Neural Ensemble Search for Performant and Calibrated Predictions

Sheheryar ZaidiArber ZelaThomas ElskenChris HolmesFrank HutterYee Whye Teh

 1 University of Oxford 2 University of Freiburg 3 Bosch Center for Artificial Intelligence

July 2020

Why is uncertainty important?

• **Predictive uncertainty** can be for instance the output label together with the confidence of that prediction in classification

- **Predictive uncertainty** can be for instance the output label together with the confidence of that prediction in classification
- Good uncertainty estimates quantify how much we can trust our model's predictions

- **Predictive uncertainty** can be for instance the output label together with the confidence of that prediction in classification
- Good uncertainty estimates quantify how much we can trust our model's predictions
- Some applications where uncertainty quantification is important are:

- **Predictive uncertainty** can be for instance the output label together with the confidence of that prediction in classification
- Good uncertainty estimates quantify how much we can trust our model's predictions
- Some applications where uncertainty quantification is important are:
 - Cost-sensitive decision making (healthcare e.g. medical imaging; self-driving cars; robotics)

- **Predictive uncertainty** can be for instance the output label together with the confidence of that prediction in classification
- Good uncertainty estimates quantify how much we can trust our model's predictions
- Some applications where uncertainty quantification is important are:
 - Cost-sensitive decision making (healthcare e.g. medical imaging; self-driving cars; robotics)
 - Dealing with distribution shift (Feature skew between train and test sets; test inputs do not belong to any of the training classes)

- **Predictive uncertainty** can be for instance the output label together with the confidence of that prediction in classification
- Good uncertainty estimates quantify how much we can trust our model's predictions
- Some applications where uncertainty quantification is important are:
 - Cost-sensitive decision making (healthcare e.g. medical imaging; self-driving cars; robotics)
 - Dealing with distribution shift (Feature skew between train and test sets; test inputs do not belong to any of the training classes)
 - Safe exploration in RL, etc.

- **Predictive uncertainty** can be for instance the output label together with the confidence of that prediction in classification
- Good uncertainty estimates quantify how much we can trust our model's predictions
- Some applications where uncertainty quantification is important are:
 - Cost-sensitive decision making (healthcare e.g. medical imaging; self-driving cars; robotics)
 - Dealing with distribution shift (Feature skew between train and test sets; test inputs do not belong to any of the training classes)
 - Safe exploration in RL, etc.
- Ideally we want a system that knows what it doesn't know.

Are deep neural networks calibrated and robust to OOD data?

• Calibration tells us how well the predicted confidence (*probability of correctness*) of the model aligns with the observed accuracy (*frequency of correctness*).

Are deep neural networks calibrated and robust to OOD data?

- Calibration tells us how well the predicted confidence (*probability of correctness*) of the model aligns with the observed accuracy (*frequency of correctness*).
- E.g. in image classification: if the correct predicted class was always with 80% probability, then a perfectly calibrated system would imply that on 80% of the examples it predicted the true class.

Are deep neural networks calibrated and robust to OOD data?

- Calibration tells us how well the predicted confidence (*probability of correctness*) of the model aligns with the observed accuracy (*frequency of correctness*).
- E.g. in image classification: if the correct predicted class was always with 80% probability, then a perfectly calibrated system would imply that on 80% of the examples it predicted the true class.
- Usually neural networks are **not well-calibrated** making overconfident or underconfident predictions

Are deep neural networks calibrated and robust to OOD data?

- Calibration tells us how well the predicted confidence (*probability of correctness*) of the model aligns with the observed accuracy (*frequency of correctness*).
- E.g. in image classification: if the correct predicted class was always with 80% probability, then a perfectly calibrated system would imply that on 80% of the examples it predicted the true class.
- Usually neural networks are **not well-calibrated** making overconfident or underconfident predictions
- Moreover, they are fragile, i.e. **they do not have high uncertainty** on out-of-distribution (OOD) inputs.

Starting point

• Ensembles of networks are commonly used to boost performance.

Starting point

- Ensembles of networks are commonly used to boost performance.
- Recent interest in ensembles has been due to their strong *predictive uncertainty estimation* and *robustness to distributional shift*.

Starting point

- Ensembles of networks are commonly used to boost performance.
- Recent interest in ensembles has been due to their strong *predictive uncertainty estimation* and *robustness to distributional shift*.
- Diversity among the *base learners*' predictions is believed to be key for strong ensembles.

On diversity in ensembles

• Notation: f_{θ} is a network with weights θ , and $\ell(f_{\theta}(\boldsymbol{x}), y)$ is the loss for (\boldsymbol{x}, y) . Define the ensemble of M networks $f_{\theta_1}, \ldots, f_{\theta_M}$ by $F(\boldsymbol{x}) = \frac{1}{M} \sum_{i=1}^M f_{\theta_i}(\boldsymbol{x})$.

On diversity in ensembles

- Notation: f_{θ} is a network with weights θ , and $\ell(f_{\theta}(\boldsymbol{x}), y)$ is the loss for (\boldsymbol{x}, y) . Define the ensemble of M networks $f_{\theta_1}, \ldots, f_{\theta_M}$ by $F(\boldsymbol{x}) = \frac{1}{M} \sum_{i=1}^M f_{\theta_i}(\boldsymbol{x})$.
- Average base learner loss: $\frac{1}{M} \sum_{i=1}^{M} \ell(f_{\theta_i}(\boldsymbol{x}), y)$.

On diversity in ensembles

- Notation: f_{θ} is a network with weights θ , and $\ell(f_{\theta}(\boldsymbol{x}), y)$ is the loss for (\boldsymbol{x}, y) . Define the ensemble of M networks $f_{\theta_1}, \ldots, f_{\theta_M}$ by $F(\boldsymbol{x}) = \frac{1}{M} \sum_{i=1}^M f_{\theta_i}(\boldsymbol{x})$.
- Average base learner loss: $\frac{1}{M} \sum_{i=1}^{M} \ell(f_{\theta_i}(\boldsymbol{x}), y)$.
- Oracle ensemble: given $f_{\theta_1}, \ldots, f_{\theta_M}$, the oracle ensemble F_{OE} is defined as

$$F_{\mathsf{OE}}({m x}) = f_{{m heta}_k}({m x}), \quad ext{where} \quad k \in rgmin_i \ell(f_{{m heta}_i}({m x}), y).$$

On diversity in ensembles

- Notation: f_{θ} is a network with weights θ , and $\ell(f_{\theta}(\boldsymbol{x}), y)$ is the loss for (\boldsymbol{x}, y) . Define the ensemble of M networks $f_{\theta_1}, \ldots, f_{\theta_M}$ by $F(\boldsymbol{x}) = \frac{1}{M} \sum_{i=1}^M f_{\theta_i}(\boldsymbol{x})$.
- Average base learner loss: $\frac{1}{M} \sum_{i=1}^{M} \ell(f_{\theta_i}(\boldsymbol{x}), y)$.
- Oracle ensemble: given $f_{\theta_1}, \ldots, f_{\theta_M}$, the oracle ensemble F_{OE} is defined as

$$F_{\mathsf{OE}}({m x}) = f_{ heta_k}({m x}), \quad ext{where} \quad k \in rgmin_i \ell(f_{ heta_i}({m x}), y).$$

• As a rule of thumb, *small oracle ensemble loss indicates more diverse base learner predictions.*

On diversity in ensembles

Proposition

Suppose ℓ is negative log-likelihood (NLL). Then, the oracle ensemble loss, ensemble loss, and average base learner loss satisfy the following inequality:

$$\ell(F_{OE}(\boldsymbol{x}), y) \leq \ell(F(\boldsymbol{x}), y) \leq \frac{1}{M} \sum_{i=1}^{M} \ell(f_{\theta_i}(\boldsymbol{x}), y).$$

Proof.

Direct application of Jensen's inequality for the right inequality and definition of oracle ensemble for the left one. $\hfill \Box$

Deep Ensembles

- For classification, ensembles are typically constructed as follows. This is referred to as *deep ensembles* (Lakshminarayanan et al., 2017).
 - 1. Independently train multiple copies of a *fixed* architecture with different random initializations.
 - 2. Create ensemble by averaging outputs, i.e. predicted distributions over the classes.

Deep Ensembles

- For classification, ensembles are typically constructed as follows. This is referred to as *deep ensembles* (Lakshminarayanan et al., 2017).
 - 1. Independently train multiple copies of a *fixed* architecture with different random initializations.
 - 2. Create ensemble by averaging outputs, i.e. predicted distributions over the classes.
- The *fixed* architecture used for the base learners is usually a strong architecture which is hand-crafted or found using Neural Architecture Search (NAS).

Deep Ensembles

- For classification, ensembles are typically constructed as follows. This is referred to as *deep ensembles* (Lakshminarayanan et al., 2017).
 - 1. Independently train multiple copies of a *fixed* architecture with different random initializations.
 - 2. Create ensemble by averaging outputs, i.e. predicted distributions over the classes.
- The *fixed* architecture used for the base learners is usually a strong architecture which is hand-crafted or found using Neural Architecture Search (NAS).
- Our work:
 - Varying the base learner architectures increases diversity \rightarrow ensembles have better predictive performance and uncertainty, in-distribution and during shift.
 - Neural Ensemble Search (NES): we propose two algorithms for finding base learner architectures that combine to form strong ensembles.

Varying vs. fixed base learner architectures

Visualizing base learner predictions using t-SNE on CIFAR-10

Figure: Left: Predictions of 5 different archs, each trained with 20 different inits. Right: Predictions of base learners in an ensemble with varying archs (found using NES) vs. fixed arch (deep ensemble of optimized arch).

General approach

• Our approach for finding base learner architectures that optimize ensemble performance consists of two steps. Let $f_{\theta,\alpha}$ denote a network with arch α and weights θ . Computational budget denoted by K and ensemble size by M.

- Our approach for finding base learner architectures that optimize ensemble performance consists of two steps. Let $f_{\theta,\alpha}$ denote a network with arch α and weights θ . Computational budget denoted by K and ensemble size by M.
 - 1. **Pool building**: build a pool $\mathcal{P} = \{f_{\theta_1,\alpha_1}, \ldots, f_{\theta_K,\alpha_K}\}$ of size K consisting of potential base learners, where each f_{θ_i,α_i} is a network trained independently on $\mathcal{D}_{\text{train}}$.

- Our approach for finding base learner architectures that optimize ensemble performance consists of two steps. Let $f_{\theta,\alpha}$ denote a network with arch α and weights θ . Computational budget denoted by K and ensemble size by M.
 - 1. **Pool building**: build a *pool* $\mathcal{P} = \{f_{\theta_1,\alpha_1}, \ldots, f_{\theta_K,\alpha_K}\}$ of size K consisting of potential base learners, where each f_{θ_i,α_i} is a network trained independently on $\mathcal{D}_{\text{train}}$.
 - 2. Ensemble selection: select M base learners $f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_M^*,\alpha_M^*}$ from \mathcal{P} to form an ensemble which minimizes loss on $\mathcal{D}_{\mathsf{val}}$. (We assume $K \geq M$.)

- Our approach for finding base learner architectures that optimize ensemble performance consists of two steps. Let $f_{\theta,\alpha}$ denote a network with arch α and weights θ . Computational budget denoted by K and ensemble size by M.
 - 1. **Pool building**: build a *pool* $\mathcal{P} = \{f_{\theta_1,\alpha_1}, \ldots, f_{\theta_K,\alpha_K}\}$ of size K consisting of potential base learners, where each f_{θ_i,α_i} is a network trained independently on $\mathcal{D}_{\text{train}}$.
 - 2. Ensemble selection: select M base learners $f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_M^*,\alpha_M^*}$ from \mathcal{P} to form an ensemble which minimizes loss on \mathcal{D}_{val} . (We assume $K \ge M$.)
- For step 2, we use forward step-wise selection without replacement: given pool \mathcal{P} , start with an empty ensemble and add to it the network from \mathcal{P} which minimizes ensemble loss on \mathcal{D}_{val} . We repeat this without replacement until the ensemble is of size M. (Caruana et al., 2004)

- Our approach for finding base learner architectures that optimize ensemble performance consists of two steps. Let $f_{\theta,\alpha}$ denote a network with arch α and weights θ . Computational budget denoted by K and ensemble size by M.
 - 1. **Pool building**: build a *pool* $\mathcal{P} = \{f_{\theta_1,\alpha_1}, \ldots, f_{\theta_K,\alpha_K}\}$ of size K consisting of potential base learners, where each f_{θ_i,α_i} is a network trained independently on $\mathcal{D}_{\text{train}}$.
 - 2. Ensemble selection: select M base learners $f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_M^*,\alpha_M^*}$ from \mathcal{P} to form an ensemble which minimizes loss on \mathcal{D}_{val} . (We assume $K \ge M$.)
- For step 2, we use forward step-wise selection without replacement: given pool \mathcal{P} , start with an empty ensemble and add to it the network from \mathcal{P} which minimizes ensemble loss on \mathcal{D}_{val} . We repeat this without replacement until the ensemble is of size M. (Caruana et al., 2004)
- Next, we discuss two options for pool building in step 1.

- NES-RS is a simple random search (RS) based approach: we build the pool by sampling K architectures uniformly at random.
- Motivation: in NAS, RS is a competitive baseline on well-designed architecture search spaces. Applying ensemble selection to the pool of randomly sampled archs is then a simple way to exploit diversity among varying archs.

Algorithm 1: NES with Random Search

Data: Search space \mathcal{A} ; ensemble size M; comp. budget K; \mathcal{D}_{train} , \mathcal{D}_{val} .

- 1 Sample K architectures $\alpha_1, \ldots, \alpha_K$ independently and uniformly from A.
- 2 Train each architecture α_i using $\mathcal{D}_{\text{train}}$, yielding a pool of networks

$$\mathcal{P} = \{ f_{\theta_1, \alpha_1}, \dots, f_{\theta_K, \alpha_K} \}.$$

3 Select base learners $\{f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_M^*,\alpha_M^*}\}$ = ForwardSelect $(\mathcal{P},\mathcal{D}_{val},M)$ by forward step-wise selection without replacement.

4 return ensemble $Ensemble(f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_M^*,\alpha_M^*})$

Figure: NES-RS. $f_{\theta,\alpha}$ is a network with weights θ and architecture α .

NES-RE: with Regularized Evolution

• NES-RE uses another approach for pool building inspired by regularized evolution (Real et al., 2018). The arch search space is explored by *evolving a population of architectures*.

Figure: One iteration of NES-RE. Network architectures are represented as colored bars of different lengths illustrating different layers and widths. The pool returned is the set of *all architectures evaluated*.

Figure: NES-RE. $f_{\theta,\alpha}$ is a network with weights θ and architecture α .

Algorithm 2: NES with Regularized Evolution

Data: Search space \mathcal{A} ; ensemble size M; comp. budget K; \mathcal{D}_{train} , \mathcal{D}_{val} ; population size P; number of parent candidates m.

Figure: NES-RE. $f_{\theta,\alpha}$ is a network with weights θ and architecture α .

Algorithm 2: NES with Regularized Evolution

Data: Search space \mathcal{A} ; ensemble size M; comp. budget K; \mathcal{D}_{train} , \mathcal{D}_{val} ; population size P; number of parent candidates m.

- 1 Sample P architectures $\alpha_1, \ldots, \alpha_P$ independently and uniformly from A.
- 2 Train each architecture α_i using $\mathcal{D}_{\text{train}}$, and initialize $\mathfrak{p} = \mathcal{P} = \{f_{\theta_1,\alpha_1}, \dots, f_{\theta_P,\alpha_P}\}.$

Figure: NES-RE. $f_{\theta,\alpha}$ is a network with weights θ and architecture α .

Algorithm 2: NES with Regularized Evolution

- **Data:** Search space \mathcal{A} ; ensemble size M; comp. budget K; \mathcal{D}_{train} , \mathcal{D}_{val} ; population size P; number of parent candidates m.
- 1 Sample P architectures $\alpha_1, \ldots, \alpha_P$ independently and uniformly from A.
- 2 Train each architecture α_i using $\mathcal{D}_{\text{train}}$, and initialize $\mathfrak{p} = \mathcal{P} = \{f_{\theta_1,\alpha_1}, \dots, f_{\theta_P,\alpha_P}\}$.
- 3 while $|\mathcal{P}| < K$ do
- 5 Sample uniformly a parent architecture α from $\{\widetilde{\alpha}_1, \ldots, \widetilde{\alpha}_m\}$. // parent stays in p.
- 6 Apply mutation to α , yielding child architecture β .
- 7 Train β using $\mathcal{D}_{\text{train}}$ and add the trained network $f_{\theta,\beta}$ to \mathfrak{p} and \mathcal{P} .
- 8 Remove the oldest member in p. // as done in RE [44].

Figure: NES-RE. $f_{\theta,\alpha}$ is a network with weights θ and architecture α .

Algorithm 2: NES with Regularized Evolution

- **Data:** Search space A; ensemble size M; comp. budget K; \mathcal{D}_{train} , \mathcal{D}_{val} ; population size P; number of parent candidates m.
- 1 Sample P architectures $\alpha_1, \ldots, \alpha_P$ independently and uniformly from A.
- 2 Train each architecture α_i using $\mathcal{D}_{\text{train}}$, and initialize $\mathfrak{p} = \mathcal{P} = \{f_{\theta_1,\alpha_1}, \ldots, f_{\theta_P,\alpha_P}\}$.
- 3 while $|\mathcal{P}| < K$ do
- $\label{eq:select_matrix} \textbf{4} \quad | \quad \text{Select } m \text{ parent candidates } \{f_{\widetilde{\theta}_1,\widetilde{\alpha}_1},\ldots,f_{\widetilde{\theta}_m,\widetilde{\alpha}_m}\} = \texttt{ForwardSelect}(\mathfrak{p},\mathcal{D}_{\text{val}},m).$
- 5 Sample uniformly a parent architecture α from $\{\widetilde{\alpha}_1, \ldots, \widetilde{\alpha}_m\}$. // parent stays in p.
- 6 Apply mutation to α , yielding child architecture β .
- 7 Train β using $\mathcal{D}_{\text{train}}$ and add the trained network $f_{\theta,\beta}$ to \mathfrak{p} and \mathcal{P} .
- 8 Remove the oldest member in p.

// as done in RE [44].

9 Select base learners $\{f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_M^*,\alpha_M^*}\}$ = ForwardSelect $(\mathcal{P},\mathcal{D}_{val},M)$ by forward step-wise selection without replacement.

10 return ensemble $Ensemble(f_{\theta_1^*,\alpha_1^*},\ldots,f_{\theta_M^*,\alpha_M^*})$

Experimental results

On Fashion-MNIST

• We compare ensembles found by NES with the baseline of deep ensembles composed of a fixed, optimized architecture; the optimized arch is either DARTS, AmoebaNet or optimized by RS.

Figure: Negative log-likelihood achieved by ensembles on test data. Note that AmoebaNet arch is deeper than all other methods shown. M is ensemble size.

• We assume that at test time, the data will contain a distributional shift(s) wrt training data. The shift(s) is assumed to be unknown at training time.

- We assume that at test time, the data will contain a distributional shift(s) wrt training data. The shift(s) is assumed to be unknown at training time.
- We consider the case where a validation dataset with *validation* shift(s) is available.

- We assume that at test time, the data will contain a distributional shift(s) wrt training data. The shift(s) is assumed to be unknown at training time.
- We consider the case where a validation dataset with *validation* shift(s) is available.
- To adapt the ensembles to shift, simply replace \mathcal{D}_{val} with the shifted validation dataset $\mathcal{D}_{val}^{shift}.$

- We assume that at test time, the data will contain a distributional shift(s) wrt training data. The shift(s) is assumed to be unknown at training time.
- We consider the case where a validation dataset with *validation* shift(s) is available.
- To adapt the ensembles to shift, simply replace \mathcal{D}_{val} with the shifted validation dataset $\mathcal{D}_{val}^{shift}$.
- Roughly (and heuristically), diversity in ensembles is particularly useful during shift, because baselearners can make different predictions during uncertainty. Using a shifted validation allows NES algorithms to "consider" what happens to baselearners when they're used during shift (and are likely to fail).

Experimental results

On CIFAR-10-C (Hendrycks & Dietterich, 2019)

Figure: Test NLL of ensembles. Top row involves no distributional shifts. Bottom row involves shift with maximum severity available in CIFAR-10-C.

Experimental results: predictive uncertainty calibration and classification error

On CIFAR-10-C (Hendrycks & Dietterich, 2019)

Shift Severity	M	Classification Error (out of 1)					Expected Calibration Error (ECE)				
		NES-RS	NES-RE	DeepEns (RS)	DeepEns (DARTS)	DeepEns (AmoebaNet)	NES-RS	NES-RE	DeepEns (RS)	DeepEns (DARTS)	DeepEns (AmoebaNet)
0 (no shift)	5	$0.098 \scriptstyle \pm 0.001$	0.098 ± 0.002	0.112 ± 0.002	0.101	0.098	$0.012 \scriptstyle \pm 0.001$	0.013 ± 0.002	0.011 ± 0.002	0.015	0.016
	10	0.094 ± 0.001	0.094 ± 0.002	0.108 ± 0.002	0.100	0.097	0.012 ± 0.001	0.013 ± 0.001	0.011 ± 0.001	0.011	0.013
	30	$0.092 \scriptstyle \pm 0.001$	$0.092 \scriptstyle \pm 0.001$	$0.105{\scriptstyle \pm 0.002}$	0.095	0.094	0.012 ± 0.001	0.012 ± 0.001	0.012 ± 0.001	0.011	0.012
3	5	0.238 ± 0.002	0.233 ± 0.003	0.255 ± 0.007	0.266	0.267	0.045 ± 0.002	0.044 ± 0.002	0.062 ± 0.002	0.075	0.085
	10	0.232 ± 0.002	0.229 ± 0.002	0.251 ± 0.007	0.263	0.256	0.034 ± 0.001	0.033 ± 0.002	0.052 ± 0.002	0.067	0.064
	30	0.231 ± 0.001	$0.228 \scriptstyle \pm 0.002$	0.249 ± 0.007	0.258	0.252	$0.029 \scriptstyle \pm 0.001$	$0.028 \scriptstyle \pm 0.002$	0.049 ± 0.002	0.057	0.054
5	5	0.387 ± 0.003	0.376 ± 0.003	0.415 ± 0.011	0.429	0.438	0.117 ± 0.004	0.115 ± 0.008	0.152 ± 0.002	0.177	0.199
	10	0.380 ± 0.002	0.374 ± 0.004	0.411 ± 0.009	0.429	0.427	0.104 ± 0.004	0.105 ± 0.007	0.144 ± 0.002	0.168	0.174
	30	$0.382{\scriptstyle \pm 0.002}$	$0.375 \scriptstyle \pm 0.003$	0.408 ± 0.009	0.427	0.422	$0.103 \scriptstyle \pm 0.002$	$0.102 \scriptstyle \pm 0.006$	$0.136{\scriptstyle \pm 0.003}$	0.160	0.160

Figure: Classification error and ECE of ensembles on test data. ECE measures uncertainty calibration, that is, the mismatch between the model's confidence and accuracy. Smaller ECE is better.

Experimental results: diversity vs. average base learner strength

On CIFAR-10-C (Hendrycks & Dietterich, 2019)

- Strong ensembles require not only strong base learners but also diverse ones.
- One measurement of diversity is the *oracle ensemble loss*. Recall: **small oracle ensemble loss corresponds to high diversity.**

• Recent interest in ensembles has been due to their strong *predictive uncertainty estimation* and *robustness to distributional shift*. Deep Enselmbles are a strong baseline.

- Recent interest in ensembles has been due to their strong *predictive uncertainty estimation* and *robustness to distributional shift*. Deep Enselmbles are a strong baseline.
- Varying architectures of base learners improves diversity.

- Recent interest in ensembles has been due to their strong *predictive uncertainty estimation* and *robustness to distributional shift*. Deep Enselmbles are a strong baseline.
- Varying architectures of base learners improves diversity.
- We propose ways to effectively search for these architectures.

- Recent interest in ensembles has been due to their strong *predictive uncertainty estimation* and *robustness to distributional shift*. Deep Enselmbles are a strong baseline.
- Varying architectures of base learners improves diversity.
- We propose ways to effectively search for these architectures.
- NES searches for more diverse ensembles without ever explicitly defining diversity.

- Recent interest in ensembles has been due to their strong *predictive uncertainty estimation* and *robustness to distributional shift*. Deep Enselmbles are a strong baseline.
- Varying architectures of base learners improves diversity.
- We propose ways to effectively search for these architectures.
- NES searches for more diverse ensembles without ever explicitly defining diversity.
- We show improved performance and better calibration for in-distribution and shifted data.