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Summary

Contributions
• Standardizing and benchmarking differential evolution (DE) as 
a search strategy for neural architecture search (NAS).
• We demonstrate that our DE yields state-of-the-art 
performance for NAS, comparing favorably to regularized 
evolution (RE) and Bayesian optimization.

Observations
• DE yields improved and more robust results for 13 tabular 
NAS benchmarks based on NAS-Bench-101, NAS-Bench1Shot1, 
NAS-Bench-201 and NAS-HPO bench.
• DE shows strong final performance, compared to RE, BOHB.
• DE appears to be robust to high-dimensional spaces and 
handle mixed-data types adeptly.

Canonical DE

DE is an evolutionary algorithm that is based on four steps:

• Initialization: Initialize a population space of NP individuals

• Mutation: A new child/offspring is produced

• Crossover: Combine target and mutant to generate a trial

• Selection: Evaluates trial and compares to keep or discard

DE for NAS

Experiments

RobustnessBenchmark Results
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For NAS-101: DE is able to 
exploit high-dimensional 
spaces well and handle 
mixed-types better.

For NAS-1shot1: For search 
space 3, the most complex, 
largest space, DE performs 
best and converges fastest.

Search space visualization

Empty space artefacts 
may arise due to the non-
linear mapping of MDS 
that tries to preserve the 
pairwise distances in the 
2-dimensional 
projections for mixed 
parameter types.

Multi-dimensional 
scaling (MDS) plots show 
the correspondence of 
the search trajectories 
between the DE space of 
[0, 1] and the original 
NAS parameter space.

Parameter space 

mapping

• Integer and float parameters: 
Xi ∈ [ai,bi] are retrieved as: ai + (bi

−ai)·Ui,g, where the integer parameters 
are additionally rounded.

• Ordinal and categorical parameters
Xi ∈ {x1,...,xn}: the range [0, 1] is 
divided uniformly into n bins.

• The figure below shows the general framework of our DE implementation for NAS.

• We scale all NAS parameters to [0, 1] to let DE work on individuals from a uniform, 
continuous space.

• We found the best way of applying DE when parameters are discrete or categorical is 
to keep the population in a continuous space, perform canonical DE, and only discretize 
copies of individuals to evaluate them.

• The mutation strategy selected was rand1 and binomial crossover were selected as 
the DE strategies for this work.

• For NAS-Bench-101, DE is robust in solving CifarA and CifarC while RE is better in solving CifarB.
• For NAS-Bench-1Shot1, DE is more robust to solve the three search spaces while we can say that RE 
is competitive in search space 2.
• For NAS-201,RE is more robust than DE in ImageNet while DE is competitively robust to RE in 
Cifar10 and Cifar100.
• For NAS-HPO, DE shows more robust performance in Slice and Parkinsons datasets. For Protein and 
Naval datasets, DE is competitively robust to RE.


