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ABSTRACT

Neural architecture search (NAS) methods rely on a search strategy for deciding
which architectures to evaluate next and a performance estimation strategy for as-
sessing their performance (e.g., using full evaluations, multi-fidelity evaluations,
or the one-shot model). In this paper, we focus on the search strategy and demon-
strate that the simple yet powerful evolutionary algorithm of differential evolution
(DE) yields state-of-the-art performance for NAS, comparing favourably to regu-
larized evolution and Bayesian optimization. It yields improved and more robust
results for 13 tabular NAS benchmarks based on NAS-Bench-101, NAS-Bench-
1Shot1, NAS-Bench-201 and NAS-HPO bench.

1 INTRODUCTION

Evolutionary algorithms have a long history for neural architecture search (NAS), for combined
search of architectures and weights (Stanley et al., 2019; 2009), (Mason et al., 2017a; Baioletti
et al., 2020), search of just the architecture (Real et al., 2017; Elsken et al., 2018; Liu et al., 2017),
and multi-objective optimization of performance and resource consumption (Elsken et al., 2019b).
Recently, regularized evolution (Real et al., 2018) has been shown to yield very robust performance
on NAS benchmarks (Ying et al., 2019) and found novel neural architectures for object recognition
in CIFAR-10 (Real et al., 2018) and to an improved version of the transformer (So et al., 2019).

Here, we study the use of the popular evolutionary algorithm of differential evolution (DE, Storn &
Kenneth (1997)) for NAS. DE has previously been used to search basic neural network architectures.
For example, Mineu et al. (2010) used DE to search for layers, neurons, weights and connections
for architectures using a special local and global neighbourhood strategy for the mutation operation,
Bhuiyan (2009) introduced a simple DE algorithm without the use of a crossover operation, and
Zhang et al. (2019) used DE to jointly evolve architectures and weights, followed by the Levenberg-
Marquardt algorithm to finetune the generated weights. Other works that use DE to evolve basic
neural architectures can be found in (Dhahri et al., 2012; Mason et al., 2017b). In this paper
and different from the above, rather than developing a customized DE version for a specific task,
we standardize and benchmark the use of a simple, yet effective DE, for a wide range of NAS
benchmarks .

DE has been used as one of many algorithms for a recent benchmark of joint hyperparameter opti-
mization and NAS Klein et al. (2018), and did not yield state-of-the-art performance there. However,
that study used a simple SciPy Virtanen et al. (2020) implementation, and we demonstrate that with
a better implementation and a fixed, robust hyperparameter setting, DE does indeed achieve state-
of-the-art performance on a wide range of recent NAS benchmarks compared to other blackbox
optimizers.

Most recent progress in NAS focuses on exploiting the one-shot model introduced by Pham et al.
(2018), prominently based on extensions of differentiable architecture search (DARTS (Liu et al.,
2018)). However, the one-shot model in general (Sciuto et al., 2019) and DARTS in particular (Zela
et al., 2020b) feature several failure modes. For this reason, using the terminology of Elsken et al.

∗Equal contribution

1



1st Workshop on Neural Architecture Search at ICLR 2020

(2019a), we do not employ the one-shot model as a performance estimation strategy to evaluate
different search strategies, but rather stick to the simpler performance estimation strategy of full
evaluations. While a large-scale evaluation would normally be completely infeasible in this setting
due to the high computational cost of full evaluations, this analysis is made possible by the recent
availability of tabular NAS benchmarks (Ying et al., 2019).

We first describe a canonical version of differential evolution (DE; Section 2), then describe how to
apply DE to NAS (Section 3), and then Section 4 demonstrates that the resulting algorithm outper-
forms the previous best search strategies on a wide range of 13 benchmarks based on NAS-Bench-
101 (Ying et al., 2019) NAS-Bench-1Shot1 (Zela et al., 2020c), NAS-Bench-201 (Dong & Yang,
2020), and NAS-HPO-Bench (Klein & Hutter, 2019). The appendix can be found at: Appendix
Link.

2 CANONICAL DIFFERENTIAL EVOLUTION

Differential Evolution (DE, Storn & Kenneth (1997)) is an evolutionary algorithm that is based on
four steps (initialization, mutation, crossover and selection). We describe these below, deferring
details to Appendix A. In its canonical form, DE is described for continuous optimization.

Initialization. DE is a population-based meta-heuristic algorithm which consists of a population
of NP individuals. Each individual is considered a solution and expressed as a vector of D-
dimensional decision variables, which are initialized uniformly at random in the search range.

Mutation. A new child/offspring is produced using the mutation operation for each individual in
the population by a so called mutation strategy. The classical DE uses rand/1 mutation, in which
three random individuals/parents Xr1 , Xr2 , Xr3 are chosen to generate a new vector Vi,g as follows:

Vi,g = Xr1,g + F · (Xr2,g −Xr3,g) (1)

where Vi,g is the mutant vector generated for each individual Xi,g in the population, F is the scaling
factor (which usually takes values within the range [0, 1]), and r1, r2, r3 are the indices of different
randomly selected individuals. The subscript g indicates the generation index, or iteration number.

Crossover. After the mutation, a crossover operation is applied to each target vector Xi,g and
its corresponding mutant vector Vi,g to generate a trial vector Ui,g . We use a simple binomial
crossover, which chooses the value for each dimension i from Vi,g with probability Cr and from
Xi,g otherwise.

Selection. After generating the trial vector Ui,g , DE computes its function value f(Ui,g), keeping
Ui,g if it performs at least as well as Xi,g and reverting back to Xi,g otherwise.

3 DIFFERENTIAL EVOLUTION FOR NAS

Recent NAS approaches and benchmarks parameterize cell structures of deep neural networks as
directed graphs (Zoph et al., 2018; Ying et al., 2019; Zela et al., 2020a; Dong & Yang, 2020). The
realisation of a candidate cell structure can be seen as an assignment of operations from a set of
choices or a range of values, such as the choice of operator on an edge or the choice of predecessors
of a node in the directed graph.

We found the best way of applying DE when parameters are discrete or categorical is to keep the
population in a continuous space, perform canonical DE as usual as described in Section 2, and
only discretize copies of individuals to evaluate them. If we instead dealt with a discrete population
space, then the diversity of population would drop dramatically, leading to many individuals having
the same parameter values; the resulting population would then have many duplicates, lowering the
diversity of the difference distribution and making it hard for DE to explore effectively.

The modified canonical DE we used for NAS is presented in Algorithm 1 of Appendix B. Figure 1
shows the general framework of our DE implementation. We scale all NAS parameters to [0, 1] to
let DE work on individuals from a uniform, continuous space. The continuous value for Ui,g needs
to be mapped back to the original space of the NAS parameters before the function evaluation. In
Algorithm 1, we use a method discretized architecture to do this; this method retrieves the following
values Xi depending on the parameter’s type:
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Figure 1: DE for NAS Framework

• Integer and float parameters: Xi ∈ [ai, bi] are retrieved as: ai + (bi − ai) ·Ui,g , where the
integer parameters are additionally rounded.
• Ordinal and categorical parameters Xi ∈ {x1, ..., xn}: the range [0, 1] is divided uni-

formly into n bins.

Figure 2: Illustration of DE mutation on categorical
parameterization of NAS cell space

We illustrate the discretization in Figure 2.
For the categorical parameter X2 ∈ {‘1x1
conv’, ‘skip’, ‘3x3 conv’}, the correspond-
ing continuous DE space maps to [0, 1/3)
for ‘1x1 conv’, [1/3, 2/3) for ‘skip’, and
[2/3, 1] for ‘3x3 conv’. As seen in Figure
2, the difference vector and the randomly
sampled candidate individuals determine
how the search space is spanned to find a
mutant vector that participates in the se-
lection process. The resultant mutant can
lie on any of the 9 grids formed in Figure
2 for the 2-dimensional case.

One drawback for such an approach might
arise in the case of a conditional parameter
space. However, just like in NAS-Bench-
101 (Ying et al., 2019), the function value for an invalid architecture can simply be a maximal
error of 1 (at no computational cost, even in a non-tabular benchmark). Such individuals will be
guaranteed to lose in the selection process, thereby implicitly avoiding invalid architectures over
time.

4 EXPERIMENTS

We evaluate DE’s performance on four recent NAS benchmarks: NAS-Bench-101 (Ying et al.,
2019), NAS-HPO (Klein & Hutter, 2019), NAS-Bench-1shot1 (Zela et al., 2020a) and NAS-Bench-
201 (Dong & Yang, 2020). We compare against several baseline algorithms, namely Random
Search (RS) (Bergstra & Bengio, 2012), BOHB (Falkner et al., 2018), Tree Parzen Estimator (TPE)
(Bergstra et al., 2011), Hyperband (HB) (Li et al., 2018) and regularized evolution (RE) (Real et al.,
2018). Appendix C has more details about the used algorithms and their hyperparameter settings.
For DE, we set scaling factor F and crossover rate Cr to 0.5 over all the generations. For the
population size NP , we tested several values (provided in Appendix F and chose 20 for our ex-
periments. We consider RE as the primary baseline algorithm (run until 10Ms) since it belongs
to the same family of algorithms as DE and has been shown to perform robustly many times be-
fore. We provide a comparison of the robustness between RE and DE in Appendix E. For each
algorithm, we performed 500 independent runs and report the mean performance of the immediate
validation regret (Ying et al., 2019). Throughout, we evaluate algorithms in the anytime setting,
showing performance of the best found configuration over time as suggested by Ying et al. (2019)
and Lindauer & Hutter (2019). In all our plots, the x-axis shows estimated wall-clock time, as the
cumulative time taken for training each of the architectures found as returned by the NAS bench-
marks. Due to the space limitation, we show the test regret plots for NAS-101 and NAS-1shot1,
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(a) CifarA (b) CifarB (c) CifarC

Figure 3: A comparison of the mean validation regret performance of 500 independent runs as a
function of estimated training time for NAS-Bench-101 on CifarA, CifarB and CifarC.

and also discuss the experiments for NAS-Bench-201 and NAS-HPO in Appendix D.1, D.2, D.3,
D.4, respectively. We compare our implementation with the popular SciPy-DE code Virtanen et al.
(2020) in Appendix G. Our code for DE and for reproducing our experiments is publicly available
at https://github.com/automl/DE-NAS.

4.1 NAS-BENCH-101

In this experiment we investigated DE’s performance on the cell search space of 423k unique cell
architectures of a convolutional neural network for CIFAR-10 defined by NAS-Bench-101 (Ying
et al., 2019). We study three different search spaces: CifarA contains the main search space dis-
cussed by Ying et al. (2019), and CifarB and CifarC are variants of the same space with alternative
encodings (treating the edge parameters as categorical parameters with 21 choices and continuous
∈ [0, 1], respectively). Figure 3 presents a comparison of the performance of compared algorithms
showing the mean validation regret of 500 independent runs as a function of the estimated training
time. We show our results for test regret in Appendix D.1. HB and BOHB are multi-fidelity opti-
mization algorithms which evaluate at fewer epochs while other algorithms evaluate only at Emax.
However, NAS-Bench-101 features a low rank correlation between the performance obtained with
different budgets (Ying et al., 2019), and thus these algorithms do not perform better than the other
algorithms that only use the maximum number of epoch. The other algorithms (RS, TPE, and RE)
follow the same behaviour at the beginning of the search for all 3 encodings of the search space, and
in the end the evolutionary algorithms RE and DE clearly yield the best performance. DE shows
much better final performance for CifarA and CifarC and competitive performance with RE for Ci-
farB. It appears that DE is able to exploit high-dimensional spaces well and handle mixed-types
better. This may be attributed to NAS-Bench-101’s locality property (Ying et al., 2019) along with
DE’s search method, since a DE population with individuals from a good region will be able to
exploit further and get near the global optimum.

4.2 NAS-BENCH-1SHOT1

NAS-Bench-1Shot1 (Zela et al., 2020c) was created from the search space of NAS-Bench-101 by
keeping the network-level topology intact and modifying the cell-level topology to allow the appli-
cation of modern weight sharing algorithms for three search spaces with 6, 240 (search space 1),
29, 160 (search space 2), and 363, 648 (search space 3) architectures. Figure 4 shows our results
for the mean performance on validation regret while we present a comparison on test regret in Ap-
pendix D.2. For search space 1, all the algorithms achieve nearly the same error at the beginning of
the search, then DE converges faster until other algorithms catch up. For search space 2, RE and DE
converge fastest. For search space 3, the most complex (high-dimensional) and largest (10x more
architectures than space 2, and 100x more than space 1), DE clearly outperforms all other algorithms
and converges fastest.

5 CONCLUSION

We demonstrated that Differential Evolution can be utilised as an alternative search strategy for the
growing field of NAS. We also demonstrated DE’s ability to handle mixed data types and high-
dimensional spaces. DE may thus be a good candidate for NAS in very large spaces that may help
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(a) Search Space 1 (b) Search Space 2 (c) Search Space 3

Figure 4: A comparison of the mean validation regret performance of 500 independent runs as a
function of estimated training time for NAS-1Shot1 on the three different search spaces.

discover new, yet unknown, architectural design patterns. Since DE naturally lends itself well to
parallelization, future work includes providing a parallel implementation. We are also interested in
combining DE with different performance estimation strategies, such as multi-fidelity methods and
the one-shot model. Our reference implementation of the code is available at https://github.
com/automl/DE-NAS.
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Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
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