
ORIGINAL ARTICLE

Automated design of error-resilient and hardware-efficient deep
neural networks

Christoph Schorn1,2 • Thomas Elsken3,4 • Sebastian Vogel1,2 • Armin Runge1 • Andre Guntoro1 •

Gerd Ascheid2

Received: 17 June 2019 / Accepted: 25 April 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Applying deep neural networks (DNNs) in mobile and safety-critical systems, such as autonomous vehicles, demands a

reliable and efficient execution on hardware. The design of the neural architecture has a large influence on the achievable

efficiency and bit error resilience of the network on hardware. Since there are numerous design choices for the architecture

of DNNs, with partially opposing effects on the preferred characteristics (such as small error rates at low latency), multi-

objective optimization strategies are necessary. In this paper, we develop an evolutionary optimization technique for the

automated design of hardware-optimized DNN architectures. For this purpose, we derive a set of inexpensively com-

putable objective functions, which enable the fast evaluation of DNN architectures with respect to their hardware efficiency

and error resilience. We observe a strong correlation between predicted error resilience and actual measurements obtained

from fault injection simulations. Furthermore, we analyze two different quantization schemes for efficient DNN compu-

tation and find one providing a significantly higher error resilience compared to the other. Finally, a comparison of the

architectures provided by our algorithm with the popular MobileNetV2 and NASNet-A models reveals an up to seven times

improved bit error resilience of our models. We are the first to combine error resilience, efficiency, and performance

optimization in a neural architecture search framework.

Keywords Neural network hardware � Error resilience � Hardware faults � Neural architecture search � Multi-objective

optimization � AutoML

1 Introduction

The application of deep neural networks (DNNs) in safety-

critical perception systems, for example autonomous

vehicles (AVs), poses some challenges on the design of the

underlying hardware platforms. On the one hand, efficient

and fast accelerators are needed, since DNNs for computer

vision exhibit massive computational requirements [56].

On the other hand, resilience against random hardware

faults has to be ensured. In many driving scenarios,

entering a fail-safe state is not sufficient, but fail-opera-

tional behavior and fault tolerance are required [48].

However, fault tolerance techniques at the hardware level

often entail large redundancy overheads in silicon area,

latency, and power consumption. These overheads stand in

contrast to the low-power and low-latency requirements of

embedded real-time DNN accelerators. Reliability con-

cerns in nanoscale integrated circuits, for instance soft

errors in memory and logic, represent an additional chal-

lenge for the realization of fault tolerance mechanisms at

the hardware level [2, 33, 36, 70, 86]. Moreover, tech-

niques such as near-threshold computing [26] and

approximate computing [66] are desirable to meet power

constraints, but can further increase error rates.

& Christoph Schorn

Christoph.Schorn@de.bosch.com

1 Bosch Corporate Research, Robert Bosch GmbH, Renningen,

Germany

2 Institute for Communication Technologies and Embedded

Systems, RWTH Aachen University, Aachen, Germany

3 Bosch Center for Artificial Intelligence, Robert Bosch

GmbH, Renningen, Germany

4 Department of Computer Science, University of Freiburg,

Freiburg im Breisgau, Germany

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-020-04969-6(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-04969-6&domain=pdf
https://doi.org/10.1007/s00521-020-04969-6

To overcome these challenges, one option is to exploit

error resilience at the algorithm level and allow for a cer-

tain degree of inaccuracy at the hardware level. This is

referred to as cross-layer resilience [13]. Due to the

implicit information redundancy of neural networks, they

offer some robustness against random internal perturba-

tions, which can be exploited in a cross-layer resilience

approach. Nevertheless, error resilience is strongly influ-

enced by the architectural design of the DNN [85] as well

as its internal data representations [53]. These design

choices, in turn, also influence hardware efficiency and

classification performance of the network. Taking these

multiple, partially opposing objectives into account in a

manual DNN design procedure is non-trivial and

cumbersome.

Our approach to address this challenge in this paper is

depicted in Fig. 1. We develop and evaluate an efficient,

automated, multi-objective neural architecture search

(NAS) technique which holistically takes classification

performance as well as hardware-specific objective func-

tions into account. The architectures obtained by our

algorithm and some reference methods from the literature

are then retrained and quantized using two different

quantization strategies. Finally, the error resilience of dif-

ferent architectures as well as quantization methods is

compared against each other by performing fault injection

experiments.

In detail, our contributions are the following:

1. We derive a set of objective functions for the

prediction of error resilience, energy consumption,

latency, and required bandwidth of DNNs on hardware,

solely based on the topology of their neural architec-

ture, allowing a fast evaluation of these objectives by

avoiding the need for expensive simulations or training

of the neural network.

2. We integrate these functions in an efficient, evolution-

ary, multi-objective NAS algorithm that uses (approx-

imate) network morphisms for a fast Pareto-

optimization of DNNs.

3. We add a neural network quantization step at the end

of NAS in order to obtain models suitable for an

efficient inference accelerator. We compare two

recently introduced quantization techniques with

respect to resulting classification performance and

error resilience of the neural networks.

4. We evaluate our methods on two popular image

classification benchmarks, namely CIFAR-10 and

German Traffic Sign Recognition Benchmark

(GTSRB). In particular, we test the predictive perfor-

mance of our error resilience prediction metric by

measuring the correlation to silent data corruption

(SDC) rates, employing a bit-flip fault injection

framework.

5. We benchmark the solutions obtained by our NAS

algorithm against two reference architectures, namely

MobileNetV2 [80] and NASNet-A [112], by perform-

ing fault injection experiments.

To the best of our knowledge, this is the first paper com-

bining error resilience and hardware efficiency optimiza-

tion in the context of neural architecture search.

The remainder of this paper is structured as follows: In

Sect. 2, we give an overview of related work. In Sect. 3,

we introduce our methodology. This includes the deriva-

tion of hardware-specific objective functions, neural net-

work quantization techniques, and the multi-objective

optimization algorithm used in this paper. In Sect. 4, we

evaluate the outcome of our methods on two image clas-

sification benchmarks. We analyze the trade-offs between

Pareto-optimal solutions, perform fault injections to com-

pare predicted and measured resilience, and evaluate the

characteristics of two different DNN quantization methods.

Furthermore, we perform a comparison with two other

architectures from the recent literature. We close our paper

with a summary and conclusions in Sect. 5.

2 Background and related work

We now give an overview of related error resilience

analysis (Sect. 2.1), resilience optimization techniques for

neural networks (Sect. 2.2) as well as preliminaries on

multi-objective optimization (Sect. 2.3) and neural archi-

tecture search (NAS) (Sect. 2.4).

2.1 Neural network resilience analysis

Understanding a neural network’s resilience against erro-

neous perturbations in its internal computations has been a

topic of interest for decades already. Here, we give an

overview of the most recent studies that target error

Hardware-focused
objective functions

Multi-objective neural
architecture search

Architecture training
and quantization

Fault injection testing
and comparison

Reference
architectures

Fig. 1 Overview of our research methodology

Neural Computing and Applications

123

resilience analysis of modern DNNs. An in-depth review of

previous literature has been recently given by Mittal [67].

2.1.1 Experimental analysis

The majority of the studies on error resilience in neural

networks have been experimental. They range from phys-

ical fault induction experiments in real hardware devi-

ces [81, 100], over fault injections in (virtual) hardware

models [3, 53, 78, 81], to error simulations at the algo-

rithmic behavior level [63, 74, 83]. Behavioral analysis can

be connected to realistic hardware faults in a second step,

by mapping the effect of these faults to error models in the

algorithm domain [72]. For the model-based analysis,

stuck-at-zero, stuck-at-one, and random bit-flips of mem-

ory cells are commonly used. Stuck-at types are used to

model permanent faults (e.g., resulting from manufacturing

defects) and bit-flips are typically used to model radiation-

induced transient faults that lead to soft errors [94].

In summary, experimental studies found different

determinants of neural network resilience, the most

important being the number and type of errors, the data

representation of the neural network, the DNN type, and

the location where the error occurs. However, while

experimental evaluation is useful for an accurate a poste-

riori resilience determination of a given DNN on hardware,

it is cumbersome and provides only limited insight into a

priori design choices for DNN developers to improve

resilience at the algorithm level.

2.1.2 Theoretical analysis

A theory-guided resilience analysis offers the advantage of

being more directly interpretable and avoids lengthy fault

injection experiments. El Mhamdi and Guerraoui [28]

analytically derived easily computable bounds for the for-

ward error propagation of neurons that are stuck-at-zero

(crashed neurons) and for neurons that transmit arbitrary

values (Byzantine neurons). They found that the choice of

activation function and the number of neurons per layer are

design choices that affect the forward error propagation.

More precisely, an activation function with a low Lipschitz

constant as well as a high number of neurons per layer can

reduce forward error propagation.

A different analytical technique to derive neuron resi-

lience prediction has been used in the context of approxi-

mate neural network computing. Backpropagation of error

gradients, comparable to the technique used to determine

weight updates during neural network training, has been

used to estimate the average output sensitivity to pertur-

bations in individual neurons [97, 109].

Recently, Schorn et al. [83] showed that a technique

based on layerwise relevance propagation (LRP) [4]

outperforms gradient-based resilience prediction. Contrar-

ily to gradient methods, which determine the sensitivity to

small perturbations in neurons, LRP attributes to each

neuron its absolute contribution to the DNN output [69],

which can be interpreted as layerwise Taylor decomposi-

tion [68]. A high neuron relevance, averaged over a

training set of input samples, corresponds to a high sensi-

tivity against errors [83].

2.2 Neural network resilience optimization

The optimization of neural network error resilience at the

algorithm level is an active field of research. A number of

publications simulate the effects of hardware faults during

neural network training to improve resi-

lience [22, 45, 57, 104, 106]. Reference [22] considers

timing variations, [45, 106] static random-access memory

(RAM) supply voltage scaling, and [57, 104] hard defects

in memristors and resistive RAM, respectively. The

drawback of these approaches is that they complicate the

training process, since fault injections have to be performed

by placing hardware in the training loop or through realistic

fault simulations. Common regularizing techniques, such

as dropout [44, 88] and weight decay [50], also improve

the general error resilience of neurons [28].

A second approach is to adjust the mapping of the

algorithm to hardware for an optimized resilience. A sig-

nificance-driven mapping of network weight bits to mem-

ory cells with different resilience has been suggested

in [87]. However, the authors did not follow an analytical

approach to determine weight resiliencies, but relied on

their experience. In contrast, the LRP-based method in [83]

gives a theoretically founded resilience mapping of

neurons.

A third approach is to use modifications in hardware that

are tailored to exploit the algorithmic resilience properties

of neural networks. This can be zero-biased [3] or selec-

tively hardened [53] memory cells, optimized data repre-

sentations [100], masking techniques [73, 78], anomaly

detectors [53, 84], and relaxed versions of classical fault

tolerance mechanisms, such as triple modular redundancy

(TMR) [62] and (ABFT) checksums [81].

Modifications of the neural architecture to increase

resilience have been proposed as well. Dias et al. [24]

suggest a resilience optimization procedure by replication

of critical neurons and weights. However, they use

exhaustive simulation to determine criticality values,

which is infeasible for large-scale DNNs. Schorn et al. [85]

showed that critical layers can be identified using LRP.

Nevertheless, no automated neural architecture design

technique that jointly optimizes error resilience as well as

other desirable performance and efficiency objectives of

DNNs has been introduced so far.

Neural Computing and Applications

123

2.3 Multi-objective optimization

In multi-objective optimization (see, e.g., [64]), one tries

to optimize K complementary objective functions f1; . . .; fK
over a space N of feasible solutions (in our case: a space of

neural network architectures). Usually, there will be no

N� 2 N that minimizes all objectives f1; . . .; fK at the same

time (as the objectives are complementary). Instead, there

are multiple Pareto-optimal solutions meaning that one

cannot reduce any fi without increasing at least one fj, with

i; j 2 f1; . . .;Kg and i 6¼ j. Formally, we say that architec-

ture N1 dominates architecture N2 iff fiðN1Þ� fiðN2Þ for all
i 2 f1; . . .;Kg and fjðN1Þ\fjðN2Þ for at least one

j 2 f1; . . .;Kg. N� is called Pareto-optimal iff N� is not

dominated by any other N 2 N . The set of Pareto-optimal

solutions is the so-called Pareto-front. Typically, multi-

objective optimization can only determine a subset P that

approximates this Pareto-front.

In order to rate the overall performance of a given neural

network N 2 P across all objectives, the distance to the

ideal point in the Euclidean space RK corresponding to the

K objectives f1; . . .; fK can be used as a metric [8]. The

(approximate) coordinates ðy1; . . .; yKÞ of the ideal point in
this space are determined by the minima of the objective

functions fiðNÞ over the (approximated) Pareto-front

P [27]. Consequently, each coordinate is given by Eq. (1).

yi ¼ min
N2P

fiðNÞ; i 2 f1; . . .;Kg ð1Þ

To enhance comparability, a normalized version of the

distance to the ideal point can be computed [8]. Therefore,

normalized objective functions �fiðNÞ are determined for all

i 2 f1; . . .;Kg using Eq. (2) so that 0� �fiðNÞ� 1.

�fiðNÞ ¼
fiðNÞ �minN2P fiðNÞ

maxN2P fiðNÞ �minN2P fiðNÞ
ð2Þ

Then, a norm on the vector �fðNÞ ¼ ð�f1ðNÞ; . . .; �fKðNÞÞ is
computed to measure the distance of N from the ideal

point.

Blasco et al. [8] suggest to take the infinity norm for the

purpose of trade-off analysis, as defined in Eq. (3).

�fðNÞ
�
�

�
�
1¼ max �fiðNÞ

� �

; i 2 f1; . . .;Kg ð3Þ

That way, a score between 0 and 1 is obtained, which

supplies information about the worst objective value. For

example, a value of 1 means that N has the worst observed

performance in at least one of the objectives. We refer to
�fðNÞ

�
�

�
�
1 as normalized worst objective value in the

remainder of this paper.

2.4 Neural architecture search

One crucial aspect for the success of deep learning in

recent years was the design of novel neural network

architectures [35, 40, 80, 92]. However, manually design-

ing such architectures is a cumbersome trial-and-error

process. To overcome the need for architectural engineer-

ing, neural architecture search (NAS)—the process of

automatically designing neural network architectures—has

arisen as a subfield of automated machine learning [41]. By

now, architectures found by NAS have outperformed

human-designed architectures on a variety of tasks such as

image recognition [76], object detection [112], or dense

prediction tasks [17, 77].

We briefly summarize related work here and refer to the

survey by Elsken et al. [31] for a more thorough literature

overview. Reinforcement learning techniques [5, 110–112]

or evolutionary methods [65, 75, 76, 90] are commonly

employed to search for well-performing architectures.

Another biologically inspired algorithm that has been

applied in the context of neural architecture optimization is

particle swarm optimization [79, 95]. Furthermore, it has

been proposed to select relevant features of neural net-

works in an unsupervised learning approach via local

structure learning [54].

As early work on NAS required vast amount of com-

putational resources, often in the range of hundreds or even

thousands of GPU days [76, 111, 112], making NAS more

efficient was the focus of many researchers, e.g., by

employing network morphisms [9, 10, 29], by sharing

weights [7, 71, 82] or by performance prediction [6, 47]. A

recent series of work [11, 59, 105] employed a real-valued

relaxation of the discrete architecture search space,

enabling gradient-based optimization.

While the previously discussed approaches solely opti-

mize for a single objective, namely minimizing some error

rate, there has also been some work on multi-objective

neural architecture search [16, 25, 30, 39, 46, 61, 93, 103],

optimizing other objectives such as network size, latency or

energy consumption concurrently. [25] extend [58] by

considering multiple objectives during the model selection

step. [61] employ NSGA-II [21], a well-known multi-ob-

jective optimization algorithm, in the context of NAS.

Instead of actually solving the multi-objective problem,

many researchers use scalarization methods, such as the

weighted product or sum method [20], to obtain a single

objective. This is then optimized via, e.g., reinforcement

learning [39, 93] or differentiable NAS [103]. [12] use

multi-objective Bayesian optimization to search for con-

volutional cells [112]. In this work, we will build up on the

multi-objective evolutionary method LEMONADE [30] that

exploits cheap-to-evaluate objectives to make the search

Neural Computing and Applications

123

more efficient. This perfectly fits our application as we will

see later as our objectives are solely based on the neural

network architecture (and not, e.g., on expensive simula-

tions or trained neural network weights) and thus cheap to

compute. We discuss LEMONADE more detailed in

Sect. 3.2.1.

3 Hardware-focused neural architecture
design

In this section, we introduce our framework for the auto-

mated design of error-resilient and hardware-efficient DNN

architectures. In a first step, we identify optimization goals

that typically appear in embedded DNN hardware appli-

cations and derive corresponding objective functions

(Sect. 3.1). In the further course of this paper, these func-

tions serve as input to a multi-objective neural architecture

search algorithm (Sect. 3.2). Fixed-point quantization is

applied as post-processing step after NAS to enable effi-

cient DNN execution on dedicated hardware accelerators

(Sect. 3.3).

3.1 Hardware-specific objectives

We consider four different objectives that are commonly

desirable in embedded DNN hardware applications,

namely high error resilience, low latency, high energy

efficiency, and a low bandwidth requirement.

3.1.1 Error resilience

In the context of this paper, error resilience is regarded as

robustness of the neural network classifier against pertur-

bations in its neuron activation values. Such perturbations

can be the result of random hardware faults, such as radi-

ation-induced bit-flips. We measure the degree of pertur-

bation using bit error rate (BER), i.e., the fraction of flipped

bits across all activations of the DNN. We define archi-

tecture sensitivity at a given BER as probability for the

predicted class output to differ, with and without bit errors.

In order to maximize error resilience, we want to minimize

architecture sensitivity.

Following the approach in [83, 85], we derive an

architecture-dependent error sensitivity metric using LRP.

A key prerequisite in the mathematical framework of LRP

is the relevance conservation principle [69]. It ensures that

the total amount of neuron relevance, which is propagated

backwards through the network after the forward pass of

inference on an input sample, is conserved in each layer.

Consequently, for a group of neurons k and its inputs j

X

j

rj ¼
X

j

X

k

rj k ¼
X

k

X

j

rj k ¼
X

k

rk: ð4Þ

In Eq. (4), rj and rk are the relevance values attributed to

neurons j and k, respectively, and rj k is the amount of

relevance propagated backwards from neuron k to neuron

j. The conservation principle is motivated by the fact that

an output activation of neuron k can be completely

decomposed into contributions of its input neurons j.

The relevance distribution among the neurons in each

layer depends on their activations and the synaptic

weights [69]. For the initial backpropagation step, the final

output neuron relevance of the DNN is predetermined by

the one-hot encoded target vector belonging to each input

sample. This ensures that
P

k rk ¼ 1 in each layer. Con-

sequently, for a uniformly randomly drawn neuron in a

layer l, the expected relevance is

E r
ðlÞ
k

h i

¼ 1

n
ðlÞ
outputs

; k� uniff0; nðlÞoutputs � 1g: ð5Þ

In Eq. (5), n
ðlÞ
outputs is the total number of neurons in that

layer. The observation that a higher average relevance

corresponds to a more likely change of the DNN classifi-

cation output suggests that layers with few neurons are

more sensitive to errors [83, 85].

Effect of max-pooling Max-pooling is commonly used in

some layers of a DNN, in order to reduce the output

dimensions of that layer [51]. A max-pooling stage divides

the outputs of a layer into subsets and selects the maximum

output value out of each subset. We do not regard max-

pooling as a separate layer, but consider it as attachment to

a layer. If a layer l has max-pooling, the reduced number of

output values after the pooling stage is taken to calculate

n
ðlÞ
outputs.

Additionally, we observed an increased error sensitivity

of neurons in layer l if max-pooling is present in the sub-

sequent layer lþ 1. We suppose that this is because

information about the input sample is reduced by the

pooling stage, but critical errors, which are mostly changes

from a low to a high activation value [53], are likely to

propagate through. Thus, we obtain an effective error

sensitivity of neurons in layer l by multiplication with the

pooling factor of layer lþ 1. The pooling factor is the

fraction of input to output dimension of the pooling stage

and equals 4 for the max-pooling layers that we use

throughout our experiments.

Effect of merge layers Skip connections, i.e., concurrent

paths through the network, can improve the training of

deep architectures and thus have become popular in state-

of-the-art DNNs [34]. At some point in the network, the

parallel paths have to be merged again, which can be done

Neural Computing and Applications

123

by componentwise addition [35] or by feature concatena-

tion [92]. While a concatenation does not affect error

propagation, an add layer increases error sensitivity of the

DNN. There are two reasons for this. Firstly, an add layer

involves additional (error prone) load, accumulates, and

stores operations, while concatenation only involves the

change of the address range from which data are loaded in

the subsequent layers.

Secondly, the fraction of neurons affected by errors is

likely to increase through the add operation. If two inputs

with an equal and small fraction of erroneous neurons are

added, the resulting fraction of erroneous neurons doubles

as long as the error locations in the inputs do not coincide.

This can be regarded as doubling the effective error sen-

sitivity of the neurons preceding the add operation.

Architecture sensitivity index The aforementioned insights

are now used to define a metric that estimates the error

sensitivity of a neural network N solely based on the

topology of its architecture. We call this metric architecture

sensitivity index (ASI). It is defined as sum of the expected

error sensitivities over all layers LN of N,

fASIðNÞ ¼
X

l2LN

kðlÞfðlÞ

n
ðlÞ
outputs

: ð6Þ

In Eq. (6), kðlÞ is the max-pooling factor of the succeeding

layer lþ 1 (i.e., 1 for no pooling) and fðlÞ is 2, if l is

connected to an add layer, else 1.

Concatenations are not counted as extra layers in this

sum, while add layers are. Furthermore, supportive func-

tionalities, such as activation function, pooling and batch

normalization [42], are not considered as separate layers,

but included in the neuron layers.

We want to emphasize that Eq. (6) can be computed

very easily, since it only depends on the network topology

and does not require any training or other expensive

computations.

3.1.2 Latency

Aside from error resilience, real-time inference with low

latency is an additional necessity in many applications.

AVs, for instance, should be able to derive driving actions

from sensory input in less than 100 ms, in order to surpass

human-level perception performance and provide a suffi-

cient level of safety [56]. While low latency can be

achieved by employing a parallelized hardware architec-

ture and a high operating frequency, the performance of a

DNN accelerator is constrained by manufacturing, power

consumption, reliability, and flexibility requirements. Thus,

a reduction in computational complexity at the algorithm

level is desirable.

The roofline model [102] is commonly used to describe

the attainable computational performance of a DNN

accelerator [107]. It defines two operational domains,

which are entered depending on the computational work-

load of the accelerator. In the memory-bound domain,

latency is determined by the amount of data transfer to

memory and the available memory bandwidth. In the

compute-bound domain, latency can be regarded as being

proportional to the number of operations required by the

algorithm.

Being compute bound is preferable over memory-bound

operation, since it allows maximum utilization of the

available computational resources and highest throughput.

Thus, we assume an accelerator, whose memory bandwidth

is sufficiently large so that it will predominantly operate in

the compute-bound domain for the workloads considered in

this paper. We can therefore take the number of operations

of the DNN as approximate determinant of latency. Fur-

thermore, we regard the number of operations as being

solely dependent on the neural network architecture, i.e.,

we do not consider any data-dependent operation

reductions.

Our objective function for latency reduction is given by

flatencyðNÞ ¼
X

l2LN
nðlÞop : ð7Þ

In Eq. (7), n
ðlÞ
op counts the number of operations of layer l.

3.1.3 Energy efficiency

A further frequent demand on embedded DNN accelerators

is a low energy consumption per classification inference.

This can have mainly two reasons. Firstly, mobile devices

have a limited amount of energy storage capacity, and thus,

energy-efficient DNN accelerators are required, for exam-

ple to extend the battery life and range of AVs. Secondly,

embedded devices often have a strict size limitation, which

makes it difficult to realize the necessary heat dissipation.

As the thermal leakage power of an accelerator directly

depends on the number of classifications per second and

the energy per classification, energy efficiency is desirable

to enable high classification throughput.

Energy consumption of DNN accelerators is dominated

by data transfers to and from memory [91]. This is due to

the large amount of parameters and intermediate data

outputs of typical large-scale DNNs.

According to Horowitz [38], energy consumption for

off-chip dynamic RAM access is about two orders of

magnitude higher than for internal cache accesses and

arithmetic operations. While some hardware designers

increase energy efficiency by integrating huge on-chip

static RAMs in their DNN accelerator (e.g., [101]), this

approach is not feasible in every case. In this paper, we

Neural Computing and Applications

123

assume an accelerator with small on-chip buffer (such

as [15]), so that a layerwise data transfer to and from off-

chip memory is necessary, which dominates energy

consumption.

Consequently, to maximize energy efficiency, our

objective is to minimize data transfer to and from memory

per inference. We neglect the number of operations in this

calculation because of its limited influence on energy

consumption and since it is already part of the latency

minimization objective function. To determine the data

transfer of a layer, we assume that each input and weight

parameter of the layer is loaded once from external

memory and each output is written back once. Further-

more, we assume that the same bit-width is used to rep-

resent all activations and parameters of the network.

Our objective function for minimizing energy con-

sumption is thus given by the sum of layerwise input,

output, and parameter data word transfers over the whole

network,

fenergyðNÞ ¼
X

l2LN
ðnðlÞinputs þ n

ðlÞ
outputs þ nðlÞparamsÞ: ð8Þ

In Eq. (8), n
ðlÞ
inputs and n

ðlÞ
outputs count the number of input

neurons and output neurons, respectively, and n
ðlÞ
params

counts the number of parameters of layer l.

3.1.4 Bandwidth requirement

As described in Sect. 3.1.2, we assume the accelerator for

which we optimize DNN architectures to operate pre-

dominantly in the compute-bound domain of the roofline

model. In order to guarantee compute-bound operation, the

accelerator has to provide a certain maximum bandwidth to

memory. It is desirable to keep this bandwidth requirement

within bounds to simplify the accelerator architecture.

The required memory bandwidth can vary for different

layers of a DNN. We employ the ratio between data

transfers and operations of a layer as estimator for its

bandwidth requirement. The intuition behind this is that a

low number of operations are related to a short processing

time of the layer, and consequently, a high bandwidth is

required to be able to perform the necessary data move-

ments in that given time.

We define an overall objective function to optimize

neural architectures for a low bandwidth requirement by

adding up the data–computation ratios of all layers. Thus,

our objective function for minimizing the bandwidth

requirement is given by the accumulated data–computation

ratio (ADCR), as described in Eq. (9).

fADCRðNÞ ¼
X

l2LN

n
ðlÞ
inputs þ n

ðlÞ
outputs þ n

ðlÞ
params

n
ðlÞ
op

ð9Þ

3.2 Multi-objective NAS

In the following, we introduce LEMONADE, a Lamarckian

Evolutionary algorithm for Multi-Objective Neural

Architecture DEsign [30], that we will use in our later

experiments to automatically design well-performing,

error-resilient, and hardware-efficient architectures.

3.2.1 LEMONADE

We continue to use the notation introduced in Sect. 2.3.

LEMONADE maintains a population P of neural networks

N 2 N , where N denotes a suitable space of network

architectures that are defined in Sect. 3.2.2. This popula-

tion is improved over the course of the algorithm with

respect to the multi-objective optimization problem

minN2N fðNÞ with objective function

fðNÞ ¼ ðfexpðNÞ; fcheapðNÞÞ 2 RK ¼ RU � RV : ð10Þ

The objective function in Eq. (10) is composed of a vector

of expensive-to-evaluate objectives fexpðNÞ 2 RU (in our

case: the validation error, only obtainable by expensive

training) and a vector of cheap-to-evaluate objectives

fcheapðNÞ 2 RV (in our case: the objectives defined in

Sect. 3.1). The population P is chosen to comprise all non-

dominated networks with respect to f, i.e., the population

approximates the Pareto-front. LEMONADE exploits that

fcheap is cheap to evaluate in order to bias the sampling of

children toward areas of the Pareto-front of fcheap that are

sparsely populated. While fcheap is evaluated many times in

LEMONADE, fexp is evaluated only a few times for

promising networks that are likely to improve the

approximation of the Pareto-front.

In every iteration of LEMONADE, firstly parent networks

are sampled with respect to some probability distribution

(discussed later) that is solely based on the cheap objec-

tives. By applying mutations to the parents (such as adding

or removing a layer, see Sect. 3.2.2 for a detailed

description), children are generated. In a second sampling

stage, a subset of all generated children is selected, again

solely based on cheap objectives, and solely this subset is

evaluated on the expensive objectives fexp. Lastly, LEM-

ONADE computes the Pareto-front from the current gener-

ation and the subset of generated children, yielding the next

generation. The described procedure is repeated for a pre-

specified number of iterations.

The sampling distribution The sampling distribution is

designed to only depend on the cheap objectives and to

guide the search toward sparsely crowded regions in the

current Pareto-front. In order to achieve this, LEMONADE

computes a kernel density estimator pKDE on the cheap

Neural Computing and Applications

123

objective values ffcheapðNÞjN 2 Pg of the current popula-

tion. Then, for both sampling stages (i.e., (i) the probability

for choosing a network N as a parent as well as (ii) the

probability of a generated child N being part of the subset),

LEMONADE uses a sampling distribution anti-proportional

to pKDE:

pðNÞ ¼ c

pKDEðfcheapðNÞÞ
; ð11Þ

In Eq. (11), c is a proper normalizing constant. Therefore,

networks in sparsely populated regions of the Pareto-front

are more likely to be chosen as parents and generated

children lying in sparsely populated regions of the Pareto-

front are more likely to be evaluated on f. The motivation

behind also choosing parents in less crowded regions is that

mutations do not change the network drastically; hence,

children are expected to have similar objective values as

their parents. By this sampling distribution and the two-

staged sampling strategy, LEMONADE generates and eval-

uates more children that are more likely to improve the

current approximation of the Pareto-front rather than just

evaluating the cheap objective fexpðNÞ for all children,

making it more efficient than off-the-shelf multi-objective

optimization algorithms. We highlight that all objectives

from Sect. 3.1 are cheap to evaluate as they all solely

depend on the neural network architecture and not, e.g., on

the weights of the network only obtainable by expensive

training. Hence, LEMONADE is a perfect fit for our purpose.

For more details, we refer the reader to the original

work [30].

3.2.2 Search space and mutations within LEMONADE

In this work, we focus on NAS for image classification

tasks. Convolutional neural networks (CNNs) are the pre-

dominantly used type of DNN in this domain [51]. How-

ever, in the recent years, the number of variations and

design choices for CNN architectures has significantly

grown (see, e.g., [34] for an overview). We limit the

search space of LEMONADE to a number of predefined

building blocks, hyperparameters and allowed mutations

for two reasons. Firstly, support for a limited set of

building blocks requires less flexibility of the underlying

hardware. This enables the use of more efficient dedicated

DNN accelerators instead of general purpose hardware.

Secondly, the space of feasible architectures N rapidly

grows with each additional variation that is allowed. This

combinatorial explosion slows down the convergence of

NAS, which is why a reasonable limitation of the search

space has to be chosen.

We now describe the set of mutations that are used by

LEMONADE in our experiments to generate child networks.

1. Insert a convolutional layer with batch normaliza-

tion [42] and (ReLU) activation [32]. The layer is

inserted at a random position, and its number of filters

is chosen to match the number of filters of the

preceding layer. The kernel height h and width w of

the convolutional filter are randomly sampled:

ðh;wÞ 2 fð3; 3Þ; ð5; 5Þ; ð7; 7Þ; ð9; 9Þg.
2. Increase the number of filters of a randomly chosen

convolution by a randomly chosen factor 2 f2; 4g. A
maximum of 1100 filters is allowed.

3. Add a skip connection. We allow skip connection

either by concatenation [92] or by addition [35].

4. Remove a randomly chosen layer or a skip connection.

5. Prune a randomly chosen convolutional layer (i.e.,

remove 1/2 or 1/4 of its filters). A minimum of 15

filters is allowed.

6. Replace a randomly chosen convolution by a depth-

wise separable convolution [18].

Note that by random we always mean uniformly at random.

We highlight that the first three operations in general

increase objectives such as network’s size or energy con-

sumption, but likely also decrease objectives such as the

error, while the last three operations in general decrease the

firstly mentioned objectives, but increase the lastly objec-

tives. Consequently, these mutations are suitable for mul-

tiple, opposing objectives.

To further speed up NAS, the authors of LEMONADE

propose to apply these mutations as network mor-

phisms [14, 99]. Network morphisms are function-pre-

serving operators on neural networks, i.e., a network

morphism maps a neural network Nw with weights w to

another neural network ~N ~w with weights ~w so that for every

input x to the network NwðxÞ ¼ ~N ~wðxÞ. Effectively this

means that, when utilizing network morphisms as muta-

tions to generate children, children do not need to be

trained from scratch but rather just fine-tuned as children

by design have the same error as their parent. This can be

interpreted as Lamarckian inheritance in the context of

evolutionary algorithms, where Lamarckism refers to a

mechanism which allows passing skills acquired during an

individual’s lifetime (e.g., by means of learning), on to

children by means of inheritance. The equality NwðxÞ ¼
~N ~wðxÞ can be achieved by properly choosing ~w. For

example, if one wants to insert a linear layer at an arbitrary

position in a network, equality can be achieved by simply

initializing the linear layer as an identity mapping. Muta-

tions 1–3 from above can all be formulated as a network

morphism (see [30] for details). Mutations 4–6, on the

other hand, cannot be framed as network morphisms, as

they all generally decrease the network’s capacity and

equality cannot be guaranteed. Instead, Elsken et al. [30]

propose approximate network morphisms to find proper

Neural Computing and Applications

123

initialization for these cases. Approximate network mor-

phisms essentially copy the weights of layers not affected

by structural changes and train affected layers via knowl-

edge distillation [37].

3.3 Fixed-point quantization

Neural network training algorithms usually rely on data

representations and computations with high numerical

precision, for example a 32-bit floating-point format, typ-

ically used in graphics processing units (GPUs). However,

after training, a reduced precision number format can be

used for inference on a dedicated DNN accelerator to

reduce energy consumption and bandwidth [55]. In this

context, an 8-bit fixed-point format is a common choice in

embedded and mobile devices [43]. Hence, to deploy a

DNN on an embedded device after training on a GPU,

weights, biases, and activations need to be transformed

from a floating-point to a fixed-point number format. This

procedure is denoted by network quantization. We apply

network quantization as post-processing step after neural

architecture search with LEMONADE.

The quantization of a real value v to a signed fixed-point

value vq using B bit is given by

vq ¼ clip round
v
D

� �

;�2B�1; 2B�1
� �

D: ð12Þ

In Eq. (12), clipðx; a; bÞ ¼ minðmaxðx; aÞ; bÞ, the function

roundðxÞ denotes rounding x to an integer number, and D
denotes the step size, i. e., the smallest distance between

two quantization sampling points of v. In other words, D
corresponds to the value of the least significant bit (LSB).

In [96], a simple method to find a suitable step size for a

given data distribution in DNNs with sigmoid activations

has been introduced. It determines the step size D based on

the maximum range of a distribution according to

D ¼ max jvjð Þ
2N�1 � 1

: ð13Þ

In the following, we refer to this quantization method as

MaxRange.

However, modern DNNs commonly use unbounded

activation functions, such as ReLU, and thus may entail

data distributions with far outliers. Since the quantization

range is adapted to the maximum value, the step size D is

maximal and consequently leads to a coarse sampling of

smaller values. Moreover, as data distributions in DNNs

typically follow a Gaussian distribution, Eq. (13) leads to a

coarse sampling of a large number of values.

A quantization method which specifically targets this

problem has been introduced in [98]. Here, parameters and

activations are quantized by minimizing the effect of the

quantization error d ¼ v� vq in the network. In a neural

network, the output value y of a neuron with a rectifying

unit Uð�Þ, bias b, weights w and input values x is deter-

mined by

y ¼ U bþ
X

wx
� �

: ð14Þ

For the purpose of measuring the influence of the quanti-

zation error of inputs (dx), weights (dw) and biases (db), we
define ~y as the resulting neuron output when quantities of

Eq. (14) are quantized. More precisely, ~yw is defined as the

neuron output determined with quantized weights wq where

activations and biases remain in a 32 bit floating-point

number format. ~yx and ~yb are defined accordingly. The

optimal quantization step sizes D�ðlÞ are then individually

determined for each layer l 2 LN by

D�ðlÞw ¼ arg min
DðlÞw 2D

yðlÞ � ~yðlÞw ðDðlÞw Þ
�
�

�
�
2
;

D�ðlÞx ¼ arg min
DðlÞx 2D

yðlÞ � ~yðlÞx ðDðlÞx Þ
�
�

�
�
2
; and

D�ðlÞb ¼ arg min
DðlÞ
b
2D

yðlÞ � ~y
ðlÞ
b ðD

ðlÞ
b Þ

�
�
�

�
�
�

2

:

ð15Þ

In Eq. (15), the vectors yðlÞ, ~y
ðlÞ
w , ~y

ðlÞ
x , and ~y

ðlÞ
b are composed

of the individual y, ~yw, ~yx, and ~yb of all neurons in layer l,

respectively. Additionally, the set of allowed step sizes is

constrained to power-of-two values, i.e., D ¼ f2z j z 2 Zg.
This enables a direct fixed-point operation in a hardware

accelerator. In the rest of the paper, this quantization

method is referred to as minimal propagated quantization

error (MinPQE).

4 Experiments

4.1 Experimental setup

To evaluate our methods, we use two common image

classification benchmarks. Firstly, CIFAR-10 [49] is used,

which consists of 32� 32 pixel RGB images divided into

ten distinct classes. The samples are divided into 50000

training and 10000 test samples. Out of the training set,

5000 samples are used for validation during neural archi-

tecture search.

Secondly, GTSRB [89] is used, which contains RGB

images of 43 different types of traffic signs. The images of

this benchmark are scaled to a resolution of 48� 48 pixels

before they are fed into the classifier. The dataset has

39,210 training samples, out of which 4010 are separated

for classification validation. An additional set of 12,630

images is used for measuring final test error rates.

Neural Computing and Applications

123

Unless otherwise noted, we use the same hyperparam-

eter setup for both benchmarks. We run LEMONADE for

300 evolutionary iterations. The algorithm is initialized

with a population of 15 manually chosen trivial network

architectures with different numbers of convolutional lay-

ers and kernel shapes. For DNN training, we use stochastic

gradient descent (SGD) with cosine annealing [60],

momentum of 0.9, and a weight decay of 0.0005. The

learning rate for each training phase during architecture

search is initialized with 0.01. The training batch size is set

to 64 throughout our experiments. Furthermore, we apply

commonly used data augmentations during training [60].

However, we leave out horizontal image flips for GTSRB,

since they would change the meaning of some traffic signs.

In addition, we use mixup [108] and cutout [23] for further

training data augmentation.

The final population sizes of the CIFAR-10 and GTSRB

models are 439 and 238, respectively. From each of these,

the 50 architectures with best validation error rates are

selected and each of these is trained from scratch on the set

of training and validation images for 200 epochs. The

learning rate is initialized with 0.025 in this case, and all

other hyperparameters stay the same. Classification error is

evaluated on the separate test set after the training. Sub-

sequently, we quantize the networks’ weights and activa-

tions to an 8-bit fixed-point representation using the

MaxRange and MinPQE methods described in Sect. 3.3 for

further evaluations.

4.2 Error simulations

Random bit-flip error simulations are used to evaluate the

actual resilience of the obtained set of neural networks. For

this purpose, we use the fault simulation framework that

has been previously described in [85]. The framework

builds up on the Keras [19] DNN library with TensorFlow

back-end [1]. This allows for performing fast bit-level fault

injections in the neuron activation outputs (feature maps)

of a CNN. Most of the computation workload required for

the simulation can be efficiently computed on a GPU. The

framework automatically adds some operations behind

each neuron output stage of a given CNN, which emulate a

fixed-point format and allow for a bit-wise fault injection in

the neuron output memory by applying a definable Boolean

fault mask (Fig. 2).

4.3 Results

4.3.1 Trade-off analysis between objectives

Table 1 lists the properties of certain DNN architectures N

obtained for both benchmarks, CIFAR-10 and GTSRB.

The selected models are the ones that minimize each an

individual objective function fiðNÞ (BestASI, BestValErr,
BestEfficiency, and BestADCR), the model with maximum

error sensitivity (WorstASI) as well as the model with

lowest normalized worst objective value (Sect. 2.3)
�fðNÞ

�
�

�
�
1, i.e., the balanced optimizer of all objectives

(BalOpt). Data transfer and accumulated data–computation

ratio are calculated taking 8-bit fixed-point quantization of

activations and weights into account. It can be observed

that the BestEfficiency models actually minimize both

flatencyðNÞ (i.e., operations) and fenergyðNÞ (i.e., data trans-

fer). This indicates a correlation between the two quanti-

ties. The respective models are also the smallest in terms of

weight parameters.

Furthermore, Table 1 shows that choosing a DNN with

minimal cost in one objective often leads to the outcome

that at least one other objective is close to its worst value.

This is especially the case for CIFAR-10, where �fðNÞ
�
�

�
�
1

is 1 or close to 1 for all single objective optimizers, Bes-

tASI, BestValErr, BestEfficiency, and BestADCR. The

optimal trade-off models (BalOpt), however, come quite

close to the ideal point, with normalized distances of 0.371

(CIFAR-10) and 0.267 (GTSRB).

Another aspect visible in Table 1 is that 8-bit quanti-

zation does not significantly increase test set classification

error rates of the models in comparison with the 32-bit float

case (in some cases the error is even smaller after quanti-

zation). The differences between the MaxRange and Min-

PQE quantization methods with respect to test error rate are

marginal.

The resulting distributions of objective values for all 50

models that were selected after the optimization with

LEMONADE are shown in Figs. 3 and 4 for CIFAR-10 and

GTSRB, respectively. The sub-figures (a)–(d) each depict

the ASI given by Eq. (6) versus each of the other objective

functions. It can be seen that the WorstASI models have

comparatively few operations and data transfers. However,

the reverse is not always true, since there are models with

few operations and data transfers as well as low ASI. In

other words, it is possible to have high efficiency and high

error resilience at the same time.

Another interesting aspect visible in Figs. 3d and 4d is a

correlation between ADCR and ASI. Consequently, a low

ratio of data transfers to operations is not only beneficial

float to
fixpoint

fixpoint
to floatXOR

fault mask

feature
maps

feature maps
with error

Fig. 2 Steps performed by fault injection framework between the

computation of two neural network layers [85]

Neural Computing and Applications

123

Ta
bl
e
1

P
ro
p
er
ti
es

o
f
ce
rt
ai
n
ar
ch
it
ec
tu
re
s
w
it
h
m
in
im

al
o
r
m
ax
im

al
v
al
u
e
in

so
m
e
o
b
je
ct
iv
e.

B
o
ld

n
u
m
b
er
s
in
d
ic
at
e
m
in
im

al
v
al
u
es

am
o
n
g
th
e
5
0
o
b
ta
in
ed

ar
ch
it
ec
tu
re
s
fo
r
ea
ch

d
at
as
et

M
o
d
el

O
p
ti
m
iz
ed

q
u
an
ti
ti
es

O
th
er

q
u
an
ti
ti
es

A
rc
h
it
ec
tu
re

se
n
si
ti
v
it
y
in
d
ex

(�
1
0
�
3
)

V
al
id
at
io
n

se
t
er
ro
r
ra
te

(%
)

O
p
er
at
io
n
s

(G
O
p
/

F
ra
m
e)

D
at
a

tr
an
sf
er

(M
B
/

F
ra
m
e)

A
cc
.
d
at
a–

co
m
p
u
ta
ti
o
n

ra
ti
o
(B
/O
p
)

N
o
rm

al
iz
ed

w
o
rs
t
o
b
je
ct
iv
e

v
al
u
e

N
u
m
b
er

o
f

p
ar
am

et
er
s

(�
1
0
6
)

T
es
t
se
t
er
ro
r

ra
te

(%
)
(3
2
b

fl
o
at
)

T
es
t
se
t
er
ro
r
ra
te

(%
)
(8
b

M
ax
R
an
g
e)

T
es
t
se
t
er
ro
r

ra
te

(%
)
(8
b

M
in
P
Q
E
)

C
IF
A
R
-1
0

W
o
rs
tA
S
I

8
.8
9
1

9
.2
0

0
.0
5
0

0
.6
7
2

7
.2
7
9

1
.0
0
0

0
.3
4
4

7
.3
1

7
.5
8

7
.5
2

B
es
tA
S
I

0
.3
3
6

9
.1
6

0
.4
2
0

2
.1
1
2

1
.4
2
2

0
.9
5
9

1
.6
4
5

6
.9
5

6
.9
1

6
.8
7

B
es
tV
al
E
rr

4
.2
6
7

6
.5
2

0
.1
8
6

2
.3
8
1

1
0
.2
3
0

0
.9
9
6

1
.4
8
9

5
.4
8

5
.3
3

5
.4
1

B
es
tE
ffi
ci
en
cy

1
.7
5
0

9
.1
8

0
.0
4
9

0
.6
6
5

1
0
.2
6
4

1
.0
0
0

0
.3
3
7

6
.5
4

6
.6
8

6
.6
1

B
es
tA
D
C
R

0
.3
3
6

9
.3
0

0
.4
2
9

2
.1
2
2

1
.1
5
0

0
.9
9
3

1
.6
5
4

6
.4
2

6
.5
7

6
.4
7

B
al
O
p
t

0
.9
7
0

7
.5
6

0
.1
2
7

1
.6
6
8

4
.2
4
1

0
.3
7
1

1
.3
3
0

5
.7
2

5
.6
6

5
.6
3

G
T
S
R
B

W
o
rs
tA
S
I

8
.1
2
0

0
.4
5

0
.0
4
5

0
.4
7
8

1
0
.2
1
8

1
.0
0
0

0
.1
0
1

2
.5
3

2
.6
6

2
.6
4

B
es
tA
S
I

0
.1
0
9

0
.3
0

0
.4
9
0

1
.2
2
0

1
.0
5
8

0
.5
0
1

0
.8
6
5

2
.6
0

2
.6
4

2
.6
0

B
es
tV
al
E
rr

0
.2
1
7

0
.0
0

0
.9
6
6

4
.6
2
9

4
.0
8
1

1
.0
0
0

3
.2
0
0

0
.9
0

1
.0
8

0
.9
9

B
es
tE
ffi
ci
en
cy

0
.6
5
1

0
.4
5

0
.0
1
2

0
.1
8
1

1
.1
6
6

0
.6
0
0

0
.0
4
1

1
.3
2

1
.4
1

1
.4
1

B
es
tA
D
C
R

0
.1
4
5

0
.1
2

0
.6
0
0

3
.1
6
1

1
.0
4
8

0
.6
7
0

2
.8
3
3

2
.5
0

2
.6
1

2
.6
2

B
al
O
p
t

0
.3
2
6

0
.2
0

0
.1
2
6

0
.6
7
6

1
.0
5
7

0
.2
6
7

0
.5
1
3

2
.7
8

2
.8
4

2
.8
1

Neural Computing and Applications

123

for limiting the required bandwidth of the DNN accelera-

tor, but also helps to reduce error sensitivity. This aspect

becomes also apparent in Fig. 5. It can be seen that models

with more operations typically also require more data

transfers. However, the BestASI models have a relatively

high number of operations in comparison with their data

transfers, as they are located offside the main trend in the

scatter plot.

4.3.2 Evaluation of resilience prediction

We now evaluate the predictive performance of our ASI

metric Eq. (6) by performing bit-flip fault injections using

the framework described in Sect. 4.2. Bit-flips are ran-

domly injected in all convolutional layer feature map

outputs (after ReLU activation and pooling, where appli-

cable) that are written to memory. MinPQE quantization

with 8 bits is used, except where otherwise specified. The

value of each bit in the feature map outputs is toggled with

a probability given by a defined BER. To get statistically

meaningful results [52], random fault locations are sam-

pled n ¼ 200 times, and for each trial the effect on the

classification output of the network is measured using the

complete test set of the respective benchmark. For this

purpose, the (CCR), i.e., the fraction of images in the test

set that are classified differently after the fault injection, is

calculated. In the ideal case of no corruption of the network

output, CCR would be zero. The sample mean of CCR over

0 5 10

Test Classification Error (%)
at 8-bit Quantization

0.0

0.2

0.4

0.6

0.8

1.0

A
rc
hi
te
ct
ur
e
Se
ns
it
iv
it
y
In
de
x

×10−2

BalOpt

BestValErr

BestASI

WorstASI

(a) ASI vs. Test Error

0.0 0.2 0.4

Operations
(GOp/Frame)

0.0

0.2

0.4

0.6

0.8

1.0

A
rc
hi
te
ct
ur
e
Se
ns
it
iv
it
y
In
de
x

×10−2

BalOpt

BestValErr

BestASI

WorstASI

(b) ASI vs. Operations

0 1 2 3 4

Data Transfer
(MB/Frame)

0.0

0.2

0.4

0.6

0.8

1.0

A
rc
hi
te
ct
ur
e
Se
ns
it
iv
it
y
In
de
x

×10−2

BalOpt

BestValErr

BestASI

WorstASI

(c) ASI vs. Data Transfer

0 5 10

Accumulated Data-Computation
Ratio (B/Op)

0.0

0.2

0.4

0.6

0.8

1.0

A
rc
hi
te
ct
ur
e
Se
ns
it
iv
it
y
In
de
x

×10−2

BalOpt

BestValErr

BestASI

WorstASI

(d) ASI vs. ADCR

Fig. 3 Pairwise comparison of ASI with each of the other objective function outcomes for 50 Pareto-optimal architectures on CIFAR-10

0 2 4

Test Classification Error (%)
at 8-bit Quantization

0.0

0.2

0.4

0.6

0.8

1.0

A
rc
hi
te
ct
ur
e
Se
ns
it
iv
it
y
In
de
x

×10−2

BalOpt

BestValErr BestASI

WorstASI

(a) ASI vs. Test Error

0.0 0.5 1.0

Operations
(GOp/Frame)

0.0

0.2

0.4

0.6

0.8

1.0

A
rc
hi
te
ct
ur
e
Se
ns
it
iv
it
y
In
de
x

×10−2

BalOpt BestValErrBestASI

WorstASI

(b) ASI vs. Operations

0 1 2 3 4

Data Transfer
(MB/Frame)

0.0

0.2

0.4

0.6

0.8

1.0

A
rc
hi
te
ct
ur
e
Se
ns
it
iv
it
y
In
de
x

×10−2

BalOpt

BestValErrBestASI

WorstASI

(c) ASI vs. Data Transfer

0 5 10

Accumulated Data-Computation
Ratio (B/Op)

0.0

0.2

0.4

0.6

0.8

1.0

A
rc
hi
te
ct
ur
e
Se
ns
it
iv
it
y
In
de
x

×10−2

BalOpt

BestValErrBestASI

WorstASI

(d) ASI vs. ADCR

Fig. 4 Pairwise comparison of ASI with each of the other objective function outcomes for 50 Pareto-optimal architectures on GTSRB

0.0 0.2 0.4

Operations (GOp/Frame)

0

1

2

3

4

D
at
a
T
ra
ns
fe
r
(M

B
/F

ra
m
e)

BestASI

0.0 0.5 1.0

Operations (GOp/Frame)

0

1

2

3

4

D
at
a
T
ra
ns
fe
r
(M

B
/F

ra
m
e)

BestASI

(a) CIFAR-10 (b) GTSRB

Fig. 5 Data transfer versus number of operations for Pareto-optimal

architectures. BestASI models are located offside the main trend

Neural Computing and Applications

123

all n ¼ 200 trials is reported. This can be interpreted as

expected probability of SDC at the given BER.

The results of a linear least-squares regression on the

ASI versus CCR value pairs of the 50 optimized models for

each benchmark are shown in Fig. 6. A BER of 0.003 was

used for bit-flip injections. A correlation coefficient R ¼
0:741 is achieved for CIFAR-10 and R ¼ 0:898 for

GTSRB. While this indicates that our ASI metric Eq. (6)

does not explain the variation in CCR completely, the

correlation is relatively strong. This is especially surpris-

ing, considering the fact that Eq. (6) is completely deter-

mined by the architecture of the neural network and does

not require any cumbersome measurements based on test

data or weight parameters. Thus, we argue that ASI is an

efficient and useful heuristic to guide NAS toward more

resilient DNN architectures.

We also evaluate CCRs for varying BERs for a subset of

models. The results for CIFAR-10 and GTSRB are plotted

in Figs. 7 and 8, respectively. An approximately linear

dependency between BER and CCR can be observed at

very low bit error rates. At higher BERs, a transition first to

a rapid growth of CCR (note the log scales) is visible, and

then, the value saturates at a value corresponding to chance

probability of choosing the same label after fault injection.

An interesting finding observable in Figs. 7 and 8 is

that the BestValErr models exhibit an unexpectedly low

CCR at low BERs, while they degrade less gracefully

(much steeper increase CCR) at high BERs. In the case of

GTSRB, BestValErr is actually, despite its higher ASI,

much more resilient than BestASI at low BERs. An

explanation might be that a good baseline classification

performance adds an extra degree of error resilience, which

is not captured by Eq. (6). The steeper increase, on the

other hand, could be due to an overfitting to the task (i.e.,

weaker ability for generalization).

4.3.3 Comparison of quantization methods

We now compare the MaxRange and MinPQE quantization

methods (Sect. 3.3), with respect to resulting CCRs after

bit-flip fault injections with a BER of 0.005. Results are

0.0000 0.0025 0.0050 0.0075

Architecture Sensitivity Index

0

20

40

60

80

100

C
la
ss
ifi
ca
ti
on

C
ha

ng
e
R
at
e
(%

)

Fitted Line, R = 0.741
BER = 0.003

0.0000 0.0025 0.0050 0.0075

Architecture Sensitivity Index

0

20

40

60

80

100

C
la
ss
ifi
ca
ti
on

C
ha

ng
e
R
at
e
(%

)

Fitted Line, R = 0.898
BER = 0.003

(a) CIFAR-10 (b) GTSRB

Fig. 6 Correlation of ASI and CCR. A correlation coefficient R ¼
0:741 is achieved for CIFAR-10 and R ¼ 0:898 for GTSRB

10−5 10−4 10−3 10−2

Bit Error Rate (log scale)

10−3

10−2

10−1

100

C
la
ss
ifi
ca
ti
on

C
ha

ng
e
R
at
e
(l
og

sc
al
e)

WorstASI
BestValErr
BalOpt
BestASI

Fig. 7 Resulting CCR for different obtained optimizers on CIFAR-10

over a range of BERs

10−5 10−4 10−3 10−2

Bit Error Rate (log scale)

10−3

10−2

10−1

100

C
la
ss
ifi
ca
ti
on

C
ha

ng
e
R
at
e
(l
og

sc
al
e)

WorstASI
BestValErr
BalOpt
BestASI

Fig. 8 Resulting CCR for different obtained optimizers on GTSRB

over a range of BERs

0 10 20 30 40 50

Model

0

20

40

60

80

100

C
la
ss
ifi
ca
ti
on

C
ha

ng
e
R
at
e
(%

)

BestASI Model

WorstASI Model

MaxRange Quantization, BER = 0.005
MinPQE Quantization, BER = 0.005

Fig. 9 Comparison of CCR at bit error rate 0.005 for CIFAR-10

models quantized with the MaxRange and MinPQE quantization

methods. Models sorted after CCR observed with MinPQE

quantization

Neural Computing and Applications

123

shown in Figs. 9 and 10. The models are sorted in

ascending order of CCR after MinPQE quantization in

these figures.

It can be seen that MaxRange results in a significantly

worse CCR in most of the cases. This can be explained by

the fact that MaxRange tends to quantize values to a larger

range, which is determined by far outliers, while these

outliers are ignored (i.e., clipped) by MinPQE. Conse-

quently, MaxRange leads to a weaker signal-to-noise ratio

compared to MinPQE in the case of bit-flip errors. We thus

argue that MinPQE is the preferable method, since it

achieves both, low baseline classification error rates as well

as high error resilience.

4.3.4 Comparison with differently optimized networks

To highlight the advantage of taking error resilience and

other hardware-oriented objective functions into account

during the neural architecture search process, we now

compare the models found by our multi-objective opti-

mization algorithm with two well-known reference net-

works. Firstly, we consider MobileNetV2 [80], which has

been derived in a manual neural architecture optimization

process. The authors of MobileNetV2 point out that their

goal was to find an architecture with low classification

error, while keeping the number of weights and operations

of the network small. They target mobile, performance-

constrained compute platforms.

Secondly, we compare our results with NASNet-

A [112], an architecture found by NAS using a reinforce-

ment learning approach. With 2000 GPU-days, the opti-

mization process in [112] requires about 100 times more

computational resources than our work. The authors of this

method solely incorporated a single objective, namely

classification error rate, to be minimized by their search

algorithm.

Our algorithm yields a set of Pareto-optimal architec-

tures, while the references only come with a single base

architecture. To account for the trade-off possibility of

model size against classification performance, we evaluate

differently scaled versions of both reference architectures.

As suggested by the authors of MobileNetV2 [80], we use

a width multiplier a with which the numbers of filters in all

convolutional layers except the very last are scaled. We

choose a 2 f0:2; 0:25; 0:5; 0:75; 1:0; 1:25g. For NASNet-

A, we use scaled versions of the CIFAR-10 architecture

following the construction rule defined in the paper [112].

The architectures are described using the notation ðn@ pÞ,
where n is the number of cells and p is the number of

penultimate convolutional filters of the architecture. We

evaluated nine different parametrizations in the range of

ð1@ 192Þ up to ð4@ 768Þ.
For a fair comparison, we train all reference architec-

tures from scratch using exactly the same training setup

and hyperparameters as used in the final retraining step for

the architectures found by our method (Sect. 4.1). Fur-

thermore, we quantize the reference architectures in the

same way using the MinPQE method (Sect. 3.3) with 8-bit

resolution.

For the following evaluation, we select the top-10 of our

architectures with lowest obtained ASI scores found for the

CIFAR-10 benchmark and compare them with the scaled

variants of the two reference architectures also trained on

CIFAR-10. The plot in Fig. 11 compares the resulting data

transfer (MB/Frame), classification error rate, and hard-

ware error resilience, measured by CCR for a given BER of

0.005 in the feature map outputs. As before, mean CCRs

over 200 evaluations are reported. The construction of the

upscaled architecture will be explained further below.

A first interesting observation is that all our models

outperform the reference models in terms of error resi-

lience, since they achieve significantly lower CCRs. Put in

numbers, at least 75% of the MobileNetV2 classification

0 10 20 30 40 50

Model

0

20

40

60

80

100

C
la
ss
ifi
ca
ti
on

C
ha

ng
e
R
at
e
(%

)

BestASI Model

WorstASI Model

MaxRange Quantization, BER = 0.005
MinPQE Quantization, BER = 0.005

Fig. 10 Comparison of CCR at bit error rate 0.005 for GTSRB models

quantized with the MaxRange and MinPQE quantization methods.

Models sorted after CCR observed with MinPQE quantization

3 4 5 6 7 8 9

Test Classification Error (%) at 8-bit Quantization

0

20

40

60

80

C
la
ss
ifi
ca
ti
on

C
ha

ng
e
R
at
e
(%

),
B
E
R
=

0.
00
5

upscaled architecture

1 MB/Frame
3 MB/Frame
6 MB/Frame
10 MB/Frame
15 MB/Frame

MobileNetV2
NASNet-A
Ours

Fig. 11 Comparison of CCR, test error, and data transfer of our

models and competing architectures on CIFAR-10

Neural Computing and Applications

123

outputs and at least 65% of the NASNet-A classification

outputs are corrupted after fault injection, while our best

architecture achieves a CCR of less than 20% at the given

BER. As visible in Fig. 12, we not only outperform the

reference models at this BER, but over a broad range of

BERs in terms of error resilience (remember that BestASI

not even has the lowest CCR, see Fig. 9). These results

indicate that incorporating our ASI heuristic Eq. (6) as

objective function into the architecture search process

helps finding significantly more resilient architectures.

At the same time, the influence of energy efficiency

optimization by the objective function defined in Eq. (8) is

visible in Fig. 11, since the amount of data transfer per

frame is comparatively low for our architectures (except

the upscaled version). In contrast, the largest evaluated

NASNet-A architecture requires a data transfer of about

14.2 MB per image classification. This can be explained by

the large number of 170 convolutional layers in this model

(ours have six or less). Thus, energy efficiency of this

model in a hardware accelerator with layerwise data

transfer between compute arithmetic and external memory

would be very low. Moreover, since the number of oper-

ations for each individual layer is low, the ADCR of the

largest NASNet-A model is at a very high value of 217.9

(the worst ADCR among our models is 10.26, see Fig. 3d).

For a layerwise hardware accelerator, this means that either

throughput is restricted by memory bandwidth, or a large

bandwidth is required to operate in a compute-bound

domain of the roofline model (Sect. 3.1.2). This example

illustrates the importance of not focusing solely on the

number of operations for evaluating the efficiency of a

neural architecture.

While our top-10 ASI models shown in Fig. 11 achieve

low CCR, their baseline test error rate is slightly behind the

larger MobileNetV2 and NASNet-A versions, although

they are still competitive with respect to their small model

size. Therefore, we evaluate if we can improve the

classification performance of our models by making them

larger. We select the model with lowest CCR and upscale it

by multiplying its number of filters in each convolutional

layer by a factor of eight. The resulting upscaled model is

located in the bottom left part of Fig. 11. It can be seen that

upscaling comes at the price of a largely increased data

transfer. Nevertheless, an improvement by almost two

percentage points in test classification error rate can be

achieved. At the same time, CCR can be further lowered to

a remarkable value of about 11:3%. This is about a 6� to

7� lower data corruption rate compared to the Mobile-

NetV2 and NASNet-A models. A lower CCR is also

expected based on Eq. (6). Thus, our method enables us to

construct highly error-resilient model architectures with

close to state-of-the-art classification performance.

5 Conclusions

We have introduced a multi-objective optimization method

for hardware-focused neural architecture design. Our

method incorporates a novel heuristic, called ASI, which

predicts the hardware error sensitivity of a neural archi-

tecture. We are the first to jointly consider error resilience,

efficiency, and performance optimization in a neural

architecture search framework.

Utilizing the CIFAR-10 and GTSRB image classifica-

tion benchmarks, we have demonstrated that our ASI

objective performs well in an automated NAS framework

and is able to find neural networks with significantly

increased error resilience. In comparison with the popular

MobileNetV2 and NASNet-A models, the most resilient

architecture found by our method achieves about a 6� to

7� lower data corruption rate at 0:5% bit error rate in the

feature maps of the network. We have evaluated the pre-

dictive performance of ASI by performing linear regression

between predicted and measured output corruption rates

with a resulting correlation coefficient of up to 0.898.

We have complemented ASI with further hardware-fo-

cused objective functions that focus on the efficiency

optimization of neural architectures for resource con-

strained neural accelerators. Since our new objective

functions only require topology information of the neural

network, they enable an efficient architecture search pro-

cess. We have utilized the LEMONADE algorithm which

performs an optimized sampling of the architecture search

space in order to obtain Pareto-optimal solutions over a

wide range of objective values. This allows the choice of

an optimal solution based on the requirements of a given

application. Finally, our findings about the influence of

different quantization techniques on DNN error resilience

highlight the importance of choosing an optimization

10−5 10−4 10−3 10−2

Bit Error Rate (log scale)

10−2

10−1

100
C
la
ss
ifi
ca
ti
on

C
ha

ng
e
R
at
e
(l
og

sc
al
e)

MobileNetV2 (α = 1)
NASNet-A (3@384)
BestASI (ours)

Fig. 12 Comparison of our BestASI model and references on CIFAR-

10 based on CCR over BER

Neural Computing and Applications

123

technique that fosters a high signal-to-noise ratio to limit

the influence of bit-flip errors.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C,

Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Good-

fellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser

L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray

D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar

K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O,

Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015)

Tensorflow: large-scale machine learning on heterogeneous

distributed systems. https://www.tensorflow.org/

2. Aitken R, Cannon EH, Pant M, Tahoori MB (2015) Resiliency

challenges in sub-10nm technologies. In: IEEE 33rd VLSI Test

Symposium (VTS), pp 1–4. https://doi.org/10.1109/VTS.2015.

7116281

3. Azizimazreah A, Gu Y, Gu X, Chen L (2018) Tolerating soft

errors in deep learning accelerators with reliable on-chip

memory designs. In: IEEE international conference on net-

working, architecture and storage (NAS), pp 1–10. https://doi.

org/10.1109/NAS.2018.8515692

4. Bach S, Binder A, Montavon G, Klauschen F, Müller KR,

Samek W (2015) On pixel-wise explanations for non-linear

classifier decisions by layer-wise relevance propagation. PLoS

ONE. https://doi.org/10.1371/journal.pone.0130140

5. Baker B, Gupta O, Naik N, Raskar R (2017) Designing neural

network architectures using reinforcement learning. In: Inter-

national conference on learning representations (ICLR)

6. Baker B, Gupta O, Raskar R, Naik N (2017) Accelerating neural

architecture search using performance prediction. In: NIPS

workshop on meta-learning

7. Bender G, Kindermans PJ, Zoph B, Vasudevan V, Le Q (2018)

Understanding and simplifying one-shot architecture search. In:

International conference on machine learning (ICML)

8. Blasco X, Herrero JM, Sanchis J, Martı́nez M (2008) A new

graphical visualization of n-dimensional Pareto front for deci-

sion-making in multiobjective optimization. Inf Sci

178(20):3908–3924. https://doi.org/10.1016/j.ins.2008.06.010

9. Cai H, Chen T, Zhang W, Yu Y, Wang J (2018) Efficient

architecture search by network transformation. In: AAAI

10. Cai H, Yang J, Zhang W, Han S, Yu Y (2018) Path-level net-

work transformation for efficient architecture search. In: Inter-

national conference on machine learning (ICML)

11. Cai H, Zhu L, Han S (2019) ProxylessNAS: direct neural

architecture search on target task and hardware. In: International

conference on learning representations (ICLR)

12. Cai L, Barneche AM, Herbout A, Sheng Foo C, Lin J,

Ramaseshan Chandrasekhar V, Sabry M (2019) TEA-DNN: the

quest for time-energy-accuracy co-optimized deep neural net-

works. In: International symposium on low power electronics

and design (ISLPED). https://doi.org/10.1109/ISLPED.2019.

8824934

13. Carter NP, Naeimi H, Gardner DS (2010) Design techniques for

cross-layer resilience. In: Design, automation & test in Europe

conference & exhibition (DATE), pp 1023–1028. https://doi.org/

10.1109/DATE.2010.5456960

14. Chen T, Goodfellow IJ, Shlens J (2016) Net2Net: accelerating

learning via knowledge transfer. In: International conference on

learning representations (ICLR)

15. Chen YH, Krishna T, Emer JS, Sze V (2017) Eyeriss: an energy-

efficient reconfigurable accelerator for deep convolutional neu-

ral networks. IEEE J Solid-State Circuits 52(1):127–138. https://

doi.org/10.1109/JSSC.2016.2616357

16. Cheng AC, Dong JD, Hsu CH, Chang SH, Sun M, Chang SC,

Pan JY, Chen YT, Wei W, Juan DC (2018) Searching toward

pareto-optimal device-aware neural architectures. In: Proceed-

ings of the international conference on computer-aided design

(ICCAD), ICCAD ’18. https://doi.org/10.1145/3240765.

3243494

17. Chenxi L, Liang Chieh C, Florian S, Hartwig A, Wei H, Alan L

Y, Li FF (2019) Auto-deeplab: hierarchical neural architecture

search for semantic image segmentation. In: Conference on

computer vision and pattern recognition (CVPR). https://doi.org/

10.1109/CVPR.2019.00017

18. Chollet F (2017) Xception: deep learning with depthwise sep-

arable convolutions. In: IEEE conference on computer vision

and pattern recognition (CVPR), pp 1800–1807. https://doi.org/

10.1109/CVPR.2017.195

19. Chollet F et al (2015) Keras. https://keras.io

20. Deb K, Kalyanmoy D (2001) Multi-objective optimization using

evolutionary algorithms. Wiley, New York. https://doi.org/10.

5555/559152

21. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist

non-dominated sorting genetic algorithm for multi-objective

optimization: NSGA-II. In: Schoenauer M, Deb K, Rudolph G,

Yao X, Lutton E, Merelo JJ, Schwefel HP (eds) Parallel problem

solving from nature PPSN VI. Springer, Heidelberg, pp 849–858

22. Deng J, Fang Y, Du Z, Wang Y, Li H, Temam O, Ienne P, Novo

D, Li X, Chen Y, Wu C (2015) Retraining-based timing error

mitigation for hardware neural networks. In: Design, automation

and test in Europe conference and exhibition (DATE),

pp 593–596

23. DeVries T, Taylor GW (2017) Improved regularization of

convolutional neural networks with cutout. eprint arXiv:1708.

04552

24. Dias FM, Borralho R, Fontes P, Antunes A (2010) FTSET: a

software tool for fault tolerance evaluation and improvement.

Neural Comput Appl 19(5):701–712. https://doi.org/10.1007/

s00521-009-0329-0

25. Dong JD, Cheng AC, Juan DC, Wei W, Sun M (2018) Dpp-net:

Device-aware progressive search for pareto-optimal neural

architectures. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y

(eds) 15th European conference on computer vision (ECCV).

https://doi.org/10.1007/978-3-030-01252-6_32

26. Dreslinski RG, Wieckowski M, Blaauw D, Sylvester D, Mudge

T (2010) Near-threshold computing: reclaiming Moore’s law

through energy efficient integrated circuits. Proc IEEE

98(2):253–266. https://doi.org/10.1109/JPROC.2009.2034764

27. Ehrgott M, Tenfelde-Podehl D (2003) Computation of ideal and

Nadir values and implications for their use in MCDM methods.

Eur J Oper Res 151(1):119–139. https://doi.org/10.1016/S0377-

2217(02)00595-7

28. El Mhamdi EM, Guerraoui R (2017) When neurons fail. In:

IEEE international parallel and distributed processing sympo-

sium (IPDPS), pp 1028–1037. https://doi.org/10.1109/IPDPS.

2017.66

29. Elsken T, Metzen JH, Hutter F (2017) Simple and efficient

architecture search for convolutional neural networks. In: NIPS

workshop on meta-learning

Neural Computing and Applications

123

https://www.tensorflow.org/
https://doi.org/10.1109/VTS.2015.7116281
https://doi.org/10.1109/VTS.2015.7116281
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1109/NAS.2018.8515692
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1016/j.ins.2008.06.010
https://doi.org/10.1109/ISLPED.2019.8824934
https://doi.org/10.1109/ISLPED.2019.8824934
https://doi.org/10.1109/DATE.2010.5456960
https://doi.org/10.1109/DATE.2010.5456960
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1145/3240765.3243494
https://doi.org/10.1145/3240765.3243494
https://doi.org/10.1109/CVPR.2019.00017
https://doi.org/10.1109/CVPR.2019.00017
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
https://keras.io
https://doi.org/10.5555/559152
https://doi.org/10.5555/559152
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1708.04552
https://doi.org/10.1007/s00521-009-0329-0
https://doi.org/10.1007/s00521-009-0329-0
https://doi.org/10.1007/978-3-030-01252-6_32
https://doi.org/10.1109/JPROC.2009.2034764
https://doi.org/10.1016/S0377-2217(02)00595-7
https://doi.org/10.1016/S0377-2217(02)00595-7
https://doi.org/10.1109/IPDPS.2017.66
https://doi.org/10.1109/IPDPS.2017.66

30. Elsken T, Metzen JH, Hutter F (2019) Efficient multi-objective

neural architecture search via Lamarckian evolution. In: Inter-

national conference on learning representations (ICLR)

31. Elsken T, Metzen JH, Hutter F (2019) Neural architecture

search: a survey. J Mach Learn Res 20(55):1–21

32. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier

neural networks. In: International conference on artificial intel-

ligence and statistics (AISTATS), vol 15

33. Gomez LB, Cappello F, Carro L, DeBardeleben N, Fang B,

Gurumurthi S, Pattabiraman K, Rech P, Reorda MS (2014)

GPGPUs: how to combine high computational power with high

reliability. In: Design, automation and test in Europe conference

and exhibition (DATE). https://doi.org/10.7873/DATE.2014.

354

34. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T,

Wang X, Wang G, Cai J, Chen T (2018) Recent advances in

convolutional neural networks. Pattern Recognit 77:354–377.

https://doi.org/10.1016/j.patcog.2017.10.013

35. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition. In: IEEE conference on computer vision and

pattern recognition (CVPR), pp 770–778. https://doi.org/10.

1109/CVPR.2016.90

36. Henkel J, Bauer L, Dutt N, Gupta P, Nassif S, Shafique M,

Tahoori M, Wehn N (2013) Reliable on-chip systems in the

nano-era. In: 50th annual design automation conference (DAC),

pp 695–704. https://doi.org/10.1145/2463209.2488857

37. Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in

a neural network. arXiv preprint arxiv: 1503.02531

38. Horowitz M (2014) Computing’s energy problem (and what we

can do about it). In: IEEE international solid-state circuits

conference (ISSCC), pp 10–14. https://doi.org/10.1109/ISSCC.

2014.6757323

39. Hsu CH, Chang SH, Juan DC, Pan JY, Chen YT, Wei W, Chang

SC (2018) MONAS: multi-objective neural architecture search.

arXiv preprint

40. Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017)

Densely connected convolutional networks. In: IEEE conference

on computer vision and pattern recognition (CVPR),

pp 4700–4708. https://doi.org/10.1109/CVPR.2017.243

41. Hutter F, Kotthoff L, Vanschoren J (eds) (2019) Automated

machine learning: methods, systems, challenges. Springer,

Berlin. https://doi.org/10.1007/978-3-030-05318-5

42. Ioffe S, Szegedy C (2015) Batch normalization: accelerating

deep network training by reducing internal covariate shift. In:

International conference on machine learning (ICML)

43. Jacob B, Kligys S, Chen B, Zhu M, Tang M, Howard AG, Adam

H, Kalenichenko D (2018) Quantization and training of neural

networks for efficient integer-arithmetic-only inference. In:

IEEE conference on computer vision and pattern recognition

(CVPR). https://doi.org/10.1109/CVPR.2018.00286

44. Kerlirzin P, Vallet F (1993) Robustness in multilayer percep-

trons. Neural Comput 5(3):473–482. https://doi.org/10.1162/

neco.1993.5.3.473

45. Kim S, Howe P, Moreau T, Alaghi A, Ceze L, Visvesh S (2018)

MATIC: Learning around errors for efficient low-voltage neural

network accelerators. In: Design, automation and test in Europe

conference and exhibition (DATE). https://doi.org/10.23919/

DATE.2018.8341970

46. Kim YH, Reddy B, Yun S, Seo C (2017) NEMO: neuro-evo-

lution with multiobjective optimization of deep neural network

for speed and accuracy. In: ICML’17 AutoML workshop

47. Klein A, Falkner S, Springenberg JT, Hutter F (2017) Learning

curve prediction with Bayesian neural networks. In: Interna-

tional conference on learning representations (ICLR)

48. Koopman P, Wagner M (2016) Challenges in autonomous

vehicle testing and validation. SAE Int J Transp Saf 4(1):15–24.

https://doi.org/10.4271/2016-01-0128

49. Krizhevsky A (2009) Learning multiple layers of features from

tiny images. Master Thesis, University of Toronto

50. Krogh A, Hertz JA (1991) A simple weight decay can improve

generalization. In: Advances in neural information processing

systems

51. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature

521(7553):436–444. https://doi.org/10.1038/nature14539

52. Leveugle R, Calvez A, Maistri P, Vanhauwaert P (2009) Sta-

tistical fault injection: quantified error and confidence. In:

Design, automation and test in Europe conference and exhibition

(DATE), pp 502–506. https://doi.org/10.1109/DATE.2009.

5090716

53. Li G, Hari SKS, Sullivan M, Tsai T, Pattabiraman K, Emer J,

Keckler SW (2017) Understanding error propagation in deep

learning neural network (DNN) accelerators and applications.

In: Proceedings of the international conference for high per-

formance computing, networking, storage and analysis. https://

doi.org/10.1145/3126908.3126964

54. Li J, Wen G, Gan J, Zhang L, Zhang S (2019) Sparse nonlinear

feature selection algorithm via local structure learning. Emerg

Sci J. https://doi.org/10.28991/esj-2019-01175

55. Lin DD, Talathi SS, Annapureddy VS (2016) Fixed point

quantization of deep convolutional networks. In: International

conference on machine learning (ICML), vol 48, pp 2849–2858

56. Lin SC, Zhang Y, Hsu CH, Skach M, Haque ME, Tang L, Mars

J (2018) The architectural implications of autonomous driving:

constraints and acceleration. In: International conference on

architectural support for programming languages and operating

systems, pp 751–766. https://doi.org/10.1145/3173162.3173191

57. Liu C, Hu M, Strachan JP, Li H (2017) Rescuing memristor-

based neuromorphic design with high defects. In: 54th annual

design automation conference (DAC), pp 1–6. https://doi.org/10.

1145/3061639.3062310

58. Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li LJ, Fei-Fei L,

Yuille A, Huang J, Murphy K (2018) Progressive neural archi-

tecture search. In: 15th European conference on computer vision

(ECCV). https://doi.org/10.1007/978-3-030-01246-5_2

59. Liu H, Simonyan K, Yang Y (2019) DARTS: differentiable

architecture search. In: International conference on learning

representations (ICLR)

60. Loshchilov I, Hutter F (2017) SGDR: stochastic gradient des-

cent with warm restarts. In: International conference on learning

representations (ICLR)

61. Lu Z, Whalen I, Boddeti V, Dhebar Y, Deb K, Goodman E,

Banzhaf W (2019) NSGA-net: a multi-objective genetic algo-

rithm for neural architecture search. In: Genetic and evolution-

ary computation conference (GECCO). https://doi.org/10.1145/

3321707.3321729

62. Mahdiani HR, Fakhraie SM, Lucas C (2012) Relaxed fault-tol-

erant hardware implementation of neural networks in the pres-

ence of multiple transient errors. IEEE Trans Neural Netw Learn

Syst 23(8):1215–1228. https://doi.org/10.1109/TNNLS.2012.

2199517

63. Marques J, Andrade J, Falcao G (2017) Unreliable memory

operation on a convolutional neural network processor. In: IEEE

international workshop on signal processing systems (SiPS).

https://doi.org/10.1109/SiPS.2017.8110024

64. Miettinen K (1999) Nonlinear multiobjective optimization.

Springer, Berlin

65. Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D,

Francon O, Raju B, Shahrzad H, Navruzyan A, Duffy N, Hodjat

B (2017) Evolving deep neural networks. arXiv:1703.00548

Neural Computing and Applications

123

https://doi.org/10.7873/DATE.2014.354
https://doi.org/10.7873/DATE.2014.354
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/2463209.2488857
http://arxiv.org/abs/1503.02531
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1162/neco.1993.5.3.473
https://doi.org/10.1162/neco.1993.5.3.473
https://doi.org/10.23919/DATE.2018.8341970
https://doi.org/10.23919/DATE.2018.8341970
https://doi.org/10.4271/2016-01-0128
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/DATE.2009.5090716
https://doi.org/10.1109/DATE.2009.5090716
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.28991/esj-2019-01175
https://doi.org/10.1145/3173162.3173191
https://doi.org/10.1145/3061639.3062310
https://doi.org/10.1145/3061639.3062310
https://doi.org/10.1007/978-3-030-01246-5_2
https://doi.org/10.1145/3321707.3321729
https://doi.org/10.1145/3321707.3321729
https://doi.org/10.1109/TNNLS.2012.2199517
https://doi.org/10.1109/TNNLS.2012.2199517
https://doi.org/10.1109/SiPS.2017.8110024
http://arxiv.org/abs/1703.00548

66. Mittal S (2016) A survey of techniques for approximate com-

puting. ACM Comput Surv 48(4):1–33. https://doi.org/10.1145/

2893356

67. Mittal S (2020) A survey on modeling and improving reliability

of DNN algorithms and accelerators. J Syst Archit. https://doi.

org/10.1016/j.sysarc.2019.101689

68. Montavon G, Lapuschkin S, Binder A, Samek W, Müller KR

(2017) Explaining nonlinear classification decisions with deep

Taylor decomposition. Pattern Recogn 65:211–222. https://doi.

org/10.1016/j.patcog.2016.11.008

69. Montavon G, Samek W, Müller KR (2018) Methods for inter-

preting and understanding deep neural networks. Digit Signal

Proc 73:1–15. https://doi.org/10.1016/j.dsp.2017.10.011

70. Mutlu O (2017) The Row–Hammer problem and other issues we

may face as memory becomes denser. In: Design, automation

and test in Europe conference and exhibition (DATE). https://

doi.org/10.23919/DATE.2017.7927156

71. Pham H, Guan MY, Zoph B, Le QV, Dean J (2018) Efficient

neural architecture search via parameter sharing. In: Interna-

tional conference on machine learning (ICML)

72. Piuri V (2001) Analysis of fault tolerance in artificial neural

networks. J Parallel Distrib Comput 61(1):18–48. https://doi.org/

10.1006/jpdc.2000.1663

73. Reagen B, Whatmough P, Adolf R, Rama S, Lee H, Lee SK,

Hernandez-Lobato JM, Wei GY, Brooks D (2016) Minerva:

enabling low-power, highly-accurate deep neural network

accelerators. In: ACM/IEEE 43rd annual international sympo-

sium on computer architecture (ISCA), pp 267–278. https://doi.

org/10.1109/ISCA.2016.32

74. Reagen B, Gupta U, Pentecost L, Whatmough P, Lee SK,

Mulholland N, Brooks D, Wei GY (2018) Ares: a framework for

quantifying the resilience of deep neural networks. In: 55th

annual design automation conference (DAC). https://doi.org/10.

1109/DAC.2018.8465834

75. Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, Le

QV, Kurakin A (2017) Large-scale evolution of image classi-

fiers. In: Precup D, Teh YW (eds) International conference on

machine learning (ICML), PMLR, International Convention

Centre, Sydney, Australia, proceedings of machine learning

research, vol 70, pp 2902–2911

76. Real E, Aggarwal A, Huang Y, Le QV (2019) Regulraized

evolution for image classifier architecture search. In: AAAI

77. Saikia T, Marrakchi Y, Zela A, Hutter F, Brox T (2019) Auto-

DispNet: improving disparity estimation with AutoML

78. Salami B, Unsal OS, Kestelman AC (2018) On the resilience of

RTL NN accelerators: fault characterization and mitigation. In:

30th international symposium on computer architecture and high

performance computing (SBAC-PAD), pp 322–329. https://doi.

org/10.1109/CAHPC.2018.8645906

79. Saljoughi AS, Mehvarz M, Mirvaziri H (2017) Attacks and

intrusion detection in cloud computing using neural networks

and particle swarm optimization algorithms. Emerg Sci J.

https://doi.org/10.28991/ijse-01120

80. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018)

MobileNetV2: Inverted residuals and linear bottlenecks. In:

IEEE conference on computer vision and pattern recognition

(CVPR). https://doi.org/10.1109/CVPR.2018.00474

81. Santos FF, Pimenta PF, Lunardi C, Draghetti L, Carro L, Kaeli

D, Rech P (2019) Analyzing and increasing the reliability of

convolutional neural networks on GPUs. IEEE Trans Reliab

68(2):663–677. https://doi.org/10.1109/TR.2018.2878387

82. Saxena S, Verbeek J (2016) Convolutional neural fabrics. In:

Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R (eds)

Conference on neural information processing systems (NIPS).

Curran Associates Inc., Red Hook, pp 4053–4061

83. Schorn C, Guntoro A, Ascheid G (2018) Accurate neuron resi-

lience prediction for a flexible reliability management in neural

network accelerators. In: Design, automation and test in Europe

conference and exhibition (DATE). https://doi.org/10.23919/

DATE.2018.8342151

84. Schorn C, Guntoro A, Ascheid G (2018) Efficient on-line error

detection and mitigation for deep neural network accelerators.

In: Gallina B, Skavhaug A, Bitsch F (eds) Computer safety,

reliability, and security (SAFECOMP), LNCS, vol 11093.

Springer, Berlin. https://doi.org/10.1007/978-3-319-99130-6_14

85. Schorn C, Guntoro A, Ascheid G (2019) An efficient bit-flip

resilience optimization method for deep neural networks. In:

Design, automation and test in Europe conference and exhibition

(DATE), pp 1486–1491. https://doi.org/10.23919/DATE.2019.

8714885

86. Sridharan V, DeBardeleben N, Blanchard S, Ferreira KB,

Stearley J, Shalf J, Gurumurthi S (2015) Memory errors in

modern systems: the good, the bad, and the ugly. In: Twentieth

international conference on architectural support for program-

ming languages and operating systems (ASPLOS), pp 297–310.

https://doi.org/10.1145/2694344.2694348

87. Srinivasan G, Wijesinghe P, Sarwar SS, Jaiswal A, Roy K

(2016) Significance driven hybrid 8T-6T SRAM for energy-ef-

ficient synaptic storage in artificial neural networks. In: Design,

automation and test in Europe conference and exhibition

(DATE)

88. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I,

Salakhutdinov RR (2014) Dropout: a simple way to prevent

neural networks from overfitting. J Mach Learn Res

15:1929–1958

89. Stallkamp J, Schlipsing M, Salmen J, Igel C (2012) Man vs.

computer: benchmarking machine learning algorithms for traffic

sign recognition. Neural Netw 32:323–332. https://doi.org/10.

1016/j.neunet.2012.02.016

90. Stanley KO, Miikkulainen R (2002) Evolving neural networks

through augmenting topologies. Evol Comput 10:99–127.

https://doi.org/10.1162/106365602320169811

91. Sze V, Chen YH, Yang TJ, Emer JS (2017) Efficient processing

of deep neural networks: a tutorial and survey. Proc IEEE

105(12):2295–2329. https://doi.org/10.1109/JPROC.2017.

2761740

92. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016)

Rethinking the inception architecture for computer vision. In:

IEEE conference on computer vision and pattern recognition

(CVPR), pp 2818–2826. https://doi.org/10.1109/CVPR.2016.

308

93. Tan M, Chen B, Pang R, Vasudevan V, Le QV (2019) MnasNet:

platform-aware neural architecture search for mobile. In: IEEE/

CVF conference on computer vision and pattern recognition

(CVPR). https://doi.org/10.1109/CVPR.2019.00293

94. Torres-Huitzil C, Girau B (2017) Fault and error tolerance in

neural networks: a review. IEEE Access 5:17322–17341. https://

doi.org/10.1109/ACCESS.2017.2742698

95. Vaezi Nejad SM, Marandi SM, Salajegheh E (2019) A hybrid of

artificial neural networks and particle swarm optimization

algorithm for inverse modeling of leakage in earth dams. Civ

Eng J. https://doi.org/10.28991/cej-2019-03091392

96. Vanhoucke V, Senior A, Mao MZ (2011) Improving the speed

of neural networks on CPUs. In: Deep learning and unsupervised

feature learning workshop, NIPS 2011

97. Venkataramani S, Ranjan A, Roy K, Raghunathan A (2014)

AxNN: energy-efficient neuromorphic systems using approxi-

mate computing. In: IEEE/ACM international symposium on

low power electronics and design (ISLPED), pp 27–32. https://

doi.org/10.1145/2627369.2627613

Neural Computing and Applications

123

https://doi.org/10.1145/2893356
https://doi.org/10.1145/2893356
https://doi.org/10.1016/j.sysarc.2019.101689
https://doi.org/10.1016/j.sysarc.2019.101689
https://doi.org/10.1016/j.patcog.2016.11.008
https://doi.org/10.1016/j.patcog.2016.11.008
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.23919/DATE.2017.7927156
https://doi.org/10.23919/DATE.2017.7927156
https://doi.org/10.1006/jpdc.2000.1663
https://doi.org/10.1006/jpdc.2000.1663
https://doi.org/10.1109/ISCA.2016.32
https://doi.org/10.1109/ISCA.2016.32
https://doi.org/10.1109/DAC.2018.8465834
https://doi.org/10.1109/DAC.2018.8465834
https://doi.org/10.1109/CAHPC.2018.8645906
https://doi.org/10.1109/CAHPC.2018.8645906
https://doi.org/10.28991/ijse-01120
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/TR.2018.2878387
https://doi.org/10.23919/DATE.2018.8342151
https://doi.org/10.23919/DATE.2018.8342151
https://doi.org/10.1007/978-3-319-99130-6_14
https://doi.org/10.23919/DATE.2019.8714885
https://doi.org/10.23919/DATE.2019.8714885
https://doi.org/10.1145/2694344.2694348
https://doi.org/10.1016/j.neunet.2012.02.016
https://doi.org/10.1016/j.neunet.2012.02.016
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/ACCESS.2017.2742698
https://doi.org/10.1109/ACCESS.2017.2742698
https://doi.org/10.28991/cej-2019-03091392
https://doi.org/10.1145/2627369.2627613
https://doi.org/10.1145/2627369.2627613

98. Vogel S, Springer J, Guntoro A, Ascheid G (2019) Self-super-

vised quantization of pre-trained neural networks for multipli-

erless acceleration. In: Design, automation and test in Europe

conference and exhibition (DATE), pp 1088–1093. https://doi.

org/10.23919/DATE.2019.8714901

99. Wei T, Wang C, Rui Y, Chen CW (2016) Network morphism.

In: Balcan MF, Weinberger KQ (eds) International conference

on machine learning (ICML), PMLR, New York, New York,

USA, Proceedings of machine learning research, vol 48,

pp 564–572

100. Whatmough PN, Lee SK, Brooks D, Wei GY (2018) Dnn

engine: a 28-nm timing-error tolerant sparse deep neural net-

work processor for IoT applications. IEEE J Solid-State Circuits

53(9):2722–2731. https://doi.org/10.1109/JSSC.2018.2841824

101. WikiChip (2019) FSD Chip—Tesla. https://en.wikichip.org/

wiki/fsd_chip

102. Williams S, Waterman A, Patterson D (2009) Roofline: an

insightful visual performance model for multicore architectures.

Commun ACM 52(4):65–76. https://doi.org/10.1145/1498765.

1498785

103. Wu B, Dai X, Zhang P, Wang Y, Sun F, Wu Y, Tian Y, Vajda P,

Jia Y, Keutzer K (2019) FBNet: hardware-aware efficient con-

vnet design via differentiable neural architecture search. In:

IEEE/CVF conference on computer vision and pattern recog-

nition (CVPR). https://doi.org/10.1109/CVPR.2019.01099

104. Xia L, Liu M, Ning X, Chakrabarty K, Wang Y (2017) Fault-

tolerant training with on-line fault detection for RRAM-based

neural computing systems. In: 54th annual design automation

conference (DAC). https://doi.org/10.1145/3061639.3062248

105. Xie S, Zheng H, Liu C, Lin L (2019) SNAS: stochastic neural

architecture search. In: International conference on learning

representations (ICLR)

106. Yang L, Murmann B (2017) SRAM voltage scaling for energy-

efficient convolutional neural networks. In: 18th international

symposium on quality electronic design (ISQED), pp 7–12.

https://doi.org/10.1109/ISQED.2017.7918284

107. Zhang C, Sun G, Fang Z, Zhou P, Pan P, Cong J (2018) Caf-

feine: towards uniformed representation and acceleration for

deep convolutional neural networks. IEEE Trans Comput Aid

Des Integr Circuits Syst. https://doi.org/10.1109/TCAD.2017.

2785257

108. Zhang H, Cisse M, Dauphin YN, Lopez-Paz D (2018) mixup:

beyond empirical risk minimization. In: International conference

on learning representations (ICLR)

109. Zhang Q, Wang T, Tian Y, Yuan F, Xu Q (2015) ApproxANN:

an approximate computing framework for artificial neural net-

work. In: Design, automation and test in Europe conference and

exhibition (DATE), pp 701–706

110. Zhong Z, Yang Z, Deng B, Yan J, Wu W, Shao J, Liu CL (2018)

BlockQNN: efficient block-wise neural network architecture

generation. arXiv preprint

111. Zoph B, Le QV (2017) Neural architecture search with rein-

forcement learning. In: International conference on learning

representations (ICLR)

112. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning

transferable architectures for scalable image recognition. In:

Conference on computer vision and pattern recognition (CVPR).

https://doi.org/10.1109/CVPR.2018.00907

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://doi.org/10.23919/DATE.2019.8714901
https://doi.org/10.23919/DATE.2019.8714901
https://doi.org/10.1109/JSSC.2018.2841824
https://en.wikichip.org/wiki/fsd_chip
https://en.wikichip.org/wiki/fsd_chip
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1145/3061639.3062248
https://doi.org/10.1109/ISQED.2017.7918284
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/CVPR.2018.00907

	Automated design of error-resilient and hardware-efficient deep neural networks
	Abstract
	Introduction
	Background and related work
	Neural network resilience analysis
	Experimental analysis
	Theoretical analysis

	Neural network resilience optimization
	Multi-objective optimization
	Neural architecture search

	Hardware-focused neural architecture design
	Hardware-specific objectives
	Error resilience
	Latency
	Energy efficiency
	Bandwidth requirement

	Multi-objective NAS
	LEMONADE
	Search space and mutations within LEMONADE

	Fixed-point quantization

	Experiments
	Experimental setup
	Error simulations
	Results
	Trade-off analysis between objectives
	Evaluation of resilience prediction
	Comparison of quantization methods
	Comparison with differently optimized networks

	Conclusions
	References

