklearn (1.0)

167104 Australian 0.1617 0.1569 0.1628
167184 blood-transfusion 0.3694 0.3610 0.3534
167168 vehicle 0.2030 0.2267 0.1654
167161 credit-g 0.2903 0.2841 0.2951
167185 cnae-9 0.0635 0.0680 0.0674
189905 car 0.0015 0.0049 0.0057
167152 mfeat-factors 0.0123 0.0164 0.0185
167181 kc1 0.2707 0.2688 0.2301
189906 segment 0.0646 0.0687 0.0624
189862 jasmine 0.2020 0.2051 0.1989
167149 kr-vs-kp 0.0086 0.0077 0.0089
189865 sylvine 0.0597 0.0594 0.0583
167190 phoneme 0.1158 0.1245 0.1257
189861 christine 0.2562 0.2621 0.2666
189872 fabert 0.3250 0.3399 0.3323
189871 dilbert 0.0240 0.0248 0.0066
168794 robert 0.5861 0.5861 0.6545
168797 riccardo 0.0052 0.0052 0.5000
168796 guillermo 0.2102 0.2102 0.5000
75097 Amazon 0.2435 0.2431 0.2610

126026 nomao 0.0336 0.0381 0.0383
189909 jungle chess 0.1205 0.1251 0.1231
126029 bank-marketing 0.1402 0.1436 0.1412
126025 adult 0.1547 0.1575 0.1608
75105 KDDCup09 0.2460 0.2495 0.2863

168795 shuttle 0.0084 0.0086 0.0111
168793 volkert 0.3717 0.3724 0.4233
189874 helena 0.7493 0.7624 0.9157
167201 connect-4 0.2642 0.2721 0.2809
189908 Fashion-MNIST 0.1070 0.1098 0.1383
189860 APSFailure 0.0372 0.0402 0.0370
168792 jannis 0.3654 0.3685 0.3637
167083 numerai28.6 0.4753 0.4765 0.4774
167200 higgs 0.2746 0.2764 0.2777
168798 MiniBooNE 0.0603 0.0589 0.0622
189873 dionis 0.1205 0.1205 0.6731
189866 albert 0.3171 0.3171 0.4407
75127 airlines 0.3404 0.3424 0.3536
75193 covertype 0.0564 0.0564 0.8571

Table 14: Results from Table 4 for 10 minutes. Numbers are the balanced error rate. We
boldface the lowest error.

49

Feurer, Eggensperger, Falkner, Lindauer and Hutter

Task ID Name Auto-sklearn (2.0) PoSH-Auto-sklearn Auto-sklearn (1.0)

167104 Australian 0.1562 0.1674 0.1658
167184 blood-transfusion 0.3669 0.3618 0.3572
167168 vehicle 0.2187 0.2344 0.1822
167161 credit-g 0.2980 0.2895 0.3004
167185 cnae-9 0.0566 0.0761 0.0620
189905 car 0.0038 0.0013 0.0043
167152 mfeat-factors 0.0126 0.0186 0.0136
167181 kc1 0.2600 0.2739 0.2250
189906 segment 0.0609 0.0692 0.0697
189862 jasmine 0.1971 0.2049 0.1985
167149 kr-vs-kp 0.0060 0.0080 0.0085
189865 sylvine 0.0572 0.0591 0.0555
167190 phoneme 0.1140 0.1237 0.1235
189861 christine 0.2592 0.2666 0.2619
189872 fabert 0.3120 0.3319 0.3185
189871 dilbert 0.0163 0.0200 0.0090
168794 robert 0.5199 0.5199 0.5327
168797 riccardo 0.0016 0.0016 0.0016
168796 guillermo 0.2025 0.2025 0.1964
75097 Amazon 0.2371 0.2394 0.2481

126026 nomao 0.0323 0.0353 0.0361
189909 jungle chess 0.1145 0.1221 0.1136
126029 bank-marketing 0.1387 0.1398 0.1428
126025 adult 0.1544 0.1541 0.1574
75105 KDDCup09 0.2504 0.2461 0.2549

168795 shuttle 0.0093 0.0107 0.0109
168793 volkert 0.3563 0.3673 0.3440
189874 helena 0.7399 0.7494 0.7693
167201 connect-4 0.2408 0.2556 0.2709
189908 Fashion-MNIST 0.1023 0.0971 0.0984
189860 APSFailure 0.0343 0.0374 0.0375
168792 jannis 0.3591 0.3638 0.3641
167083 numerai28.6 0.4759 0.4763 0.4760
167200 higgs 0.2690 0.2734 0.2738
168798 MiniBooNE 0.0561 0.0583 0.0620
189873 dionis 0.1068 0.1068 0.6731
189866 albert 0.3168 0.3168 0.3143
75127 airlines 0.3394 0.3410 0.3449
75193 covertype 0.0519 0.0519 0.8571

Table 15: Results from Table 4 for 60 minutes. Numbers are the balanced error rate. We
boldface the lowest error.

50

Auto-sklearn 2.0

detection time (penaltyi(t) = t). The detection time of a sensor placement T (A, i) is simply
defined as the minimum of the detection times of its individual members: mins∈A T (s, i).

In our setting, we need to do the following replacements to find that the problems are
equivalent:

1. Intrusion scenarios I: datasets {D1, . . . ,D|Dmeta|},

2. Possible sensor locations C: set of candidate ML pipelines of our algorithm C, De-
tection time T (s ∈ A, i) on intrusion scenario i: test performance L(MC ,Dd,test) on
dataset Dd,

3. Detection time of a sensor placement T (A, i): test loss of applying portfolio P on
dataset Dd: minp∈P L(p,Dd,test)

4. Penalty function penaltyi(t): loss function L, in our case, the penalty is equal to the
loss.

5. Penalty reduction for an intrusion scenario R(A, i): the penalty reduction for success-
fully applying a portfolio P to dataset d: R(P, d) = penaltyd(∞)−minp∈P L(p,Dd,test).

10

�

C.3 Choosing on the validation set

We demonstrate that choosing an ML pipeline from the portfolio via holdout (i.e. a val-
idation set) and reporting its test performance is neither submodular nor monotone by a
simple example. To simplify notation we argue in terms of performance instead of penalty
reduction, which is equivalent.

Let B = {(5, 5), (7, 7), (10, 10)} and A = {(5, 5), (7, 7)}, where each tuple represents
the validation and test performance. For e = (8, 6) we obtain the discrete derivatives
∆f (e|A) = −1 and ∆f (e|B) = 0 which violates Definition 2. The fact that the discrete
derivative is negative violates Definition 3 because f(A) > f(A ∪ {e}).

C.4 Successive Halving

As in the previous subsection, we use a simple example to demonstrate that selecting an
algorithm via the successive halving model selection strategy is neither submodular nor
monotone. To simplify notation we argue in terms of performance instead of penalty re-
duction, which is equivalent.

Let B = {((5, 5), (8, 8)), ((5, 5), (6, 6)), ((4, 4), (5, 5))} and A = {((5, 5), (7, 7))}, where
each tuple is a learning curve of validation-, test performance tuples. For e = ((6, 5), (6, 5)),
we eliminate entries 2 and 3 from B in the first iteration of successive halving (while we
advance entries 1 and 4), and we eliminate entry 1 from A. After the second stage, the
performances are f(B) = 8 and f(A) = 5, and the discrete derivatives ∆f (e|A) = −1 and
∆f (e|B) = 0 which violates Definition 2. The fact that the discrete derivative is negative
violates Definition 3 because f(A) > f(A ∪ {e}).
10. This would be the general case for a metric with no upper bound. In case of metrics such as the

misclassification error, the maximal penalty would be 1.

51

Feurer, Eggensperger, Falkner, Lindauer and Hutter

C.5 Further equalities

In addition, our problem can also be phrased as a facility location problem (Krarup and
Pruzan, 1983) and statements about the facility location problem can be applied to our
problem setup as well.

Appendix D. Implementation Details

D.1 Software

We implemented the AutoML systems and experiments in the Python3 programming lan-
guage, using numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), scikit-learn (Pe-
dregosa et al., 2011), pandas (McKinney, 2010), and matplotlib (Hunter, 2007).

D.2 Configuration Space

We give the configuration space we use in Auto-sklearn 2.0 in Table 16.

D.3 Successive Halving hyperparameters

We used the same hyperparameters for all experiments. First, we set to eta = 4. Next, we
had to choose the minimal and maximal budgets assigned to each algorithm. For the tree-
based methods we chose to go from 32 to 512, while for the linear models (SGD and passive
aggressive) we chose 64 as the minimal budget and 1024 as the maximal budget. Further
tuning these hyperparameters would be an interesting, but an expensive way forward.

Appendix E. Datasets

We give the name, OpenML dataset ID, OpenML task ID and the size of all datasets we
used in Table 17 and 18.

52

Auto-sklearn 2.0

Name Domain Default Log

Classifier (Extra Trees, Gradient Boosting, MLP, Random Forest -
Passive Aggressive, Random Forest, SGD)

Extra Trees: Bootstrap (True, False) False -
Extra Trees: Criterion (gini, entropy) gini -
Extra Trees: Max Features [0.0, 1.0] 0.5 No
Extra Trees: Min Samples Leaf [1, 20] 1 No
Extra Trees: Min Samples Split [2, 20] 2 No
Gradient Boosting: Early Stopping (off, valid, train) off -
Gradient Boosting: L2 Regularization [1e− 10, 1.0] 0.0 Yes
Gradient Boosting: Learning Rate [0.01, 1.0] 0.1 Yes
Gradient Boosting: Max Leaf Nodes [3, 2047] 31 Yes
Gradient Boosting: Min Samples Leaf [1, 200] 20 Yes
Gradient Boosting: N Iter No Change [1, 20] 10 No
Gradient Boosting: Validation Fraction [0.01, 0.4] 0.1 No
MLP: Activation (tanh, relu) relu -
MLP: Alpha [1e− 07, 0.1] 0.0001 Yes
MLP: Early Stopping (valid, train) valid -
MLP: Hidden Layer Depth [1, 3] 1 No
MLP: Learning Rate Init [0.0001, 0.5] 0.001 Yes
MLP: Num Nodes Per Layer [16, 264] 32 Yes
Passive Aggressive: C [1e− 05, 10.0] 1.0 Yes
Passive Aggressive: Average (False, True) False -
Passive Aggressive: Loss (hinge, squared hinge) hinge -
Passive Aggressive: Tol [1e− 05, 0.1] 0.0001 Yes
Random Forest: Bootstrap (True, False) True -
Random Forest: Criterion (gini, entropy) gini -
Random Forest: Max Features [0.0, 1.0] 0.5 No
Random Forest: Min Samples Leaf [1, 20] 1 No
Random Forest: Min Samples Split [2, 20] 2 No
Sgd: Alpha [1e− 07, 0.1] 0.0001 Yes
Sgd: Average (False, True) False -
Sgd: Epsilon [1e− 05, 0.1] 0.0001 Yes
Sgd: Eta0 [1e− 07, 0.1] 0.01 Yes
Sgd: L1 Ratio [1e− 09, 1.0] 0.15 Yes
Sgd: Learning Rate (optimal, invscaling, constant) invscaling -
Sgd: Loss (hinge, log, modified Huber, log -

squared hinge, perceptron)
Sgd: Penalty (l1, l2, elasticnet) l2 -
Sgd: Power T [1e− 05, 1.0] 0.5 No
Sgd: Tol [1e− 05, 0.1] 0.0001 Yes

Balancing: Strategy (none, weighting) none -
Categorical Encoding: Choice (no encoding, one hot encoding) one hot encoding -
Category Coalescence: Choice (minority coalescer, no coalescense) minority coalescer -
Category Coalescence: Minimum Fraction [0.0001, 0.5] 0.01 Yes
Imputation of missing values (mean, median, most frequent) mean -
Rescaling: Choice (Min/Max, none, normalize, Power, standardize -

Quantile, Robust, standardize)
Quantile Transformer: N Quantiles [10, 2000] 1000 No
Quantile Transformer: Output Distribution (uniform, normal) uniform -
Robust Scaler: Q Max [0.7, 0.999] 0.75 No
Robust Scaler: Q Min [0.001, 0.3] 0.25 No

Table 16: Configuration space for Auto-sklearn 2.0 using only iterative models and only
preprocessing to transform data into a format that can be usefully employed by
the different classification algorithms. The final column (log) states whether we
actually search log10(λ).

53

Feurer, Eggensperger, Falkner, Lindauer and Hutter

name tid #obs #feat #cls

OVA O. . . 75126 1545 10937 2
OVA C. . . 75125 1545 10937 2
OVA P. . . 75121 1545 10937 2
OVA E. . . 75120 1545 10937 2
OVA K. . . 75116 1545 10937 2
OVA L. . . 75115 1545 10937 2
OVA B. . . 75114 1545 10937 2
UMIST. . . 189859 575 10305 20
amazo. . . 189878 1500 10001 50
eatin. . . 189786 945 6374 7
CIFAR. . . 167204 60000 3073 10
GTSRB. . . 190156 51839 2917 43
Biore. . . 75156 3751 1777 2
hiva . . . 166996 4229 1618 2
GTSRB. . . 190157 51839 1569 43
GTSRB. . . 190158 51839 1569 43
Inter. . . 168791 3279 1559 2
micro. . . 146597 571 1301 20
Devna. . . 167203 92000 1025 46
GAMET. . . 167085 1600 1001 2
Kuzus. . . 190154 270912 785 49
mnist. . . 75098 70000 785 10
Kuzus. . . 190159 70000 785 10
isole. . . 75169 7797 618 26
har 126030 10299 562 6
madel. . . 146594 2600 501 2
KDD98. . . 211723 82318 478 2
phili. . . 189864 5832 309 2
madel. . . 189863 3140 260 2
USPS 189858 9298 257 10
semei. . . 75236 1593 257 10
GTSRB. . . 190155 51839 257 43
India. . . 211720 9144 221 8
dna 167202 3186 181 3
musk 75108 6598 170 2
Speed. . . 146679 8378 123 2
hill-. . . 146592 1212 101 2
fri c. . . 166866 500 101 2
MiceP. . . 167205 1080 82 8
meta . . . 2356 45164 75 11
ozone. . . 75225 2534 73 2
analc. . . 146576 841 71 4
kdd i. . . 166970 10108 69 2
optdi. . . 258 5620 65 10
one-h. . . 75154 1600 65 100
synth. . . 146574 600 62 6
splic. . . 275 3190 61 3
spamb. . . 273 4601 58 2
first. . . 75221 6118 52 6
fri c. . . 75180 1000 51 2
fri c. . . 166944 500 51 2
fri c. . . 166951 500 51 2
Diabe. . . 189828 101766 50 3
oil s. . . 3049 937 50 2
pol 75139 15000 49 2
tokyo. . . 167100 959 45 2
qsar-. . . 75232 1055 42 2
textu. . . 126031 5500 41 11
autoU. . . 189899 750 41 8
ailer. . . 75146 13750 41 2
wavef. . . 288 5000 41 3
cylin. . . 146600 540 40 2
water. . . 166953 527 39 2
annea. . . 232 898 39 5
mc1 75133 9466 39 2
pc4 75092 1458 38 2
pc3 75129 1563 38 2
porto. . . 211722 595212 38 2
pc2 75100 5589 37 2

name tid # obs # feat # class

satim. . . 2120 6430 37 6
Satel. . . 189844 5100 37 2
soybe. . . 271 683 36 19
cardi. . . 75217 2126 36 10
cjs 146601 2796 35 6
colle. . . 75212 1302 35 2
puma3. . . 75153 8192 33 2
Gestu. . . 75109 9873 33 5
kick 189870 72983 33 2
bank3. . . 75179 8192 33 2
wdbc 146596 569 31 2
Phish. . . 75215 11055 31 2
fars 189840 100968 30 8
hypot. . . 3044 3772 30 4
steel. . . 168785 1941 28 7
eye m. . . 189779 10936 28 3
fri c. . . 75136 1000 26 2
fri c. . . 75199 1000 26 2
wall-. . . 75235 5456 25 4
led24. . . 189841 3200 25 10
colli. . . 189845 1000 24 30
rl 189869 31406 23 2
mushr. . . 254 8124 23 2
meta 166875 528 22 2
jm1 75093 10885 22 2
pc1 75159 1109 22 2
kc2 146583 522 22 2
cpu a. . . 75233 8192 22 2
autoU. . . 75089 1000 21 2
GAMET. . . 167086 1600 21 2
GAMET. . . 167087 1600 21 2
bosto. . . 166905 506 21 2
GAMET. . . 167088 1600 21 2
GAMET. . . 167089 1600 21 2
churn. . . 167097 5000 21 2
clima. . . 167106 540 21 2
micro. . . 189875 20000 21 5
GAMET. . . 167090 1600 21 2
Traff. . . 211724 70340 21 3
ringn. . . 75234 7400 21 2
twono. . . 75187 7400 21 2
eucal. . . 2125 736 20 5
eleva. . . 75184 16599 19 2
pbcse. . . 166897 1945 19 2
baseb. . . 2123 1340 18 3
house. . . 75174 22784 17 2
colle. . . 75196 1161 17 2
BachC. . . 189829 5665 17 102
pendi. . . 262 10992 17 10
lette. . . 236 20000 17 26
spoke. . . 75178 263256 15 10
eeg-e. . . 75219 14980 15 2
wind 75185 6574 15 2
Japan. . . 126021 9961 15 9
compa. . . 211721 5278 14 2
vowel. . . 3047 990 13 11
cpu s. . . 75147 8192 13 2
autoU. . . 189900 700 13 3
autoU. . . 75118 1100 13 5
dress. . . 146602 500 13 2
senso. . . 166906 576 12 2
wine-. . . 189836 4898 12 7
wine-. . . 189843 1599 12 6
Magic. . . 75112 19020 12 2
mv 75195 40768 11 2
parit. . . 167101 1124 11 2
mofn-. . . 167094 1324 11 2
fri c. . . 75149 1000 11 2
poker. . . 340 829201 11 10

name tid #obs #feat #cls

fri c. . . 166950 500 11 2
page-. . . 260 5473 11 5
ilpd 146593 583 11 2
2dpla. . . 75142 40768 11 2
fried. . . 75161 40768 11 2
rmfts. . . 166859 508 11 2
stock. . . 166915 950 10 2
tic-t. . . 279 958 10 2
breas. . . 245 699 10 2
xd6 167096 973 10 2
cmc 253 1473 10 3
profb. . . 146578 672 10 2
diabe. . . 267 768 9 2
abalo. . . 2121 4177 9 28
bank8. . . 75141 8192 9 2
elect. . . 336 45312 9 2
kdd e. . . 166913 782 9 2
house. . . 75176 20640 9 2
nurse. . . 256 12960 9 5
kin8n. . . 75166 8192 9 2
yeast. . . 2119 1484 9 10
puma8. . . 75171 8192 9 2
analc. . . 75143 4052 8 2
ldpa 75134 164860 8 11
pm10 166872 500 8 2
no2 166932 500 8 2
LED-d. . . 146603 500 8 10
artif. . . 126028 10218 8 10
monks. . . 3055 554 7 2
space. . . 75148 3107 7 2
kr-vs. . . 75223 28056 7 18
monks. . . 3054 601 7 2
Run o. . . 167103 88588 7 2
delta. . . 75173 9517 7 2
strik. . . 166882 625 7 2
mammo. . . 3048 11183 7 2
monks. . . 3053 556 7 2
kropt. . . 2122 28056 7 18
delta. . . 75163 7129 6 2
wilt 167105 4839 6 2
fri c. . . 75131 1000 6 2
mozil. . . 126024 15545 6 2
polle. . . 75192 3848 6 2
socmo. . . 75213 1156 6 2
irish. . . 146575 500 6 2
fri c. . . 166931 500 6 2
arsen. . . 166957 559 5 2
arsen. . . 166956 559 5 2
walki. . . 75250 149332 5 22
analc. . . 146577 797 5 6
bankn. . . 146586 1372 5 2
arsen. . . 166959 559 5 2
visua. . . 75210 8641 5 2
balan. . . 241 625 5 3
arsen. . . 166958 559 5 2
volca. . . 189902 10130 4 5
skin-. . . 75237 245057 4 2
tamil. . . 189846 45781 4 20
quake. . . 75157 2178 4 2
volca. . . 189893 8654 4 5
volca. . . 189890 8753 4 5
volca. . . 189887 9989 4 5
volca. . . 189884 10668 4 5
volca. . . 189883 10176 4 5
volca. . . 189882 1515 4 5
volca. . . 189881 1521 4 5
volca. . . 189880 1623 4 5
Titan. . . 167099 2201 4 2
volca. . . 189894 1183 4 5

Table 17: Characteristics of the 208 datasets in Dmeta (first part) sorted by number of
features. We report for each dataset the name, the dataset id (as a link) and the
task id as used on OpenML.org, and furthermore the number of observations, the
number of features and the number of classes.

54

https://www.openml.org/d/1166
https://www.openml.org/t/75126
https://www.openml.org/d/1161
https://www.openml.org/t/75125
https://www.openml.org/d/1146
https://www.openml.org/t/75121
https://www.openml.org/d/1142
https://www.openml.org/t/75120
https://www.openml.org/d/1134
https://www.openml.org/t/75116
https://www.openml.org/d/1130
https://www.openml.org/t/75115
https://www.openml.org/d/1128
https://www.openml.org/t/75114
https://www.openml.org/d/41084
https://www.openml.org/t/189859
https://www.openml.org/d/1457
https://www.openml.org/t/189878
https://www.openml.org/d/1233
https://www.openml.org/t/189786
https://www.openml.org/d/40927
https://www.openml.org/t/167204
https://www.openml.org/d/41989
https://www.openml.org/t/190156
https://www.openml.org/d/4134
https://www.openml.org/t/75156
https://www.openml.org/d/1039
https://www.openml.org/t/166996
https://www.openml.org/d/41988
https://www.openml.org/t/190157
https://www.openml.org/d/41986
https://www.openml.org/t/190158
https://www.openml.org/d/40978
https://www.openml.org/t/168791
https://www.openml.org/d/1515
https://www.openml.org/t/146597
https://www.openml.org/d/40923
https://www.openml.org/t/167203
https://www.openml.org/d/40645
https://www.openml.org/t/167085
https://www.openml.org/d/41991
https://www.openml.org/t/190154
https://www.openml.org/d/554
https://www.openml.org/t/75098
https://www.openml.org/d/41982
https://www.openml.org/t/190159
https://www.openml.org/d/300
https://www.openml.org/t/75169
https://www.openml.org/d/1478
https://www.openml.org/t/126030
https://www.openml.org/d/1485
https://www.openml.org/t/146594
https://www.openml.org/d/42343
https://www.openml.org/t/211723
https://www.openml.org/d/41145
https://www.openml.org/t/189864
https://www.openml.org/d/41144
https://www.openml.org/t/189863
https://www.openml.org/d/41082
https://www.openml.org/t/189858
https://www.openml.org/d/1501
https://www.openml.org/t/75236
https://www.openml.org/d/41990
https://www.openml.org/t/190155
https://www.openml.org/d/41972
https://www.openml.org/t/211720
https://www.openml.org/d/40670
https://www.openml.org/t/167202
https://www.openml.org/d/1116
https://www.openml.org/t/75108
https://www.openml.org/d/40536
https://www.openml.org/t/146679
https://www.openml.org/d/1479
https://www.openml.org/t/146592
https://www.openml.org/d/742
https://www.openml.org/t/166866
https://www.openml.org/d/40966
https://www.openml.org/t/167205
https://www.openml.org/d/279
https://www.openml.org/t/2356
https://www.openml.org/d/1487
https://www.openml.org/t/75225
https://www.openml.org/d/458
https://www.openml.org/t/146576
https://www.openml.org/d/981
https://www.openml.org/t/166970
https://www.openml.org/d/28
https://www.openml.org/t/258
https://www.openml.org/d/1491
https://www.openml.org/t/75154
https://www.openml.org/d/377
https://www.openml.org/t/146574
https://www.openml.org/d/46
https://www.openml.org/t/275
https://www.openml.org/d/44
https://www.openml.org/t/273
https://www.openml.org/d/1475
https://www.openml.org/t/75221
https://www.openml.org/d/837
https://www.openml.org/t/75180
https://www.openml.org/d/920
https://www.openml.org/t/166944
https://www.openml.org/d/937
https://www.openml.org/t/166951
https://www.openml.org/d/4541
https://www.openml.org/t/189828
https://www.openml.org/d/311
https://www.openml.org/t/3049
https://www.openml.org/d/722
https://www.openml.org/t/75139
https://www.openml.org/d/40705
https://www.openml.org/t/167100
https://www.openml.org/d/1494
https://www.openml.org/t/75232
https://www.openml.org/d/40499
https://www.openml.org/t/126031
https://www.openml.org/d/1549
https://www.openml.org/t/189899
https://www.openml.org/d/734
https://www.openml.org/t/75146
https://www.openml.org/d/60
https://www.openml.org/t/288
https://www.openml.org/d/6332
https://www.openml.org/t/146600
https://www.openml.org/d/940
https://www.openml.org/t/166953
https://www.openml.org/d/2
https://www.openml.org/t/232
https://www.openml.org/d/1056
https://www.openml.org/t/75133
https://www.openml.org/d/1049
https://www.openml.org/t/75092
https://www.openml.org/d/1050
https://www.openml.org/t/75129
https://www.openml.org/d/42206
https://www.openml.org/t/211722
https://www.openml.org/d/1069
https://www.openml.org/t/75100
https://www.openml.org/d/182
https://www.openml.org/t/2120
https://www.openml.org/d/40900
https://www.openml.org/t/189844
https://www.openml.org/d/42
https://www.openml.org/t/271
https://www.openml.org/d/1466
https://www.openml.org/t/75217
https://www.openml.org/d/23380
https://www.openml.org/t/146601
https://www.openml.org/d/930
https://www.openml.org/t/75212
https://www.openml.org/d/752
https://www.openml.org/t/75153
https://www.openml.org/d/4538
https://www.openml.org/t/75109
https://www.openml.org/d/41162
https://www.openml.org/t/189870
https://www.openml.org/d/833
https://www.openml.org/t/75179
https://www.openml.org/d/1510
https://www.openml.org/t/146596
https://www.openml.org/d/4534
https://www.openml.org/t/75215
https://www.openml.org/d/40672
https://www.openml.org/t/189840
https://www.openml.org/d/57
https://www.openml.org/t/3044
https://www.openml.org/d/40982
https://www.openml.org/t/168785
https://www.openml.org/d/1044
https://www.openml.org/t/189779
https://www.openml.org/d/715
https://www.openml.org/t/75136
https://www.openml.org/d/903
https://www.openml.org/t/75199
https://www.openml.org/d/1497
https://www.openml.org/t/75235
https://www.openml.org/d/40677
https://www.openml.org/t/189841
https://www.openml.org/d/40971
https://www.openml.org/t/189845
https://www.openml.org/d/41160
https://www.openml.org/t/189869
https://www.openml.org/d/24
https://www.openml.org/t/254
https://www.openml.org/d/757
https://www.openml.org/t/166875
https://www.openml.org/d/1053
https://www.openml.org/t/75093
https://www.openml.org/d/1068
https://www.openml.org/t/75159
https://www.openml.org/d/1063
https://www.openml.org/t/146583
https://www.openml.org/d/761
https://www.openml.org/t/75233
https://www.openml.org/d/1547
https://www.openml.org/t/75089
https://www.openml.org/d/40646
https://www.openml.org/t/167086
https://www.openml.org/d/40647
https://www.openml.org/t/167087
https://www.openml.org/d/825
https://www.openml.org/t/166905
https://www.openml.org/d/40648
https://www.openml.org/t/167088
https://www.openml.org/d/40649
https://www.openml.org/t/167089
https://www.openml.org/d/40701
https://www.openml.org/t/167097
https://www.openml.org/d/40994
https://www.openml.org/t/167106
https://www.openml.org/d/41671
https://www.openml.org/t/189875
https://www.openml.org/d/40650
https://www.openml.org/t/167090
https://www.openml.org/d/42345
https://www.openml.org/t/211724
https://www.openml.org/d/1496
https://www.openml.org/t/75234
https://www.openml.org/d/1507
https://www.openml.org/t/75187
https://www.openml.org/d/188
https://www.openml.org/t/2125
https://www.openml.org/d/846
https://www.openml.org/t/75184
https://www.openml.org/d/802
https://www.openml.org/t/166897
https://www.openml.org/d/185
https://www.openml.org/t/2123
https://www.openml.org/d/821
https://www.openml.org/t/75174
https://www.openml.org/d/897
https://www.openml.org/t/75196
https://www.openml.org/d/4552
https://www.openml.org/t/189829
https://www.openml.org/d/32
https://www.openml.org/t/262
https://www.openml.org/d/6
https://www.openml.org/t/236
https://www.openml.org/d/1503
https://www.openml.org/t/75178
https://www.openml.org/d/1471
https://www.openml.org/t/75219
https://www.openml.org/d/847
https://www.openml.org/t/75185
https://www.openml.org/d/375
https://www.openml.org/t/126021
https://www.openml.org/d/42193
https://www.openml.org/t/211721
https://www.openml.org/d/307
https://www.openml.org/t/3047
https://www.openml.org/d/735
https://www.openml.org/t/75147
https://www.openml.org/d/1553
https://www.openml.org/t/189900
https://www.openml.org/d/1552
https://www.openml.org/t/75118
https://www.openml.org/d/23381
https://www.openml.org/t/146602
https://www.openml.org/d/826
https://www.openml.org/t/166906
https://www.openml.org/d/40498
https://www.openml.org/t/189836
https://www.openml.org/d/40691
https://www.openml.org/t/189843
https://www.openml.org/d/1120
https://www.openml.org/t/75112
https://www.openml.org/d/881
https://www.openml.org/t/75195
https://www.openml.org/d/40706
https://www.openml.org/t/167101
https://www.openml.org/d/40680
https://www.openml.org/t/167094
https://www.openml.org/d/740
https://www.openml.org/t/75149
https://www.openml.org/d/155
https://www.openml.org/t/340
https://www.openml.org/d/936
https://www.openml.org/t/166950
https://www.openml.org/d/30
https://www.openml.org/t/260
https://www.openml.org/d/1480
https://www.openml.org/t/146593
https://www.openml.org/d/727
https://www.openml.org/t/75142
https://www.openml.org/d/901
https://www.openml.org/t/75161
https://www.openml.org/d/717
https://www.openml.org/t/166859
https://www.openml.org/d/841
https://www.openml.org/t/166915
https://www.openml.org/d/50
https://www.openml.org/t/279
https://www.openml.org/d/15
https://www.openml.org/t/245
https://www.openml.org/d/40693
https://www.openml.org/t/167096
https://www.openml.org/d/23
https://www.openml.org/t/253
https://www.openml.org/d/470
https://www.openml.org/t/146578
https://www.openml.org/d/37
https://www.openml.org/t/267
https://www.openml.org/d/183
https://www.openml.org/t/2121
https://www.openml.org/d/725
https://www.openml.org/t/75141
https://www.openml.org/d/151
https://www.openml.org/t/336
https://www.openml.org/d/839
https://www.openml.org/t/166913
https://www.openml.org/d/823
https://www.openml.org/t/75176
https://www.openml.org/d/26
https://www.openml.org/t/256
https://www.openml.org/d/807
https://www.openml.org/t/75166
https://www.openml.org/d/181
https://www.openml.org/t/2119
https://www.openml.org/d/816
https://www.openml.org/t/75171
https://www.openml.org/d/728
https://www.openml.org/t/75143
https://www.openml.org/d/1483
https://www.openml.org/t/75134
https://www.openml.org/d/750
https://www.openml.org/t/166872
https://www.openml.org/d/886
https://www.openml.org/t/166932
https://www.openml.org/d/40496
https://www.openml.org/t/146603
https://www.openml.org/d/1459
https://www.openml.org/t/126028
https://www.openml.org/d/335
https://www.openml.org/t/3055
https://www.openml.org/d/737
https://www.openml.org/t/75148
https://www.openml.org/d/1481
https://www.openml.org/t/75223
https://www.openml.org/d/334
https://www.openml.org/t/3054
https://www.openml.org/d/40922
https://www.openml.org/t/167103
https://www.openml.org/d/819
https://www.openml.org/t/75173
https://www.openml.org/d/770
https://www.openml.org/t/166882
https://www.openml.org/d/310
https://www.openml.org/t/3048
https://www.openml.org/d/333
https://www.openml.org/t/3053
https://www.openml.org/d/184
https://www.openml.org/t/2122
https://www.openml.org/d/803
https://www.openml.org/t/75163
https://www.openml.org/d/40983
https://www.openml.org/t/167105
https://www.openml.org/d/799
https://www.openml.org/t/75131
https://www.openml.org/d/1046
https://www.openml.org/t/126024
https://www.openml.org/d/871
https://www.openml.org/t/75192
https://www.openml.org/d/934
https://www.openml.org/t/75213
https://www.openml.org/d/451
https://www.openml.org/t/146575
https://www.openml.org/d/884
https://www.openml.org/t/166931
https://www.openml.org/d/949
https://www.openml.org/t/166957
https://www.openml.org/d/947
https://www.openml.org/t/166956
https://www.openml.org/d/1509
https://www.openml.org/t/75250
https://www.openml.org/d/469
https://www.openml.org/t/146577
https://www.openml.org/d/1462
https://www.openml.org/t/146586
https://www.openml.org/d/951
https://www.openml.org/t/166959
https://www.openml.org/d/923
https://www.openml.org/t/75210
https://www.openml.org/d/11
https://www.openml.org/t/241
https://www.openml.org/d/950
https://www.openml.org/t/166958
https://www.openml.org/d/1536
https://www.openml.org/t/189902
https://www.openml.org/d/1502
https://www.openml.org/t/75237
https://www.openml.org/d/40985
https://www.openml.org/t/189846
https://www.openml.org/d/772
https://www.openml.org/t/75157
https://www.openml.org/d/1541
https://www.openml.org/t/189893
https://www.openml.org/d/1538
https://www.openml.org/t/189890
https://www.openml.org/d/1535
https://www.openml.org/t/189887
https://www.openml.org/d/1532
https://www.openml.org/t/189884
https://www.openml.org/d/1531
https://www.openml.org/t/189883
https://www.openml.org/d/1530
https://www.openml.org/t/189882
https://www.openml.org/d/1529
https://www.openml.org/t/189881
https://www.openml.org/d/1528
https://www.openml.org/t/189880
https://www.openml.org/d/40704
https://www.openml.org/t/167099
https://www.openml.org/d/1542
https://www.openml.org/t/189894
https.openml.org

Auto-sklearn 2.0

name tid #obs #feat #cls

rober. . . 168794 10000 7201 10
ricca. . . 168797 20000 4297 2
guill. . . 168796 20000 4297 2
dilbe. . . 189871 10000 2001 5
chris. . . 189861 5418 1637 2
cnae-. . . 167185 1080 857 9
faber. . . 189872 8237 801 7
Fashi. . . 189908 70000 785 10
KDDCu. . . 75105 50000 231 2
mfeat. . . 167152 2000 217 10
volke. . . 168793 58310 181 10
APSFa. . . 189860 76000 171 2
jasmi. . . 189862 2984 145 2
nomao. . . 126026 34465 119 2
alber. . . 189866 425240 79 2
dioni. . . 189873 416188 61 355
janni. . . 168792 83733 55 4
cover. . . 75193 581012 55 7
MiniB. . . 168798 130064 51 2
conne. . . 167201 67557 43 3

name tid #obs #feat #cls

kr-vs. . . 167149 3196 37 2
higgs. . . 167200 98050 29 2
helen. . . 189874 65196 28 100
kc1 167181 2109 22 2
numer. . . 167083 96320 22 2
credi. . . 167161 1000 21 2
sylvi. . . 189865 5124 21 2
segme. . . 189906 2310 20 7
vehic. . . 167168 846 19 4
bank-. . . 126029 45211 17 2
Austr. . . 167104 690 15 2
adult. . . 126025 48842 15 2
Amazo. . . 75097 32769 10 2
shutt. . . 168795 58000 10 7
airli. . . 75127 539383 8 2
car 189905 1728 7 4
jungl. . . 189909 44819 7 3
phone. . . 167190 5404 6 2
blood. . . 167184 748 5 2

Table 18: Characteristics of the 39 datasets in Dtest sorted by number of features. We
report for each dataset the name, the dataset id (as a link) and the task id as
used on OpenML.org, and furthermore the number of observations, the number
of features and the number of classes.

55

https://www.openml.org/d/41165
https://www.openml.org/t/168794
https://www.openml.org/d/41161
https://www.openml.org/t/168797
https://www.openml.org/d/41159
https://www.openml.org/t/168796
https://www.openml.org/d/41163
https://www.openml.org/t/189871
https://www.openml.org/d/41142
https://www.openml.org/t/189861
https://www.openml.org/d/1468
https://www.openml.org/t/167185
https://www.openml.org/d/41164
https://www.openml.org/t/189872
https://www.openml.org/d/40996
https://www.openml.org/t/189908
https://www.openml.org/d/1111
https://www.openml.org/t/75105
https://www.openml.org/d/12
https://www.openml.org/t/167152
https://www.openml.org/d/41166
https://www.openml.org/t/168793
https://www.openml.org/d/41138
https://www.openml.org/t/189860
https://www.openml.org/d/41143
https://www.openml.org/t/189862
https://www.openml.org/d/1486
https://www.openml.org/t/126026
https://www.openml.org/d/41147
https://www.openml.org/t/189866
https://www.openml.org/d/41167
https://www.openml.org/t/189873
https://www.openml.org/d/41168
https://www.openml.org/t/168792
https://www.openml.org/d/1596
https://www.openml.org/t/75193
https://www.openml.org/d/41150
https://www.openml.org/t/168798
https://www.openml.org/d/40668
https://www.openml.org/t/167201
https://www.openml.org/d/3
https://www.openml.org/t/167149
https://www.openml.org/d/23512
https://www.openml.org/t/167200
https://www.openml.org/d/41169
https://www.openml.org/t/189874
https://www.openml.org/d/1067
https://www.openml.org/t/167181
https://www.openml.org/d/23517
https://www.openml.org/t/167083
https://www.openml.org/d/31
https://www.openml.org/t/167161
https://www.openml.org/d/41146
https://www.openml.org/t/189865
https://www.openml.org/d/40984
https://www.openml.org/t/189906
https://www.openml.org/d/54
https://www.openml.org/t/167168
https://www.openml.org/d/1461
https://www.openml.org/t/126029
https://www.openml.org/d/40981
https://www.openml.org/t/167104
https://www.openml.org/d/1590
https://www.openml.org/t/126025
https://www.openml.org/d/4135
https://www.openml.org/t/75097
https://www.openml.org/d/40685
https://www.openml.org/t/168795
https://www.openml.org/d/1169
https://www.openml.org/t/75127
https://www.openml.org/d/40975
https://www.openml.org/t/189905
https://www.openml.org/d/41027
https://www.openml.org/t/189909
https://www.openml.org/d/1489
https://www.openml.org/t/167190
https://www.openml.org/d/1464
https://www.openml.org/t/167184
https.openml.org

	Introduction
	Problem Statement and Background
	Problem Statement
	Time-bounded AutoML
	Generalization of AutoML

	Part I: Portfolio Successive Halving in PoSH Auto-sklearn
	Portfolio Building
	Approach
	Theoretical Properties of the Greedy Algorithm

	Budget Allocation using Successive Halving
	Approach

	Practical Considerations and Challenge Results
	Experimental Setup
	Datasets
	Meta-data Generation
	Other Experimental Details

	Experimental Results
	Using different model selection strategies
	Using Portfolios instead of a k-nearest datasets approach

	Part II: Automating Design Decisions in AutoML
	Automated Policy Selection
	Approach

	Experimental Results
	Ablation
	Do we need per-dataset selection?
	Do we need different model selection strategies?
	Do we still need to warm-start Bayesian optimization?

	Comparison to other AutoML systems
	Integration and setup
	Results

	Related Work
	Related Work on Portfolios
	Related Work on Successive Halving
	Related Work on Algorithm Selection
	Background on AutoML Systems and Their Components
	Components of AutoML systems
	AutoML systems

	Discussion and Conclusion
	Additional pseudo-code
	Additional results and experiments
	Early Stopping and Retrieving Intermittent Results
	Performance Without Post-Hoc Ensembling
	Unaggregated results

	Theoretical properties of the greedy algorithm
	Definitions
	Choosing on the test set
	Choosing on the validation set
	Successive Halving
	Further equalities

	Implementation Details
	Software
	Configuration Space
	Successive Halving hyperparameters

	Datasets

