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Abstract

Ensembles of neural networks achieve superior performance compared to stand-
alone networks not only in terms of accuracy on in-distribution data but also on
data with distributional shift alongside improved uncertainty calibration. Diver-
sity among networks in an ensemble is believed to be key for building strong
ensembles, but typical approaches only ensemble different weight vectors of a
fixed architecture. Instead, we investigate neural architecture search (NAS) for
explicitly constructing ensembles to exploit diversity among networks of varying
architectures and to achieve robustness against distributional shift. By directly opti-
mizing ensemble performance, our methods implicitly encourage diversity among
networks, without the need to explicitly define diversity. We find that the resulting
ensembles are more diverse compared to ensembles composed of a fixed architec-
ture and are therefore also more powerful. We show significant improvements in
ensemble performance on image classification tasks both for in-distribution data
and during distributional shift with better uncertainty calibration.

1 Introduction

Automatically learning useful representations of data using deep neural networks has been successful
across various tasks [30, 25, 40], leading to the ubiquitous deployment of neural networks. While
some applications rely only on the predictions made by a neural network, many critical applications
also require reliable predictive uncertainty estimates and robustness under the presence of distribu-
tional shift in the data observed at test time relative to the training data. Examples include medical
imaging [16] and self-driving cars [6]. However, several studies have shown that neural networks
are not always robust to dataset shift [43, 24], nor do they exhibit calibrated predictive uncertainty,
resulting in overconfident and incorrect predictions [20].

Using an ensemble of networks rather than a stand-alone network is a strong baseline both in terms
of predictive uncertainty calibration and robustness to dataset shift. Ensembles also outperform
approximate Bayesian methods [33, 43, 21]. Their success is usually attributed to the diversity among
the base learners, however there are various definitions of diversity [32, 63] without a consensus.
In practice, ensembles are usually constructed by choosing a fixed state-of-the-art architecture, and
creating base learners either by independently training random initializations of it (called deep
ensembles [33]) or by picking various checkpoints of a single training trajectory [27, 37].

However, as we show, base learners with varying architectures make more diverse predictions.
Therefore, picking a fixed architecture for the ensemble’s base learners neglects diversity in favor of
base learner strength. This has implications for the ensemble performance, since both diversity and
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base learner strength are important. To overcome this, we propose Neural Ensemble Search (NES);
a NES algorithm finds a set of diverse neural architectures that together form a strong ensemble.
By directly optimizing ensemble loss while maintaining independent training of base learners, a
NES algorithm implicitly encourages diversity, without the need for explicitly defining the notion of
diversity. In detail, our contributions are as follows:

1. We show that ensembles composed of varying architectures perform better than ensembles
composed of a fixed architecture. We demonstrate that this is due to increased diversity among the
ensemble’s base learners (Sections 3 and 5).

2. Based on these findings and the importance of diversity, we propose two algorithms for Neural
Ensemble Search: NES-RS and NES-RE. NES-RS is a simple random search based algorithm,
and NES-RE is based on regularized evolution [44]. Both search algorithms seek performant
ensembles with varying base learner architectures (Section 4).

3. Through experiments on image classification tasks, we evaluate the ensembles found by NES-RS
and NES-RE from the point of view of both predictive performance and uncertainty calibration.
We also compare to the baseline of deep ensembles with fixed, optimized architectures. We find
our ensembles outperform deep ensembles not only on in-distribution data but also during dataset
shift, with better predictive performance and uncertainty calibration (Section 5).

The code for our experiments is available at: https://github.com/automl/nes.

2 Related Work

Ensemble Learning. Ensembles of neural networks [22, 31, 11] are commonly used to boost
performance [50, 47, 23]. In practice, strategies for building ensembles include the popular approach
of independently training multiple initializations of the same network, training base learners on
bootstrap samples of the training data (i.e. bagging) [64], joint training with diversity-encouraging
losses [34, 62, 52] and using checkpoints during the training trajectory of a network [27, 37]. We
focus on ensembles of independently trained base learners, as this is a simple approach leading
to strong ensembles (see [34] for a comparison of ensembling approaches). Diversity is believed
to be key for successful ensembles and various proposals have been made for its definition [32],
yet there is no consensus [63]. Much recent interest in ensembles has been due to their strong
predictive uncertainty estimation [33], with extensive empirical studies observing that ensembles
outperform other approaches for uncertainty estimation, notably including approximate Bayesian
methods [43, 21].

Neural Architecture Search. Neural Architecture Search (NAS), the process of automatically
designing neural network architectures, is a natural next step for automating the learning of represen-
tations with neural networks [15]. Existing strategies using reinforcement learning [2, 61, 65, 66],
evolutionary algorithms [1, 14, 44, 45, 48] or Bayesian Optimization [29, 39, 42, 53] have demon-
strated that NAS can find architectures that surpass hand-crafted ones on a variety of tasks. A recent
focus in NAS research has been on computational efficiency with algorithms utilizing gradient-based
optimization [8, 12, 36, 55, 59, 56], network morphisms [7, 13, 14], or multi-fidelity optimiza-
tion [3, 17, 60].

A recent line of research which is closest to ours connects ensemble learning and NAS. Methods
proposed by Cortes et al. [10] and Macko et al. [38] iteratively add (sub-)networks to an ensemble
to improve the ensemble’s performance. While our work focuses on generating a diverse and well-
performing (in an ensemble) set of architectures while essentially fixing the way an ensemble is built
from its base learners, the focus of [10] and [38] is on how to build the ensemble. As a consequence,
the space of neural networks they consider is limited in contrast to our work: [10] only considers
fully-connected neural networks and [38] only uses NASNet-A [66] building blocks with varying
depth and number of filters. Interestingly, [38] employs knowledge distillation [26], which is also used
in NAS research [14, 46]. However, this can actively discourage diversity in predictions; therefore,
we do not consider it in our work. Rather than iteratively growing an ensemble, Bian et al. [5]
propose to prune redundant (sub-) networks in an ensemble without significant loss in performance
by utilizing diversity. While all aforementioned work only focuses on performance for in-distribution
data, we additionally consider dataset shift as well as uncertainty calibration.
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3 Ensembles of Varying Architectures are More Diverse

After introducing our notation and problem set-up, we discuss diversity in ensembles of neural
networks and provide empirical evidence that networks with varying architectures make more diverse
predictions than networks with a fixed architecture trained multiple times.

3.1 Definitions and Set-up

Let Dtrain = {(xi, yi) : i = 1, . . . , N} be the training dataset, where the input xi ∈ RD and,
assuming a classification task, the output yi ∈ {1, . . . , C}. We use Dval and Dtest for the validation
and test datasets, respectively. Denote by fθ a neural network with weights θ, so fθ(x) ∈ RC is the
predicted probability vector over the classes for input x. Let `(fθ(x), y) be the neural network’s
loss for data point (x, y). Given M networks fθ1 , . . . , fθM , we construct the ensemble F of these
networks by averaging the outputs, yielding F (x) = 1

M

∑M
i=1 fθi(x).

In addition to the ensemble’s loss `(F (x), y), we will also consider the average base learner loss and
the oracle ensemble’s loss. The average base learner loss is simply defined as 1

M

∑M
i=1 `(fθi(x), y);

we use this to measure the average base learner strength. Similar to [34, 62], the oracle ensemble
FOE composed of base learners fθ1 , . . . , fθM is defined to be the function which, given an input x,
returns the prediction of the base learner with the smallest loss for (x, y), that is,

FOE(x) = fθk(x), where k ∈ argmin
i

`(fθi(x), y).

Of course, the oracle ensemble can only be constructed if the true class y is known. We use the oracle
ensemble loss as a measure of the diversity in base learner predictions. Intuitively, if base learners
make diverse predictions for x, the oracle ensemble is more likely to find some base learner with
a small loss, whereas if all base learners make identical predictions, the oracle ensemble yields the
same output as any (and all) base learners. Therefore, as a rule of thumb, small oracle ensemble loss
indicates more diverse base learner predictions.
Proposition 3.1. Suppose ` is negative log-likelihood (NLL). Then, the oracle ensemble loss,
ensemble loss, and average base learner loss satisfy the following inequality:

`(FOE(x), y) ≤ `(F (x), y) ≤
1

M

M∑
i=1

`(fθi(x), y).

We refer to Appendix A for a proof. Proposition 3.1 suggests that strong ensembles require not
only strong average base learners (smaller upper bound), but also more diversity in their predictions
(smaller lower bound). There is extensive theoretical work relating strong base learner performance
and diversity with the generalization properties of ensembles [22, 63, 28, 4, 19]. Notably, Breiman
[49] showed that the generalization error of random forests depends on the strength of individual
trees and the correlation between their mistakes.

3.2 Visualizing Similarity in Base Learner Predictions

In practice, ensembles of neural networks are usually made by independently training M random
initializations of a network with a fixed architecture, on the same training dataset. This procedure
is called deep ensembles, and has been empirically observed to yield performant and calibrated
ensembles [33, 43].

The fixed architecture used to build deep ensembles is typically chosen to be a strong stand-alone
architecture, either hand-crafted or found by NAS. However, since ensemble performance depends
not only on strong base learners but also on their diversity, optimizing the base learner’s architecture
and then constructing a deep ensemble neglects diversity in favor of strong base learner performance.

Having base learner architectures vary allows more diversity in their predictions. In this section, we
provide empirical evidence for this by visualizing the base learners’ predictions. Fort et al. [18]
found that base learners in a deep ensemble explore different parts of the function space by means
of applying dimensionality reduction to their predictions. Building on this, we uniformly sample
five architectures from the DARTS search space [36], train 20 initializations of each architecture
on CIFAR-10 and visualize the similarity among the networks’ predictions on the test dataset using
t-SNE [51]. Experiment details are available in Section 5 and Appendix B.
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(a) Five different architectures, each
trained with 20 different initializations.
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(b) Predictions of base learners in two
ensembles, one with fixed architecture
and one with varying architectures.

Figure 1: t-SNE visualization of
base learner predictions.

As shown in Figure 1a, we observe clustering of predictions
made by different initializations of a fixed architecture, sug-
gesting that base learners with varying architectures explore
different parts of the function space. Moreover, we also visu-
alize the predictions of base learners of two ensembles, each
of size M = 30, where one is a deep ensemble (i.e. a fixed
architecture trained multiple times) and the other has varying
architectures (found by NES-RS which will be introduced in
Section 4). Figure 1b shows more diversity in the ensemble with
varying architectures than in the one with a fixed architecture.

4 Neural Ensemble Search

In this section, we propose the concept of neural ensemble
search (NES). In summary, a NES algorithm optimizes the
architectures of base learners in an ensemble to minimize en-
semble loss.

Given a network f : RD → RC , let L(f,D) =∑
(x,y)∈D `(f(x), y) be the loss of f over dataset D. Given a

set of base learners {f1, . . . , fM}, let Ensemble be the function
which maps {f1, . . . , fM} to the ensemble F = 1

M

∑M
i=1 fi as

defined in Section 3 . To emphasize the architecture, we use
the notation fθ,α to denote a network with architecture α ∈ A
and weights θ, where A is a space of architectures. A NES
algorithm aims to solve the following optimization problem:

min
α1,...,αM∈A

L (Ensemble(fθ1,α1
, . . . , fθM ,αM

),Dval) (1)

s.t. θi ∈ argmin
θ
L(fθ,αi

,Dtrain) for i = 1, . . . ,M

Eq. 1 is difficult to solve for at least two reasons. First, we
are optimizing over M architectures, so the search space is
effectivelyAM , compared to it beingA in typical NAS, making
it more difficult to explore fully. Second, a larger search space
also increases the risk of overfitting the ensemble loss to Dval. A possible approach here is to
consider the ensemble as a single large network to which we apply NAS, but joint training of an
ensemble through a single loss has been empirically observed to underperform training base learners
independently, specially for large neural networks [52]. Instead, our general approach to solve Eq. 1
consists of two steps:

1. Pool building: build a pool P = {fθ1,α1 , . . . , fθK ,αK
} of size K consisting of potential base

learners, where each fθi,αi is a network trained independently on Dtrain.
2. Ensemble selection: select M base learners fθ∗1 ,α∗

1
, . . . , fθ∗M ,α∗

M
from P to form an ensemble

which minimizes loss on Dval. (We assume K ≥M .)

Step 1 reduces the options for the base learner architectures, with the intention to make the search
more feasible and focus on strong architectures. Step 2 then selects a performant ensemble which
implicitly encourages base learner strength and diversity. This procedure also ensures that the
ensemble’s base learners are trained independently. We propose using forward step-wise selection
for step 2; that is, given the set of networks P , we start with an empty ensemble and add to it the
network from P which minimizes ensemble loss onDval. We repeat this without replacement until the
ensemble is of size M . Let ForwardSelect(P,Dval,M) denote the set of M base learners selected
from P by this procedure.

Note that selecting the ensemble from P is a combinatorial optimization problem; a greedy approach
such as ForwardSelect is nevertheless effective [9], while keeping computational overhead low,
given the predictions of the networks on Dval. We also experimented with three other ensemble
selection algorithms: (1) Starting with the best network by validation performance, add the next best
network to the ensemble only if it improves validation performance, iterating until the ensemble size
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Figure 2: Illustration of one iteration of NES-RE. Network architectures are represented as colored
bars of different lengths illustrating different layers and widths. Starting with the current population,
ensemble selection is applied to select parent candidates, among which one is sampled as the parent.
A mutated copy of the parent is added to the population, and the oldest member is removed.

is M or all models have been considered.2 (2) Select the top M networks by validation performance.
(3) Forward step-wise selection with replacement. We typically found that these three performed
comparatively or worse than our choice ForwardSelect.

We have not yet discussed the algorithm for building the pool in step 1; we propose two approaches,
NES-RS (Section 4.1) and NES-RE (Section 4.2). NES-RS is a simple random search based algorithm,
while NES-RE is based on regularized evolution [44], a state-of-the-art NAS algorithm. Note that
while gradient-based NAS methods have recently become popular, they are not naively applicable in
our setting as the base learner selection component ForwardSelect is typically non-differentiable.

4.1 NES with Random Search

In NAS, random search (RS) is a competitive baseline on carefully designed architecture search
spaces [35, 57, 58]. Motivated by its success and simplicity, we first introduce NES with random
search (NES-RS). NES-RS builds the pool P by independently sampling architectures uniformly
from the search space A (and training them). Since the architectures of networks in P vary, applying
ensemble selection is a simple way to exploit diversity, yielding a performant ensemble. Algorithm 1
describes NES-RS in pseudocode.

Algorithm 1: NES with Random Search
Data: Search space A; ensemble size M ; comp. budget K; Dtrain,Dval.

1 Sample K architectures α1, . . . , αK independently and uniformly from A.
2 Train each architecture αi using Dtrain, yielding a pool of networks P = {fθ1,α1 , . . . , fθK ,αK

}.
3 Select base learners {fθ∗1 ,α∗

1
, . . . , fθ∗M ,α∗

M
} = ForwardSelect(P,Dval,M) by forward

step-wise selection without replacement.
4 return ensemble Ensemble(fθ∗1 ,α∗

1
, . . . , fθ∗M ,α∗

M
)

4.2 NES with Regularized Evolution

A more guided approach for building the pool P is using regularized evolution (RE) [44]. While RS
has the benefit of simplicity, by sampling architectures uniformly, the resulting pool might contain
many weak architectures, leaving few strong architectures for ForwardSelect to choose between.
Therefore, NES-RS might require a large pool in order to explore interesting parts of the search
space. RE is an evolutionary algorithm used for NAS which explores the search space by evolving a
population of architectures. In summary, RE starts with a randomly initialized fixed-size population
of architectures. At each iteration, a subset of size m of the population is sampled, from which the
best network by validation loss is selected as the parent. A mutated copy of the parent architecture,
called the child, is trained and added to the population, and the oldest member of the population is
removed, preserving the population size. This is iterated until the computational budget is reached,
returning the history, i.e. all the networks evaluated during the search.

Based on RE for NAS, we propose NES-RE to build the pool of potential base learners. NES-RE
starts by randomly initializing a population p of size P . At each iteration, we apply ForwardSelect
to the population to select an ensemble of size m, and we uniformly sample one base learner from
the ensemble to be the parent. A mutated copy of the parent is added to p and the oldest network

2This approach returns an ensemble of size at most M .
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Algorithm 2: NES with Regularized Evolution
Data: Search space A; ensemble size M ; comp. budget K; Dtrain,Dval; population size P ;

number of parent candidates m.
1 Sample P architectures α1, . . . , αP independently and uniformly from A.
2 Train each architecture αi using Dtrain, and initialize p = P = {fθ1,α1

, . . . , fθP ,αP
}.

3 while |P| < K do
4 Select m parent candidates {fθ̃1,α̃1

, . . . , fθ̃m,α̃m
} = ForwardSelect(p,Dval,m).

5 Sample uniformly a parent architecture α from {α̃1, . . . , α̃m}. // parent stays in p.
6 Apply mutation to α, yielding child architecture β.
7 Train β using Dtrain and add the trained network fθ,β to p and P .
8 Remove the oldest member in p. // as done in RE [44].

9 Select base learners {fθ∗1 ,α∗
1
, . . . , fθ∗M ,α∗

M
} = ForwardSelect(P,Dval,M) by forward

step-wise selection without replacement.
10 return ensemble Ensemble(fθ∗1 ,α∗

1
, . . . , fθ∗M ,α∗

M
)

is removed, as in regularized evolution. This process is repeated until the computational budget is
reached, and the history is returned as the pool P . See Algorithm 2 for pseudocode and Figure 2 for
an illustration.

Also, note the distinction between the population and the pool in NES-RE: the population is evolved,
whereas the pool is the set of all networks evaluated during evolution (i.e., the history) and is used
post-hoc for selecting the ensemble. Moreover, ForwardSelect is used both for selecting m parent
candidates (line 4 in NES-RE) and choosing the final ensemble of size M (line 9 in NES-RE). In
general, m 6=M .

4.3 Ensemble Adaptation to Dataset Shift

Using deep ensembles is a common way of building a model robust to distributional shift relative to
training data. In general, one may not know the type of distributional shift that occurs at test time.
However, by using an ensemble, diversity in base learner predictions prevents the model from relying
on one base learner’s predictions which may not only be incorrect but also overconfident.

We assume that one does not have access to data points with test-time shift at training time, but one
does have access to some validation dataDshift

val with a validation shift, which encapsulates one’s belief
about test-time shift. A simple way to adapt NES-RS and NES-RE to return ensembles robust to shift
is by using Dshift

val instead of Dval whenever applying ForwardSelect to select the final ensemble. In
algorithms 1 and 2, this is in lines 3 and 9, respectively. Note that in line 4 of Algorithm 2, we can
also replace Dval with Dshift

val when expecting test-time shift, however to avoid running NES-RE once
for each of Dval,Dshift

val , we simply sample one of Dval,Dshift
val uniformly at each iteration, in order to

explore architectures that work well both in-distribution and during shift. See Appendices C.2 and
B.3 for further discussion.

5 Experiments

We apply NES using the cell-based search space for DARTS [36] and evaluate the ensembles found
on two image classification datasets: Fashion-MNIST [54] and CIFAR-10-C [24]. CIFAR-10-C
is a dataset based on CIFAR-10 but also includes validation and test dataset shifts, each with five
severity levels. We use three metrics: NLL, classification error and expected calibration error (ECE)
[20, 41]. Hyperparameter choices, experimental and implementation details are available in Appendix
B. Note that we do not aim for state-of-the-art performance but rather focus on understanding the
improvement over baselines based on deep ensembles. Unless stated otherwise, all evaluations are on
the test dataset.

Baselines. We compare the ensembles found by NES to the baseline of deep ensembles built using
a fixed, optimized architecture. The fixed architecture is either: (1) optimized by random search,
called DeepEns (RS), (2) the architecture found using DARTS, called DeepEns (DARTS) or (3) the
architecture found using RE, called DeepEns (AmoebaNet). All architectures used have five nodes

6



100 200 300 400
Number of networks evaluated

0.200

0.205

0.210

0.215

NL
L 

(n
o 

sh
ift

)

M = 3

100 200 300 400
Number of networks evaluated

0.195

0.200

0.205

0.210

0.215
M = 5

100 200 300 400
Number of networks evaluated

0.195

0.200

0.205

0.210

M = 10

100 200 300 400
Number of networks evaluated

0.20

0.21

0.22
M = 30

NES-RS
NES-RE
DeepEns (RS)
DeepEns (DARTS)
DeepEns (AmoebaNet)

Figure 3: Results on Fashion-MNIST with varying ensembles sizes M . Lines show the mean NLL
achieved by the ensembles with 95% confidence intervals.

in their cells, except AmoebaNet, which has six nodes. All base learners also use the same training
routine. See Appendix B for details.

Results on in-distribution data. Figure 3 and the top row of Figure 4 show the NLL achieved by
NES-RS, NES-RE and the baselines as a function of the computational budget K and ensemble size
M . We see that NES algorithms consistently outperform the baselines, usually for most values of
K. NES-RS and NES-RE perform comparably for CIFAR-10, but NES-RE outperforms NES-RS
for Fashion-MNIST due to more efficient exploration of the search space. Interestingly, despite
AmoebaNet being deeper, both NES algorithms outperform deep ensembles of AmoebaNet, except
for NES-RS on Fashion-MNIST when M = 30, in which case the NLL is comparable.
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Figure 4: Results on CIFAR-10-C [24] with varying ensembles sizes M and shift severity. Lines
show the mean NLL achieved by the ensembles with 95% confidence intervals.

Results during dataset shift. Next, we evaluate the robustness of the ensembles during dataset
shift for CIFAR-10-C. All base learners are trained on Dtrain without any form of data augmentation.
However, we use a shifted validation dataset, Dshift

val , and a shifted test dataset, Dshift
test . Dshift

val is built
by applying a random validation shift to each datapoint in Dval. Dshift

test is built similarly but using
instead test shifts applied to Dtest (see Appendix B and [24] for details). The severity of the shift
varies between 1-5. The fixed architecture used in the baseline DeepEns (RS) is selected based on its
loss over Dshift

val , but the DARTS and AmoebaNet architectures remain unchanged.

As shown in the bottom two rows of Figure 4, ensembles picked by NES-RS and NES-RE are more
robust to dataset shift than all three baselines. Unsurprisingly, DeepEns (DARTS) and DeepEns
(AmoebaNet) perform poorly in comparison to the other methods, as they are not optimized to deal
with dataset shift; the gap in performance naturally increases with shift severity, highlighting that
highly optimized architectures can fail heavily under dataset shift. We also see that NES-RE improves
over the performance of NES-RS during dataset shift.
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Figure 5: Results on CIFAR-10-C for the average base learner loss and the oracle ensemble loss (see
Section 3 for details), with K = 400. Recall that small oracle ensemble loss generally corresponds to
higher diversity.

Classification error and uncertainty calibration. We also assess the ensembles using classifica-
tion error and expected calibration error (ECE). ECE measures whether the predicted probabilities
are calibrated. Intuitively, whenever the ensemble makes a particular prediction with probability, e.g.,
70%, one should expect the model to be correct around 70% of the times; ECE measures the extent
of mismatch between the model’s confidence and accuracy. The results comparing NES-RE and
NES-RS with baselines are shown in Table 1. In terms of classification error, we find that ensembles
built by NES consistently outperform the baseline across ensemble sizes and shift severities, with
reductions of up to 5 percentage points in error. As with loss, NES-RE outperforms NES-RS during
dataset shift. We also see that ensembles found by NES exhibit superior uncertainty calibration,
reducing ECE by up to 40% against baselines. Note that good uncertainty calibration is especially
important when models are used during dataset shift.

Table 1: Error and ECE of ensembles on CIFAR-10-C for different shift severities and ensemble sizes
M with K = 400. Best values and all values within 95% confidence interval are bold faced. See
Table 3 for an extended version.

Classification Error (out of 1) Expected Calibration Error (ECE)
Shift

Severity M NES-RS NES-RE DeepEns
(RS)

DeepEns
(DARTS)

DeepEns
(AmoebaNet) NES-RS NES-RE DeepEns

(RS)
DeepEns
(DARTS)

DeepEns
(AmoebaNet)

5 0.098±0.001 0.098±0.002 0.112±0.002 0.101 0.098 0.012±0.001 0.013±0.002 0.011±0.002 0.015 0.016
10 0.094±0.001 0.094±0.002 0.108±0.002 0.100 0.097 0.012±0.001 0.013±0.001 0.011±0.001 0.011 0.013

0
(no shift) 30 0.092±0.001 0.092±0.001 0.105±0.002 0.095 0.094 0.012±0.001 0.012±0.001 0.012±0.001 0.011 0.012

5 0.238±0.002 0.233±0.003 0.255±0.007 0.266 0.267 0.045±0.002 0.044±0.002 0.062±0.002 0.075 0.085
3 10 0.232±0.002 0.229±0.002 0.251±0.007 0.263 0.256 0.034±0.001 0.033±0.002 0.052±0.002 0.067 0.064

30 0.231±0.001 0.228±0.002 0.249±0.007 0.258 0.252 0.029±0.001 0.028±0.002 0.049±0.002 0.057 0.054

5 0.387±0.003 0.376±0.003 0.415±0.011 0.429 0.438 0.117±0.004 0.115±0.008 0.152±0.002 0.177 0.199
5 10 0.380±0.002 0.374±0.004 0.411±0.009 0.429 0.427 0.104±0.004 0.105±0.007 0.144±0.002 0.168 0.174

30 0.382±0.002 0.375±0.003 0.408±0.009 0.427 0.422 0.103±0.002 0.102±0.006 0.136±0.003 0.160 0.160

Diversity and average base learner strength. To understand why ensembles found by NES
algorithms outperform deep ensembles with fixed, optimized architectures, we view the ensembles
through the lens of the average base learner loss and oracle ensemble loss as defined in Section 3, as
shown in Figure 5. Recall that small oracle ensemble loss indicates higher diversity. We see that
NES finds ensembles with smaller oracle ensemble losses indicating greater diversity among base
learners. Unsurprisingly, the average base learner is weaker for NES as compared to DeepEns (RS).
Despite this, the ensemble performs better, highlighting once again the importance of diversity.

6 Conclusion

We showed that ensembles with varying architectures are more diverse than ensembles with fixed
architectures and argued that deep ensembles with fixed, optimized architectures neglect diversity.
To this end, we proposed Neural Ensemble Search, which exploits diversity between base learners
of varying architectures to find strong ensembles. We demonstrated empirically that NES-RE
and NES-RS outperform deep ensembles in terms of both predictive performance and uncertainty
calibration, for in-distribution data and also during dataset shift. We found that even NES-RS, a
simple random search based algorithm, found ensembles capable of outperforming deep ensembles
built with state-of-the-art architectures.
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A Proof of Proposition 3.1

Taking the loss function to be NLL, we have `(f(x), y)) = − log [f(x)]y, where [f(x)]y is the
probability assigned by the network f of x belonging to the true class y, i.e. indexing the predicted
probabilities f(x) with the true target y. Note that t 7→ − log t is a convex and decreasing function.

We first prove `(FOE(x), y) ≤ `(F (x), y). Recall, by definition of FOE, we have FOE(x) = fθk(x)
where k ∈ argmini `(fθi(x), y), therefore [FOE(x)]y = [fθk(x)]y ≥ [fθi(x)]y for all i = 1, . . . , C.
That is, fθk assigns the highest probability to the correct class y for input x. Since − log is a
decreasing function, we have

`(F (x), y) = − log

(
1

M

M∑
i=1

[fθi(x)]y

)
≥ − log ([fθk(x)]y) = `(FOE(x), y).

We apply Jensen’s inequality in its finite form for the second inequality. Jensen’s inequality states
that for a real-valued, convex function ϕ with its domain being a subset of R and numbers t1, . . . , tn
in its domain, ϕ( 1n

∑n
i=1 ti) ≤

1
n

∑n
i=1 ϕ(ti). Noting that − log is a convex function, `(F (x), y) ≤

1
M

∑M
i=1 `(fθi(x), y) follows directly.

B Experimental and Implementation Details

We describe details of the experiments shown in Section 5 and Appendix C. Note that unless stated
otherwise, all sampling over a discrete set is done uniformly in the discussion below.

B.1 Architecture Search Space

We use the same architecture search space as in DARTS [36]; denote this by A. In A, we search for
two types of cells: normal cells, which preserve the spatial dimensions, and reduction cells, which
reduce the spatial dimensions. These cells are stacked using a pre-determined macro-architecture
where they are usually repeated and connected using additional skip connections. Each cell is a
directed acyclic graph, where nodes represent feature maps in the computational graph and edges
between them correspond to operation choices (e.g. a convolution operation). The cell parses inputs
from the previous and previous-previous cells in its 2 input nodes. Afterwards it contains 5 nodes:
4 intermediate nodes that aggregate the information coming from 2 previous nodes in the cell and
finally an output node that concatenates the output of all intermediate nodes across the channel
dimension. AmoebaNet contains one more intermediate node, making that a deeper architecture. The
set of possible operations (eight in total in DARTS) that we use for each edge in the cells is the same
as DARTS, but we leave out the “zero” operation since that is not necessary for non-differentiable
approaches such as random search and evolution. We refer the reader to [36] for more details.

B.2 Training Routine

The macro-architecture we use has 16 initial channels and 8 cells (6 normal and 2 reduction), and was
trained using a batch size of 100 for 100 epochs for CIFAR-10-C and 15 epochs for Fashion-MNIST.
Unlike DARTS, we do not use any data augmentation procedure during training, nor any additional
regularization such as ScheduledDropPath [66] or auxiliary heads. All other hyperparameter settings
are exactly as in DARTS [36].

We split the training data of Fashion-MNIST with 50k samples being used for training base learners
and 10k samples reserved for validation, which is used by the NES algorithms during ensemble
selection and by DeepEns (RS) for picking the best architecture to use in the deep ensemble. We
also set aside a test set with 10k samples; note that this test set is of course never used apart from
evaluating the final ensembles. Similarly, we split CIFAR-10-C into 40k, 10k and 10k samples
used for training, validation and testing, respectively. Note that when considering dataset shift for
CIFAR-10-C, we also apply two disjoint sets of “corruptions” (following the terminology used by
[24]) to the validation and test sets. We never apply any corruption to the training data. More
specifically, out of the 19 different corruptions provided by [24], we randomly apply one from
{Speckle Noise, Gaussian Blur, Spatter, Saturate} to each data point in the validation set
and one from {Gaussian Noise, Shot Noise, Impulse Noise, Defocus Blur, Glass Blur,
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Motion Blur, Zoom Blur, Snow, Frost, Fog, Brightness, Contrast, Elastic Transform,
Pixelate, JPEG compression} to each data point in the test set. This choice of validation and
test corruptions follows the recommendation of [24]. Also, as mentioned in Section 5, each of these
corruptions have 5 severity levels, which yields 5 corresponding severity levels for Dshift

val and Dshift
test .

For NES-RE, NES-RS and DeepEns (RS), the results shown are averaged over multiple runs of
each algorithm, with error bars showing the 95% confidence interval. For NES-RS and DeepEns
(RS) on CIFAR-10-C and Fashion-MNIST, we sampled 1,200 random architectures first, then we
sampled 400 architectures without replacement from these 1,200 for each run (because we used a
maximum budget of 400 architecture evaluations) with a total of 10 runs. This was done in order to
avoid training a very large number of networks. For NES-RE on CIFAR-10-C, we used a total of 6
independent runs, and for NES-RE on Fashion-MNIST, we used a total of 5 independent runs. Also,
whenever the results do not have the computational budget on one of the axes (e.g. Figure 5), the
budget for NES-RS, NES-RE and DeepEns (RS) is 400 architecture evaluations.

B.3 Implementation Details of NES-RE

Parallization. Running NES-RE on a single GPU requires evaluating hundreds of networks se-
quentially, which is tedious. To circumvent this, we distribute the “while |P| < K” loop in
Algorithm 2 over multiple GPUs, called worker nodes. We use the parallelism scheme provided by
the hpbandster [17] codebase.3 In brief, the master node keeps track of the population and history
(lines 1, 4-6, 8 in Algorithm 2), and it distributes the training of the networks to the individual worker
nodes (lines 2, 7 in Algorithm 2). In our experiments, we always use 20 worker nodes and evolve a
population p of size P = 50. During iterations of evolution, we use an ensemble size of m = 10 to
select parent candidates.

Mutations. We adapt the mutations used in RE to the DARTS search space. As in RE, we first pick
a normal or reduction cell at random to mutate and then sample one of the following mutations:

• identity: no mutation is applied to the cell.

• op mutation: sample one edge in the cell and replace its operation with another operation
sampled from the list of operations.

• hidden state mutation: sample one intermediate node in the cell, then sample one of
its two incoming edges. Replace the input node of that edge with another sampled node,
without altering the edge’s operation.

See [44] for details and illustrations of these mutations.

Adaptation of NES-RE to dataset shifts. As described in Section 4.3, at each iteration of evolu-
tion, the validation set used in line 4 of Algorithm 2 is sampled uniformly between Dval and Dshift

val
when dealing with dataset shift. In this case, we use shift severity level 5 forDshift

val . Once the evolution
is complete and the pool P has been formed, then for each severity level s ∈ {0, 1, . . . , 5}, we apply
ForwardSelect with Dshift

val of severity s to select an ensemble from P (line 9 in Algorithm 2), which
is then evaluated on Dshift

test of severity s. (Here s = 0 corresponds to no shift.) This only applies to
CIFAR-10-C, as we do not consider dataset shift for Fashion-MNIST.

C Additional Experiments

In this section we provide additional results for the experiments conducted in Section 5. Note that, as
with all results shown in Section 5, all evaluations are made on test data unless stated otherwise.

C.1 Additional Results on Fashion-MNIST

To understand why NES algorithms outperform deep ensembles on Fashion-MNIST [54], we compare
the average base learner loss (Figure 6) and oracle ensemble loss (Figure 7) of NES-RS, NES-RE and
DeepEns (RS). Notice that, apart from the case when ensemble size M = 30, NES-RS and NES-RE

3https://github.com/automl/HpBandSter
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Figure 6: Average base learner loss for NES-RS, NES-RE and DeepEns (RS) on Fashion-MNIST.
Lines show the mean NLL and 95% confidence intervals.
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Figure 7: Oracle ensemble loss for NES-RS, NES-RE and DeepEns (RS) on Fashion-MNIST. Lines
show the mean NLL and 95% confidence intervals.

find ensembles with both stronger and more diverse base learners (smaller losses in Figures 6 and 7,
respectively). While it is expected that the oracle ensemble loss is smaller for NES-RS and NES-RE
compared to DeepEns (RS), it initially appears surprising that DeepEns (RS) has a larger average
base learner loss considering that the architecture for the deep ensemble is chosen to minimize the
base learner loss. We found that this is due to the loss having a sensitive dependence not only on the
architecture but also the initialization of the base learner networks. Therefore, re-training the best
architecture by validation loss to build the deep ensemble yields base learners with higher losses due
to the use of different random initializations. Fortunately, NES algorithms are not affected by this,
since they simply select the ensemble’s base learners from the pool without having to re-train anything
which allows them to exploit good architectures as well as initializations. Note that, for CIFAR-10-C
experiments, this was not the case; base learner losses did not have as sensitive a dependence on the
initialization as they did on the architecture.

In Table 2, we compare the classification error and expected calibration error (ECE) of NES algorithms
with the deep ensembles baseline for various ensemble sizes on Fashion-MNIST. Similar to the loss,
NES algorithms also achieve smaller errors, while ECE remains approximately the same for all
methods.

Table 2: Error and ECE of ensembles on Fashion-MNIST for different ensemble sizes M . Best values
and all values within 95% confidence interval are bold faced.

Classification Error (out of 1) Expected Calibration Error (ECE)
M NES-RS NES-RE DeepEns

(RS)
DeepEns
(DARTS)

DeepEns
(AmoebaNet) NES-RS NES-RE DeepEns

(RS)
DeepEns
(DARTS)

DeepEns
(AmoebaNet)

3 0.074±0.001 0.072±0.001 0.076±0.001 0.077 0.077 0.007±0.001 0.007±0.002 0.008±0.001 0.003 0.008
5 0.073±0.001 0.071±0.002 0.075±0.001 0.077 0.074 0.005±0.001 0.005±0.001 0.006±0.001 0.005 0.005
10 0.073±0.001 0.070±0.001 0.075±0.001 0.076 0.073 0.004±0.001 0.005±0.001 0.005±0.001 0.006 0.005
30 0.073±0.001 0.070±0.001 0.074±0.001 0.075 0.073 0.004±0.001 0.004±0.002 0.004±0.001 0.008 0.004
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C.2 Additional Results on CIFAR-10-C

In this section, we provide additional experimental results on CIFAR-10-C. Table 3 is an extended
version of Table 1, containing all severity levels 1-5. Figures 8, 9 and 10 show the loss, error and
ECE, respectively, of the ensembles selected by NES and the baselines as a function of the budget K.
For these ensembles, Figures 11 and 12 show the average base learner loss and the oracle ensemble
loss, respectively. These plots generally show that NES algorithms find ensembles which outperform
deep ensembles for almost all values of the budget K. Note that the error and ECE values in Table 3
correspond to the values at the rightmost end of the subplots in Figures 9 and 10, that is, when the
budget K = 400.

We also include a variant of NES-RE, called NES-RE-0, in Figures 8, 9, 10, 11 and 12.4 NES-RE
and NES-RE-0 are the same, except that NES-RE-0 uses the validation set Dval without any shift
during iterations of evolution, as in line 4 of Algorithm 2. Following the discussion in Appendix
B.3, recall that this is unlike NES-RE, where we sample the validation set to be either Dval or Dshift

val
at each iteration of evolution. Therefore, NES-RE-0 evolves the population without taking into
account dataset shift, with Dshift

val only being used for the post-hoc ensemble selection step in line 9 of
Algorithm 2.

As shown in the Figures 8 and 9, NES-RE-0 shows a minor improvement over NES-RE in terms
of loss and error for ensemble size M = 30 in the absence of dataset shift. This is in line with
expectations, because evolution in NES-RE-0 focuses on finding base learners which form strong
ensembles for in-distribution data. On the other hand, when there is dataset shift, the performance
of NES-RE-0 ensembles degrades, yielding higher loss and error than both NES-RS and NES-RE.
Nonetheless, NES-RE-0 still manages to outperform the DeepEns baselines consistently. We draw
two conclusions on the basis of these results: (1) NES-RE-0 can be a competitive option in the
absence of dataset shift. (2) Sampling the validation set, as done in NES-RE, to be Dval or Dshift

val in
line 4 of Algorithm 2 plays an important role is returning a final pool P of base learners from which
ForwardSelect can select ensembles robust to dataset shift.

Table 3: Extension of table 1. Error and ECE of ensembles on CIFAR-10-C for different shift
severities and ensemble sizes M . Best values and all values within 95% confidence interval are bold
faced.

Classification Error (out of 1) Expected Calibration Error (ECE)
Shift

Severity M NES-RS NES-RE DeepEns
(RS)

DeepEns
(DARTS)

DeepEns
(AmoebaNet) NES-RS NES-RE DeepEns

(RS)
DeepEns
(DARTS)

DeepEns
(AmoebaNet)

5 0.098±0.001 0.098±0.002 0.112±0.002 0.101 0.098 0.012±0.001 0.013±0.002 0.011±0.002 0.015 0.016
10 0.094±0.001 0.094±0.002 0.108±0.002 0.100 0.097 0.012±0.001 0.013±0.001 0.011±0.001 0.011 0.013

0
(no shift) 30 0.092±0.001 0.092±0.001 0.105±0.002 0.095 0.094 0.012±0.001 0.012±0.001 0.012±0.001 0.011 0.012

5 0.163±0.001 0.164±0.002 0.175±0.004 0.172 0.172 0.024±0.001 0.027±0.004 0.028±0.001 0.038 0.040
1 10 0.158±0.001 0.159±0.001 0.173±0.004 0.169 0.166 0.019±0.001 0.019±0.003 0.023±0.001 0.028 0.028

30 0.155±0.001 0.157±0.001 0.171±0.004 0.164 0.163 0.013±0.001 0.015±0.002 0.019±0.002 0.020 0.021

5 0.196±0.002 0.192±0.002 0.207±0.005 0.214 0.212 0.030±0.002 0.030±0.004 0.039±0.001 0.050 0.053
2 10 0.188±0.001 0.188±0.002 0.203±0.005 0.208 0.205 0.019±0.001 0.021±0.003 0.031±0.002 0.037 0.037

30 0.186±0.001 0.184±0.001 0.203±0.005 0.206 0.201 0.013±0.001 0.015±0.002 0.030±0.002 0.031 0.029

5 0.238±0.002 0.233±0.003 0.255±0.007 0.266 0.267 0.045±0.002 0.044±0.002 0.062±0.002 0.075 0.085
3 10 0.232±0.002 0.229±0.002 0.251±0.007 0.263 0.256 0.034±0.001 0.033±0.002 0.052±0.002 0.067 0.064

30 0.231±0.001 0.228±0.002 0.249±0.007 0.258 0.252 0.029±0.001 0.028±0.002 0.049±0.002 0.057 0.054

5 0.301±0.002 0.293±0.004 0.316±0.007 0.336 0.336 0.079±0.003 0.077±0.005 0.101±0.001 0.125 0.133
4 10 0.295±0.001 0.289±0.003 0.313±0.007 0.329 0.33 0.068±0.002 0.067±0.004 0.095±0.002 0.109 0.116

30 0.294±0.001 0.290±0.003 0.311±0.006 0.324 0.324 0.064±0.001 0.063±0.004 0.089±0.003 0.100 0.103

5 0.387±0.003 0.376±0.003 0.415±0.011 0.429 0.438 0.117±0.004 0.115±0.008 0.152±0.002 0.177 0.199
5 10 0.380±0.002 0.374±0.004 0.411±0.009 0.429 0.427 0.104±0.004 0.105±0.007 0.144±0.002 0.168 0.174

30 0.382±0.002 0.375±0.003 0.408±0.009 0.427 0.422 0.103±0.002 0.102±0.006 0.136±0.003 0.160 0.160

4The results shown are an average over 3 independent runs of NES-RE-0.
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Figure 8: Results on CIFAR-10-C [24] with varying ensembles sizes M and shift severity. Lines
show the mean NLL achieved by the ensembles with 95% confidence intervals. See Appendix C.2
for the definition of NES-RE-0.

17



0.095

0.100

0.105

0.110

0.115
Er

ro
r (

no
 sh

ift
)

M = 5

0.090

0.095

0.100

0.105

0.110
M = 10

0.090

0.095

0.100

0.105

M = 30

DeepEns (AmoebaNet)
DeepEns (DARTS)
DeepEns (RS)
NES-RE
NES-RE-0
NES-RS

0.160

0.165

0.170

0.175

0.180

0.185

Er
ro

r (
se

ve
rit

y 
= 

1)

0.160

0.165

0.170

0.175

0.180

0.155

0.160

0.165

0.170

0.175

0.180

0.19

0.20

0.21

0.22

Er
ro

r (
se

ve
rit

y 
= 

2)

0.19

0.20

0.21

0.19

0.20

0.21

0.23

0.24

0.25

0.26

Er
ro

r (
se

ve
rit

y 
= 

3)

0.23

0.24

0.25

0.26

0.23

0.24

0.25

0.26

0.29

0.30

0.31

0.32

0.33

Er
ro

r (
se

ve
rit

y 
= 

4)

0.29

0.30

0.31

0.32

0.33

0.29

0.30

0.31

0.32

100 200 300 400
Number of networks evaluated

0.38

0.40

0.42

0.44

Er
ro

r (
se

ve
rit

y 
= 

5)

100 200 300 400
Number of networks evaluated

0.38

0.40

0.42

100 200 300 400
Number of networks evaluated

0.38

0.40

0.42

Figure 9: Results on CIFAR-10-C [24] with varying ensembles sizes M and shift severity. Lines
show the mean error achieved by the ensembles with 95% confidence intervals. See Appendix C.2
for the definition of NES-RE-0.
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Figure 10: Results on CIFAR-10-C [24] with varying ensembles sizes M and shift severity. Lines
show the mean ECE achieved by the ensembles with 95% confidence intervals. See Appendix C.2
for the definition of NES-RE-0.
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Figure 11: Results on CIFAR-10-C [24] with varying ensembles sizes M and shift severity. Lines
show the mean of the average base learner loss with 95% confidence intervals. See Appendix C.2 for
the definition of NES-RE-0.
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Figure 12: Results on CIFAR-10-C [24] with varying ensembles sizes M and shift severity. Lines
show the mean of the oracle ensemble loss with 95% confidence intervals. See Appendix C.2 for the
definition of NES-RE-0.
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