# Differential Evolution for Neural Architecture Search

Noor Awad, Neeratyoy Mallik and Frank Hutter

### Albert-Ludwigs-Universität Freiburg

## Summary

#### Contributions

• Standardizing and benchmarking differential evolution (DE) as a *search strategy* for neural architecture search (NAS). • We demonstrate that our DE yields state-of-the-art performance for NAS, comparing favorably to regularized evolution (RE) and Bayesian optimization.

## **Canonical DE**

- DE is an evolutionary algorithm that is based on four steps:
- **Initialization:** Initialize a population space of *NP* individuals  $pop_g = (X_{i,g}^1, X_{i,g}^2, ..., X_{i,g}^D), i = 1, 2, ..., NP$
- **Mutation:** A new child/offspring is produced  $V_{i,q} = X_{r_1,q} + F \cdot (X_{r_2,q} - X_{r_3,q})$

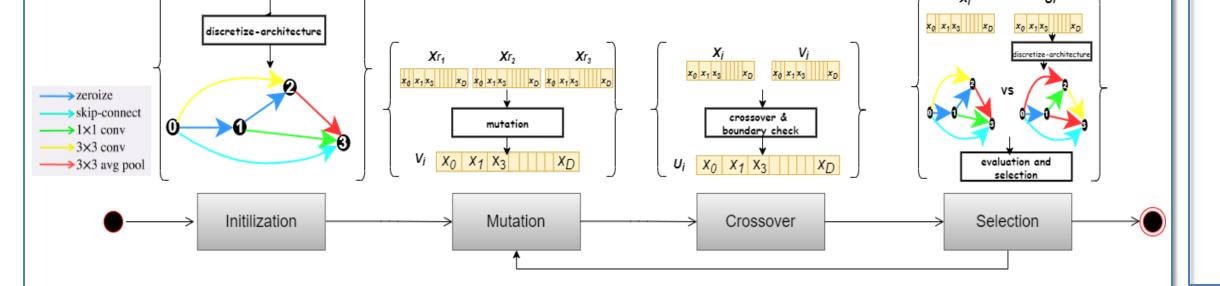
#### **Observations**

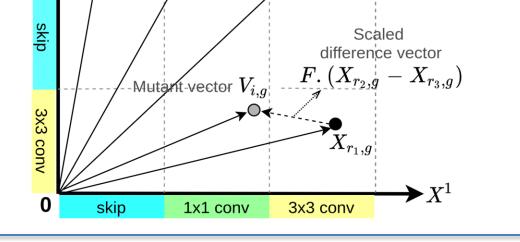
discretize-architecture

regret

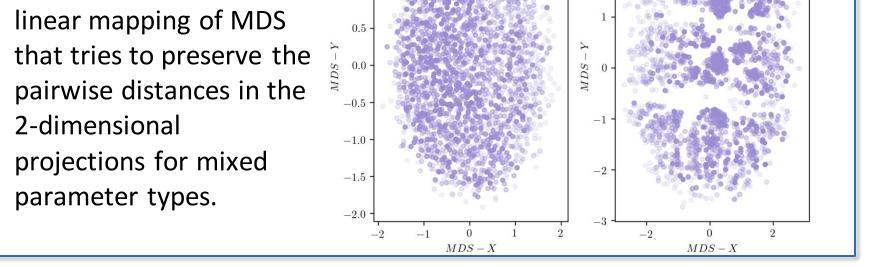
 $\frac{10}{2}$  10

DE

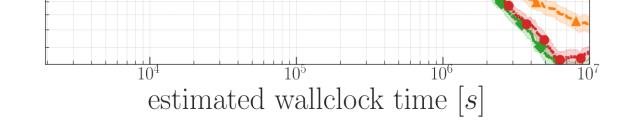

- DE yields improved and more robust results for 13 tabular NAS benchmarks based on NAS-Bench-101, NAS-Bench1Shot1, NAS-Bench-201 and NAS-HPO bench.
- DE shows strong *final performance*, compared to RE, BOHB.
- DE appears to be robust to high-dimensional spaces and handle mixed-data types adeptly.


## **Crossover:** Combine target and mutant to generate a trial $u_{i,g}^{j} = \begin{cases} v_{i,g}^{j} & \text{if } (rand < Cr) \text{ or } (j = j_{rand}) \\ x_{i,g}^{j} & \text{otherwise} \end{cases}$

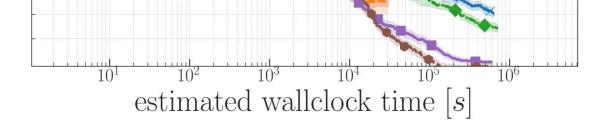
**Selection:** Evaluates trial and compares to keep or discard  $X_{i,g} = \begin{cases} U_{i,g} & \text{if } (f(U_{i,g}) \le f(X_{i,g})) \\ X_{i,g} & \text{otherwise} \end{cases}$ 


may arise due to the non-

| DE for NAS                                                                                                                                                                                                                                      | Parameter space mapping                                                                                                                                                                                 | Search space visualization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>The figure below shows the general framework of our DE implementation for NAS.</li> </ul>                                                                                                                                              | <ul> <li>Integer and float parameters:</li> </ul>                                                                                                                                                       | DE space [0, 1] Cifar10 parameter space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| <ul> <li>We scale all NAS parameters to [0, 1] to let DE work on individuals from a uniform,<br/>continuous space.</li> </ul>                                                                                                                   | X <sub>i</sub> ∈ [a <sub>i</sub> ,b <sub>i</sub> ] are retrieved as: a <sub>i</sub> + (b <sub>i</sub><br>−a <sub>i</sub> )·U <sub>i,g</sub> , where the integer parameters<br>are additionally rounded. | 1.0       4       Multi-dimensional         0.5       2       scaling (MDS) plots show         the correspondence of       the correspondence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| <ul> <li>We found the best way of applying DE when parameters are discrete or categorical is<br/>to keep the population in a continuous space, perform canonical DE, and only discretize<br/>copies of individuals to evaluate them.</li> </ul> | <ul> <li>Ordinal and categorical parameters<br/>X<sub>i</sub> ∈ {x<sub>1</sub>,,x<sub>n</sub>}: the range [0, 1] is<br/>divided uniformly into n bins.</li> </ul>                                       | <sup>A</sup> -sque and the search trajectories<br><sup>-0.5</sup><br><sup>-0.5</sup><br><sup>-0.5</sup><br><sup>-0.5</sup><br><sup>-0.5</sup><br><sup>-0.5</sup><br><sup>-0.5</sup><br><sup>-0.5</sup><br><sup>-0.5</sup><br><sup>-0.5</sup><br><sup>-0.5</sup><br><sup>-0.5</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup><br><sup>-1</sup> |  |
| <ul> <li>The mutation strategy selected was rand1 and binomial crossover were selected as<br/>the DE strategies for this work.</li> </ul>                                                                                                       | $\begin{array}{c}X^2\\ \bigstar \qquad \qquad \text{Difference vector}\\ X_{r_2,g}-X_{r_3,g} \qquad \textbf{(1, 1)}\end{array}$                                                                         | $\begin{array}{c} -1.0 \\ -1.0 \\ -1.0 \\ -1.0 \\ MDS - X \end{array} \begin{array}{c} -1.0 \\ -1.0 \\ MDS - X \end{array} \begin{array}{c} -1.0 \\ -1.0 \\ MDS - X \end{array} \begin{array}{c} -1.0 \\ -1.0 \\ MDS - X \end{array} \begin{array}{c} -1.0 \\ -1.0 \\ MDS - X \end{array} \begin{array}{c} -1.0 \\ -1.0 \\ MDS - X \end{array} \begin{array}{c} -1.0 \\ -1.0 \\ MDS - X \end{array} \begin{array}{c} -1.0 \\ -1.0 \\ MDS - X \end{array} \begin{array}{c} -1.0 \\ -1.0 \\ MDS - X \end{array} \begin{array}{c} -1.0 \\ -1.0 \\ MDS - X \end{array} \begin{array}{c} -1.0 \\ MDS - X \end{array} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $\begin{bmatrix} x_i & x_0 & x_1 & x_0 \end{bmatrix}$                                                                                                                                                                                           | Target vector $X_{r_3,g}$                                                                                                                                                                               | Empty space artefacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

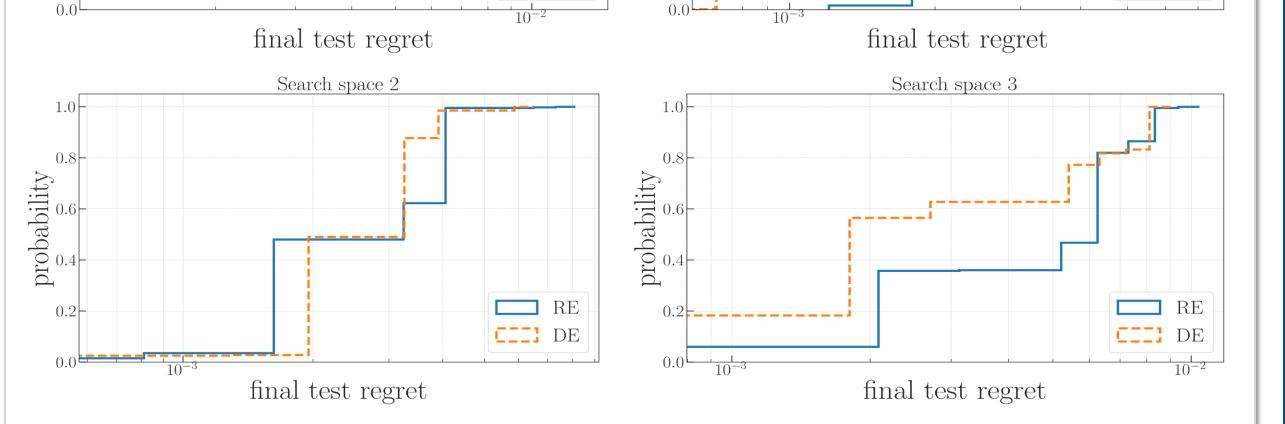






---------



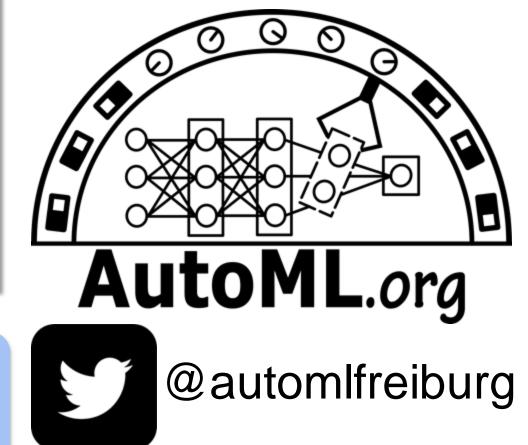
#### Experiments **Benchmark Results** Robustness CifarA Cifar10 CifarA Search space 3 $\rightarrow$ RS ---- BOHB probability ... obability regret <sup>10</sup> \_\_\_\_\_ $\rightarrow$ RS TPE --- BOHB - RE ---- DE pr ••••• TPF RE RE RE DE ---- RE DE $10^{-}$ ---- DF final test regret final test regret estimated wallclock time [s]estimated wallclock time [s]Cifar100 Parkinsons ImageNet Parkinsons \_\_\_\_ $\rightarrow$ RS $\rightarrow$ RS probability **- →-** • TPE ---- BOHB → HB regret ••••• TPE pr -- RE 10<sup>-</sup> 10<sup>-</sup> RE RE RE ---- DE \_\_\_\_ DE DE




 $0.2156 \pm 0.00048$ 



|      | NAS-Bench-101              |                           |                                  |                                                                                        |                      |  |  |
|------|----------------------------|---------------------------|----------------------------------|----------------------------------------------------------------------------------------|----------------------|--|--|
|      | CifarA                     | CifarB                    | CifarC                           | For NAS-101: DE is able to                                                             |                      |  |  |
| BOHB | $0.0649 \pm 0.00703$       | $0.0648 \pm 0.00203$      | $0.065 \pm 0.0023$               | exploit high-dimensional<br>spaces well and handle<br>mixed-types better.              |                      |  |  |
| RE   | $0.0612 \pm 0.00342$       | $0.0613 \pm 0.00321$      | $0.0637 \pm 0.00378$             |                                                                                        |                      |  |  |
| DE   | $0.0598 \pm 0.00262$       | $0.0611 \pm 0.00225$      | $0.0606 \pm 0.00248$             |                                                                                        |                      |  |  |
|      | I                          |                           |                                  |                                                                                        |                      |  |  |
|      | Search space 1             | Search space 2            | Search space 3                   | For NAS-1shot1: For search<br>space 3, the most complex,<br>largest space, DE performs |                      |  |  |
| BOHB | $0.0599 \pm 0.00271$       | $0.0606 \pm 0.00215$      | $0.0602 \pm 0.00213$             |                                                                                        |                      |  |  |
| RE   | ${\bf 0.0566 \pm 0.00076}$ | $0.0607 \pm 0.00122$      | $0.0588 \pm 0.00261$             |                                                                                        |                      |  |  |
| DE   | $0.0569 \pm 0.00097$       | $0.0605 \pm 0.00113$      | ${\bf 0.0573} \pm {\bf 0.00303}$ | best and converges fastest.                                                            |                      |  |  |
|      | NAS-HPO                    |                           |                                  |                                                                                        |                      |  |  |
|      | Protein                    | Slice                     | Slice Naval                      |                                                                                        | Parkinsons           |  |  |
| BOHB | $0.2208 \pm 0.00446$       | $0.00019 \pm 6.82e-05$    | 5 5.73e-05 $\pm$ 2.3e            | -04                                                                                    | $0.0089 \pm 0.00685$ |  |  |
| RE   | ${\bf 0.2155 \pm 0.00028}$ | $0.00016\pm2.06	ext{e-0}$ | <b>)6</b> $3.59e-05 \pm 5.62e$   | e-06                                                                                   | $0.0065 \pm 0.00056$ |  |  |


 $0.00016 \pm 3.54\text{e-}06 \quad 3.58\text{e-}05 \pm 3.81\text{e-}06 \quad 0.0064 \pm 0.00078$ 



• For NAS-Bench-101, DE is robust in solving CifarA and CifarC while RE is better in solving CifarB. • For NAS-Bench-1Shot1, DE is more robust to solve the three search spaces while we can say that RE is competitive in search space 2.

• For NAS-201, RE is more robust than DE in ImageNet while DE is competitively robust to RE in Cifar10 and Cifar100.

• For NAS-HPO, DE shows more robust performance in Slice and Parkinsons datasets. For Protein and Naval datasets, DE is competitively robust to RE.



### Implementation Publicly Available: https://github.com/automl/DE-NAS