NAS-Bench-1Shot1: Benchmarking and Dissecting One-Shot Neural Architecture Search

Albert-Ludwigs-Universität Freiburg

DeToL 07.11.2019

Julien Siems, Arbër Zela and Frank Hutter

Under review as a conference paper at ICLR 2020

Motivation

Recent Neural Architecture Search (NAS) methods use a oneshot model to perform the search.

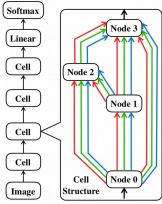
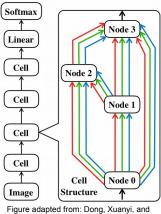


Figure adapted from: Dong, Xuanyi, and Yi Yang. "One-Shot Neural Architecture Search via Self-Evaluated Template Network." arXiv preprint arXiv:1910.05733 (2019). 6

Z W

Motivation

Recent Neural Architecture Search (NAS) methods use a oneshot model to perform the search.



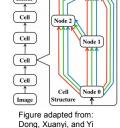
Yi Yang, "One-Shot Neural Architecture Search via Self-Evaluated Template Network." *arXiv preprint arXiv:1910.05733* (2019).

- Reproducibility crisis
 - Need proper benchmarks [Lindauer and Hutter 2019]
 - NAS-Bench-101 [Ying et al. 2019]

66

Z W

- Motivation
- Recent Neural Architecture Search (NAS) methods use a oneshot model to perform the search.
- Optimize architecture w.r.t. the one-shot validation loss.
 - Goal: Find an architecture which performs well when trained on its own.
 - Question: How correlated are the two objectives?
- Question: How sensitive are the search methods towards their hyperparameters?
- Problem: Independent training of discrete architectures is very expensive.
 - How could we increase the evaluation speed?



Softmax

Linear

Outline

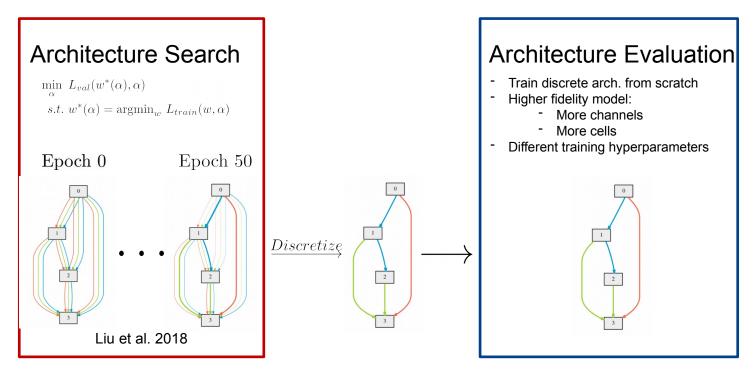
- One-Shot NAS Optimizers
- Results
- Conclusion

UR

B

ZW

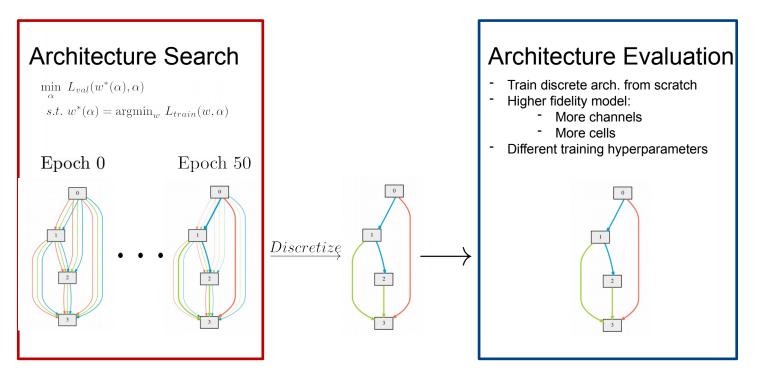
DARTS Search Phases



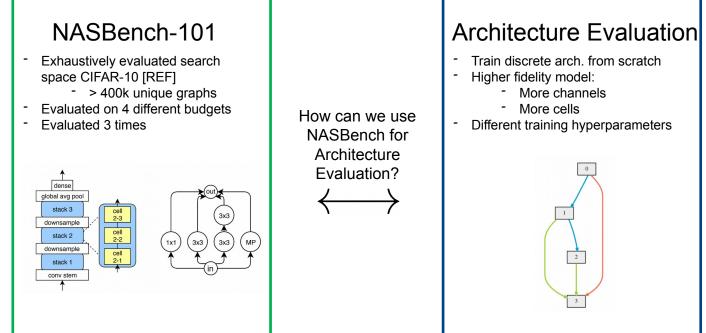
M

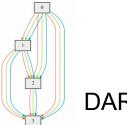
m

DARTS Search Phases



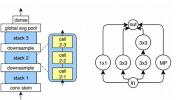
DARTS (first order): **1.5 days** DARTS (second order): **4 days** DARTS: 1 day Price to pay to check intermediate architectures m





DARTS Search Space

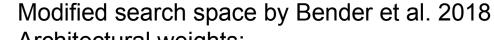
- Representation: edges are ops, nodes are combinations of tensors
- **Input** of each cell are the **2 previous cells**.
- Intermediate node have **2 incoming edges**
- Output of cell is concatenation of all intermediate node outputs



NASBench Search Space

- **Representation**: edges depict tensor flow, nodes are operations
- Limited number of architectures by restricting each cell:
 - <= 9 edges
 - <= 5 intermediate nodes
 - Max-Pool, Conv-1x1, Conv-3x3
- Input of each cell is **only previous cell**.

Architectures in the DARTS Search Space are usually not part of the NASBench Search Space.

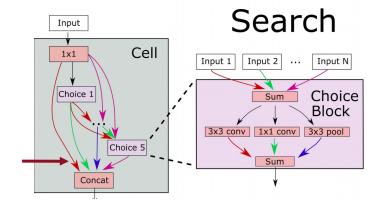


- Architectural weights:

Idea

-

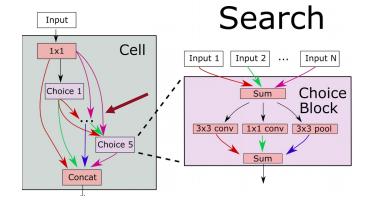
- On edges to output
 - On input edges to choice block
 - On the 'mixed-op' for each operation



- Architectural weights:

Idea

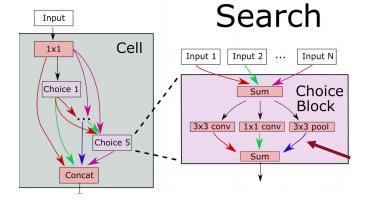
- On edges to output
- On input edges to choice block
 - On the 'mixed-op' for each operation



- Modified search space by Bender et al. 2018
- Architectural weights:

-

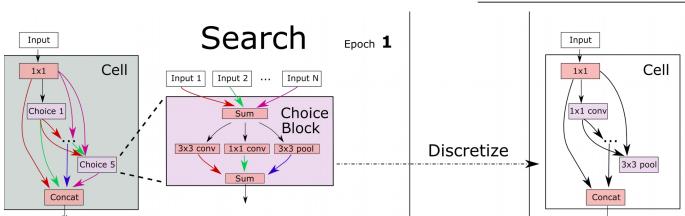
- On edges to output
- On input edges to choice block
- On the 'mixed-op' for each operation

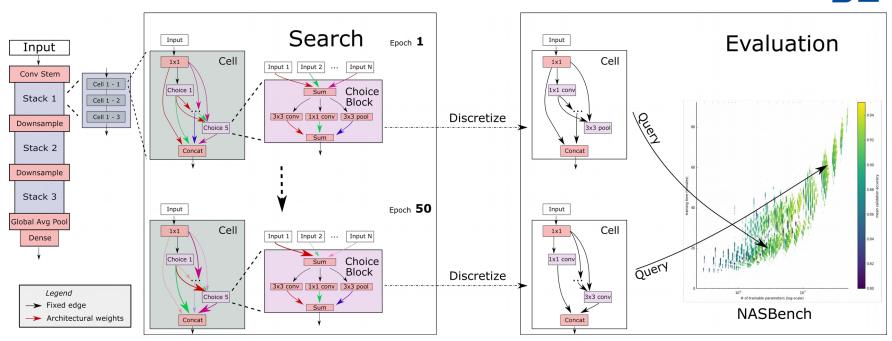


UNI FREIBURG

 Define search spaces by number of parents of each node: Table 1: Characteristic information of the search spaces.

		Search space		
		1	2	3
No. parents	Node 1	1	1	1
	Node 2	2	1	1
	Node 3	2	2	1
	Node 4	2	2	2
	Node 5	-	-	2
	Output	2	3	2
No. archs.	w/ loose ends w/o loose ends	6240 2487	29160 3609	363648 24066





This allowed the following **analysis**:

- Follow architecture trajectory of One-Shot NAS
 - Comparison of 4 One-shot NAS optimizers
- Correlation between One-shot validation error and NASBench validation error
- Hyperparameter Optimization of search methods.

11/07/2019

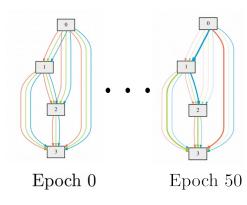
Outline

✓ Idea

- One-Shot NAS Optimizers
- Results
- Conclusion

One-Shot NAS Optimizers

DARTS [Liu et al. 18]



PC-DARTS [Xu et al. 19]

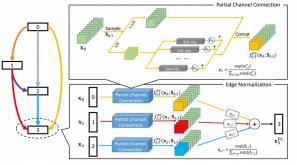


Figure from Xu, Yuhui, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong. "PC-DARTS: Partial Channel Connections for Memory-Efficient Differentiable Architecture Search." (2019).

Discrete optimizers:

- BOHB
- Hyperband
- Random Search
- Regularized Evolution
- SMAC
- TPE
- Reinforce

More optimizers to be done ...

GDAS [Dong et al. 19]

- Differentiably sample paths through each cell.
 - Only operations on path need to be evaluated
 - Very fast search
- Avoids co-adaption

Random Search with Weight Sharing [Li et al. 19]

- Training:
 - Sample architecture from search space for each batch and train one-shot model weights.
- Evaluation:
 - Sample many archs., rank according to one-shot validation error of 10 batches
 - Fully evaluate top-10 archs.

11/07/2019

Outline

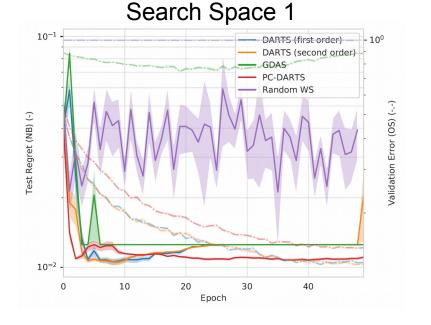
Idea

One-Shot NAS Optimizers

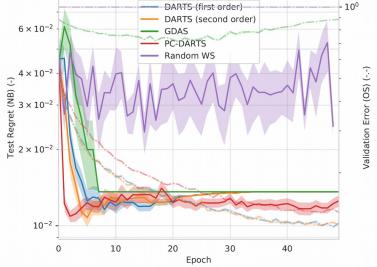
Results

- NASBench 1-Shot-1 Analysis
- NASBench 1-Shot-1 HPO
- Conclusion

Optimizer Comparison



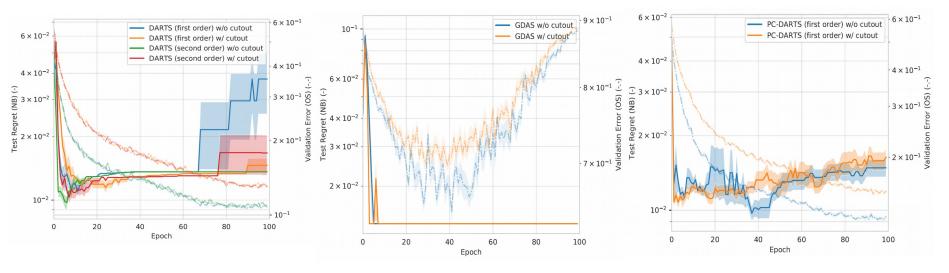
Search Space 3 DARTS (first order) DARTS (second order) GDAS



- DARTS and GDAS: -
 - stuck in local optimum
- PC-DARTS:
 - stable search and relatively good performance for the given number of epochs
- Random Search with WS:
 - explores mainly poor architectures

m

Regularized Search (Cutout) – Search Space 3



DARTS

- Longer search -> architectural overfitting
- Cutout largely stabilized the search

 Little impact of cutout on found architectures.

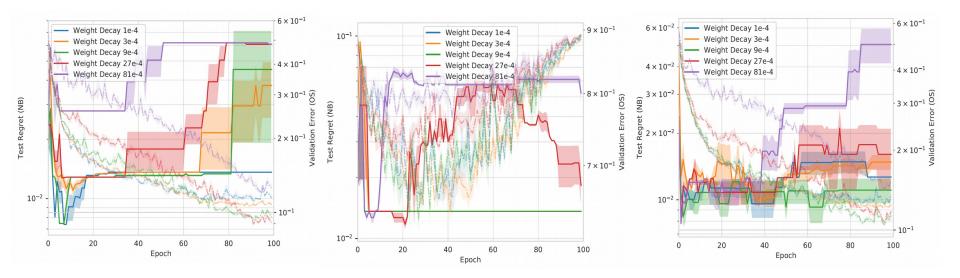
GDAS

PC-DARTS

 Additional regularization has no positive impact

6

Regularized Search (Weight Decay) – Search Space 3



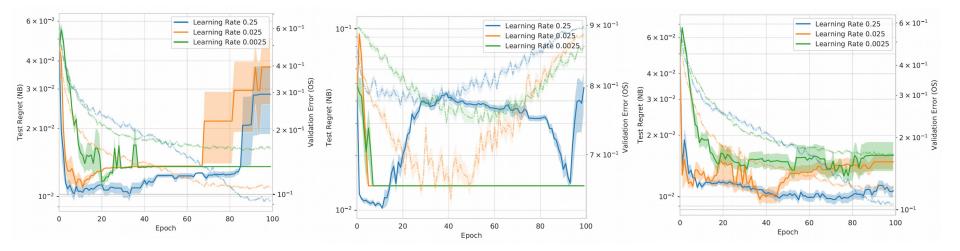
DARTS

GDAS

PC-DARTS

Higher regularization -> less stable search Higher regularization -> less stable search High regularization -> less stable search

Effect of one-shot learning rate – Search Space 3



DARTS

GDAS

PC-DARTS

High learning-rate -> less stable search

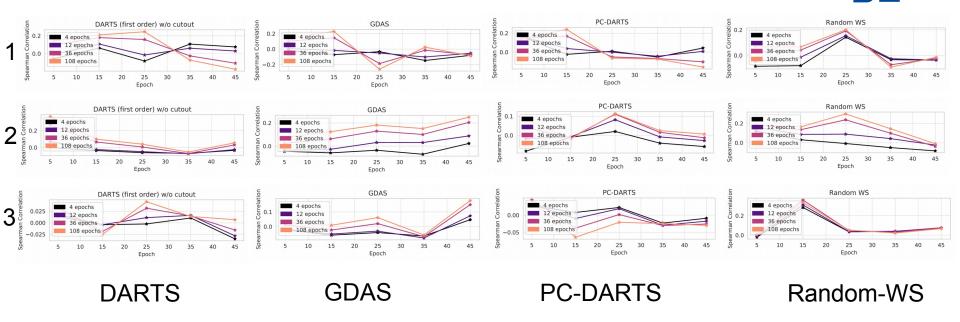
High learning-rate -> less stable search

High learning-rate -> better search

N

m

Correlation



- **No correlation** between one-shot validation error and NASBench validation error:
 - For all one-shot search methods
 - For all search spaces
- Follows results by Sciuto et al. 19: They only estimated using 32 architectures

Tunability of NAS optimizers

Optimize the hyperparameters of one-shot NAS optimizers using BOHB [Falkner et al. 2018]

Space 3 BOHB-DARTS BOHB-PC-DARTS BOHB-GDAS RE RS 10^{-1} test regret RL SMAC HB BOHB TPE 10^{-2} 10^{3} 10^{4} 10⁵ 10^{6} simulated wallclock time [s]

- Outperform the default configuration by a factor of 7-10
- With the same number of function evaluations, they are able to outperform black-box NAS optimizers

Conclusion and Future Directions

- We presented NAS-Bench-1Shot1, a framework containing 3 benchmarks that enable to evaluate the anytime performance of one-shot NAS algorithms
- NAS-Bench-1Shot1 as analysis framework
- One-shot NAS optimizers can outperform black-box optimizers if
 tuned properly

Future work:

- Add other methods such as ENAS [Pham et al. 2018], ProxylessNAS [Cai et al. 2019], etc.
- Automate the generation of plots, analysis results, or benchmark tables.
- Towards NAS-Bench-201