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Quantifying Uncertainty in Deep Learning
Why is uncertainty important?

• Predictive uncertainty can be for instance the output label together with the
confidence of that prediction in classification

• Good uncertainty estimates quantify how much we can trust our model’s
predictions
• Some applications where uncertainty quantification is important are:

- Cost-sensitive decision making (healthcare e.g. medical imaging; self-driving cars;
robotics)

- Dealing with distribution shift (Feature skew between train and test sets; test inputs
do not belong to any of the training classes)

- Safe exploration in RL, etc.

• Ideally we want a system that knows what it doesn’t know.
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Calibration and Robustness to dataset shift
Are deep neural networks calibrated and robust to OOD data?

• Calibration tells us how well the predicted confidence (probability of correctness)
of the model aligns with the observed accuracy (frequency of correctness).

• E.g. in image classification: if the correct predicted class was always with 80%
probability, then a perfectly calibrated system would imply that on 80% of the
examples it predicted the true class.
• Usually neural networks are not well-calibrated making overconfident or

underconfident predictions
• Moreover, they are fragile, i.e. they do not have high uncertainty on

out-of-distribution (OOD) inputs.
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Ensembles of neural networks
Starting point

• Ensembles of networks are commonly used to boost performance.

• Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift.
• Diversity among the base learners’ predictions is believed to be key for strong

ensembles.
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Ensembles of neural networks
On diversity in ensembles

• Notation: fθ is a network with weights θ, and `(fθ(x), y) is the loss for (x, y).
Define the ensemble of M networks fθ1 , . . . , fθM

by F (x) = 1
M

∑M
i=1 fθi

(x).

• Average base learner loss: 1
M

∑M
i=1 `(fθi

(x), y).
• Oracle ensemble: given fθ1 , . . . , fθM

, the oracle ensemble FOE is defined as

FOE(x) = fθk
(x), where k ∈ argmin

i
`(fθi

(x), y).

• As a rule of thumb, small oracle ensemble loss indicates more diverse base learner
predictions.
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Ensembles of neural networks
On diversity in ensembles

Proposition
Suppose ` is negative log-likelihood (NLL). Then, the oracle ensemble loss, ensemble
loss, and average base learner loss satisfy the following inequality:

`(FOE(x), y) ≤ `(F (x), y) ≤ 1
M

M∑
i=1

`(fθi
(x), y).

Proof.
Direct application of Jensen’s inequality for the right inequality and definition of oracle
ensemble for the left one.
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Ensembles of neural networks
Deep Ensembles

• For classification, ensembles are typically constructed as follows. This is referred
to as deep ensembles (Lakshminarayanan et al., 2017).

1. Independently train multiple copies of a fixed architecture with different random
initializations.

2. Create ensemble by averaging outputs, i.e. predicted distributions over the classes.

• The fixed architecture used for the base learners is usually a strong architecture
which is hand-crafted or found using Neural Architecture Search (NAS).
• Our work:

• Varying the base learner architectures increases diversity → ensembles have better
predictive performance and uncertainty, in-distribution and during shift.

• Neural Ensemble Search (NES): we propose two algorithms for finding base learner
architectures that combine to form strong ensembles.
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Varying vs. fixed base learner architectures
Visualizing base learner predictions using t-SNE on CIFAR-10
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Figure: Left: Predictions of 5 different archs, each trained with 20 different inits. Right: Predictions of base
learners in an ensemble with varying archs (found using NES) vs. fixed arch (deep ensemble of optimized arch).
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Neural Ensemble Search
General approach

• Our approach for finding base learner architectures that optimize ensemble
performance consists of two steps. Let fθ,α denote a network with arch α and
weights θ. Computational budget denoted by K and ensemble size by M .

1. Pool building: build a pool P = {fθ1,α1 , . . . , fθK ,αK
} of size K consisting of

potential base learners, where each fθi,αi is a network trained independently on
Dtrain.

2. Ensemble selection: select M base learners fθ∗
1 ,α

∗
1
, . . . , fθ∗

M
,α∗

M
from P to form an

ensemble which minimizes loss on Dval. (We assume K ≥M .)
• For step 2, we use forward step-wise selection without replacement: given pool P,

start with an empty ensemble and add to it the network from P which minimizes
ensemble loss on Dval. We repeat this without replacement until the ensemble is
of size M . (Caruana et al., 2004)

• Next, we discuss two options for pool building in step 1.
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Neural Ensemble Search
NES-RS: with random search

• NES-RS is a simple random search (RS) based approach: we build the pool by
sampling K architectures uniformly at random.
• Motivation: in NAS, RS is a competitive baseline on well-designed architecture

search spaces. Applying ensemble selection to the pool of randomly sampled archs
is then a simple way to exploit diversity among varying archs.
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Neural Ensemble Search
NES-RS: with random search

Select
ensemble

Sample
parent Mutate

Update
population

Figure 2: Illustration of one iteration of NES-RE. Network architectures are represented as colored
bars of different lengths illustrating different layers and widths. Starting with the current population,
ensemble selection is applied to select parent candidates, among which one is sampled as the parent.
A mutated copy of the parent is added to the population, and the oldest member is removed.

is M or all models have been considered.2 (2) Select the top M networks by validation performance.
(3) Forward step-wise selection with replacement. We typically found that these three performed
comparatively or worse than our choice ForwardSelect.

We have not yet discussed the algorithm for building the pool in step 1; we propose two approaches,
NES-RS (Section 4.1) and NES-RE (Section 4.2). NES-RS is a simple random search based algorithm,
while NES-RE is based on regularized evolution [44], a state-of-the-art NAS algorithm. Note that
while gradient-based NAS methods have recently become popular, they are not naively applicable in
our setting as the base learner selection component ForwardSelect is typically non-differentiable.

4.1 NES with Random Search

In NAS, random search (RS) is a competitive baseline on carefully designed architecture search
spaces [35, 57, 58]. Motivated by its success and simplicity, we first introduce NES with random
search (NES-RS). NES-RS builds the pool P by independently sampling architectures uniformly
from the search space A (and training them). Since the architectures of networks in P vary, applying
ensemble selection is a simple way to exploit diversity, yielding a performant ensemble. Algorithm 1
describes NES-RS in pseudocode.

Algorithm 1: NES with Random Search
Data: Search space A; ensemble size M ; comp. budget K; Dtrain,Dval.

1 Sample K architectures α1, . . . , αK independently and uniformly from A.
2 Train each architecture αi using Dtrain, yielding a pool of networks
P = {fθ1,α1

, . . . , fθK ,αK
}.

3 Select base learners {fθ∗1 ,α∗
1
, . . . , fθ∗M ,α∗

M
} = ForwardSelect(P,Dval,M) by forward

step-wise selection without replacement.
4 return ensemble Ensemble(fθ∗1 ,α∗

1
, . . . , fθ∗M ,α∗

M
)

4.2 NES with Regularized Evolution

A more guided approach for building the pool P is using regularized evolution (RE) [44]. While RS
has the benefit of simplicity, by sampling architectures uniformly, the resulting pool might contain
many weak architectures, leaving few strong architectures for ForwardSelect to choose between.
Therefore, NES-RS might require a large pool in order to explore interesting parts of the search
space. RE is an evolutionary algorithm used for NAS which explores the search space by evolving a
population of architectures. In summary, RE starts with a randomly initialized fixed-size population
of architectures. At each iteration, a subset of size m of the population is sampled, from which the
best network by validation loss is selected as the parent. A mutated copy of the parent architecture,
called the child, is trained and added to the population, and the oldest member of the population is
removed, preserving the population size. This is iterated until the computational budget is reached,
returning the history, i.e. all the networks evaluated during the search.

Based on RE for NAS, we propose NES-RE to build the pool of potential base learners. NES-RE
starts by randomly initializing a population p of size P . At each iteration, we apply ForwardSelect
to the population to select an ensemble of size m, and we uniformly sample one base learner from

2This approach returns an ensemble of size at most M .

5

Figure: NES-RS. fθ,α is a network with weights θ and architecture α.
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Neural Ensemble Search
NES-RE: with Regularized Evolution

• NES-RE uses another approach for pool building inspired by regularized evolution
(Real et al., 2018). The arch search space is explored by evolving a population of
architectures.

Select
ensemble

Sample
parent Mutate

Update
population

1

Figure: One iteration of NES-RE. Network architectures are represented as colored bars of
different lengths illustrating different layers and widths. The pool returned is the set of all
architectures evaluated.
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Figure: NES-RE. fθ,α is a network with weights θ and architecture α.

Algorithm 2: NES with Regularized Evolution
Data: Search space A; ensemble size M ; comp. budget K; Dtrain,Dval; population size P ;

number of parent candidates m.
1 Sample P architectures α1, . . . , αP independently and uniformly from A.
2 Train each architecture αi using Dtrain, and initialize p = P = {fθ1,α1

, . . . , fθP ,αP
}.

3 while |P| < K do
4 Select m parent candidates {fθ̃1,α̃1

, . . . , fθ̃m,α̃m
} = ForwardSelect(p,Dval,m).

5 Sample uniformly a parent architecture α from {α̃1, . . . , α̃m}. // parent stays in p.
6 Apply mutation to α, yielding child architecture β.
7 Train β using Dtrain and add the trained network fθ,β to p and P .
8 Remove the oldest member in p. // as done in RE [44].

9 Select base learners {fθ∗1 ,α∗
1
, . . . , fθ∗M ,α∗

M
} = ForwardSelect(P,Dval,M) by forward

step-wise selection without replacement.
10 return ensemble Ensemble(fθ∗1 ,α∗

1
, . . . , fθ∗M ,α∗

M
)

the ensemble to be the parent. A mutated copy of the parent is added to p and the oldest network
is removed, as in regularized evolution. This process is repeated until the computational budget is
reached, and the history is returned as the pool P . See Algorithm 2 for pseudocode and Figure 2 for
an illustration.

Also, note the distinction between the population and the pool in NES-RE: the population is evolved,
whereas the pool is the set of all networks evaluated during evolution (i.e., the history) and is used
post-hoc for selecting the ensemble. Moreover, ForwardSelect is used both for selecting m parent
candidates (line 4 in NES-RE) and choosing the final ensemble of size M (line 9 in NES-RE). In
general, m 6=M .

4.3 Ensemble Adaptation to Dataset Shift

Using deep ensembles is a common way of building a model robust to distributional shift relative to
training data. In general, one may not know the type of distributional shift that occurs at test time.
However, by using an ensemble, diversity in base learner predictions prevents the model from relying
on one base learner’s predictions which may not only be incorrect but also overconfident.

We assume that one does not have access to data points with test-time shift at training time, but one
does have access to some validation dataDshift

val with a validation shift, which encapsulates one’s belief
about test-time shift. A simple way to adapt NES-RS and NES-RE to return ensembles robust to shift
is by using Dshift

val instead of Dval whenever applying ForwardSelect to select the final ensemble. In
algorithms 1 and 2, this is in lines 3 and 9, respectively. Note that in line 4 of Algorithm 2, we can
also replace Dval with Dshift

val when expecting test-time shift, however to avoid running NES-RE once
for each of Dval,Dshift

val , we simply sample one of Dval,Dshift
val uniformly at each iteration, in order to

explore architectures that work well both in-distribution and during shift. See Appendices C.2 and
B.3 for further discussion.

5 Experiments

We apply NES using the cell-based search space for DARTS [36] and evaluate the ensembles found
on two image classification datasets: Fashion-MNIST [54] and CIFAR-10-C [24]. CIFAR-10-C
is a dataset based on CIFAR-10 but also includes validation and test dataset shifts, each with five
severity levels. We use three metrics: NLL, classification error and expected calibration error (ECE)
[20, 41]. Hyperparameter choices, experimental and implementation details are available in Appendix
B. Note that we do not aim for state-of-the-art performance but rather focus on understanding the
improvement over baselines based on deep ensembles. Unless stated otherwise, all evaluations are on
the test dataset.

Baselines. We compare the ensembles found by NES to the baseline of deep ensembles built using
a fixed, optimized architecture. The fixed architecture is either: (1) optimized by random search,
called DeepEns (RS), (2) the architecture found using DARTS, called DeepEns (DARTS) or (3) the

6
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Figure: NES-RE. fθ,α is a network with weights θ and architecture α.

Algorithm 2: NES with Regularized Evolution
Data: Search space A; ensemble size M ; comp. budget K; Dtrain,Dval; population size P ;

number of parent candidates m.
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the ensemble to be the parent. A mutated copy of the parent is added to p and the oldest network
is removed, as in regularized evolution. This process is repeated until the computational budget is
reached, and the history is returned as the pool P . See Algorithm 2 for pseudocode and Figure 2 for
an illustration.

Also, note the distinction between the population and the pool in NES-RE: the population is evolved,
whereas the pool is the set of all networks evaluated during evolution (i.e., the history) and is used
post-hoc for selecting the ensemble. Moreover, ForwardSelect is used both for selecting m parent
candidates (line 4 in NES-RE) and choosing the final ensemble of size M (line 9 in NES-RE). In
general, m 6=M .

4.3 Ensemble Adaptation to Dataset Shift

Using deep ensembles is a common way of building a model robust to distributional shift relative to
training data. In general, one may not know the type of distributional shift that occurs at test time.
However, by using an ensemble, diversity in base learner predictions prevents the model from relying
on one base learner’s predictions which may not only be incorrect but also overconfident.

We assume that one does not have access to data points with test-time shift at training time, but one
does have access to some validation dataDshift

val with a validation shift, which encapsulates one’s belief
about test-time shift. A simple way to adapt NES-RS and NES-RE to return ensembles robust to shift
is by using Dshift

val instead of Dval whenever applying ForwardSelect to select the final ensemble. In
algorithms 1 and 2, this is in lines 3 and 9, respectively. Note that in line 4 of Algorithm 2, we can
also replace Dval with Dshift

val when expecting test-time shift, however to avoid running NES-RE once
for each of Dval,Dshift

val , we simply sample one of Dval,Dshift
val uniformly at each iteration, in order to

explore architectures that work well both in-distribution and during shift. See Appendices C.2 and
B.3 for further discussion.

5 Experiments

We apply NES using the cell-based search space for DARTS [36] and evaluate the ensembles found
on two image classification datasets: Fashion-MNIST [54] and CIFAR-10-C [24]. CIFAR-10-C
is a dataset based on CIFAR-10 but also includes validation and test dataset shifts, each with five
severity levels. We use three metrics: NLL, classification error and expected calibration error (ECE)
[20, 41]. Hyperparameter choices, experimental and implementation details are available in Appendix
B. Note that we do not aim for state-of-the-art performance but rather focus on understanding the
improvement over baselines based on deep ensembles. Unless stated otherwise, all evaluations are on
the test dataset.

Baselines. We compare the ensembles found by NES to the baseline of deep ensembles built using
a fixed, optimized architecture. The fixed architecture is either: (1) optimized by random search,
called DeepEns (RS), (2) the architecture found using DARTS, called DeepEns (DARTS) or (3) the

6
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Figure: NES-RE. fθ,α is a network with weights θ and architecture α.
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is removed, as in regularized evolution. This process is repeated until the computational budget is
reached, and the history is returned as the pool P . See Algorithm 2 for pseudocode and Figure 2 for
an illustration.
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post-hoc for selecting the ensemble. Moreover, ForwardSelect is used both for selecting m parent
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4.3 Ensemble Adaptation to Dataset Shift
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training data. In general, one may not know the type of distributional shift that occurs at test time.
However, by using an ensemble, diversity in base learner predictions prevents the model from relying
on one base learner’s predictions which may not only be incorrect but also overconfident.

We assume that one does not have access to data points with test-time shift at training time, but one
does have access to some validation dataDshift

val with a validation shift, which encapsulates one’s belief
about test-time shift. A simple way to adapt NES-RS and NES-RE to return ensembles robust to shift
is by using Dshift

val instead of Dval whenever applying ForwardSelect to select the final ensemble. In
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also replace Dval with Dshift

val when expecting test-time shift, however to avoid running NES-RE once
for each of Dval,Dshift

val , we simply sample one of Dval,Dshift
val uniformly at each iteration, in order to

explore architectures that work well both in-distribution and during shift. See Appendices C.2 and
B.3 for further discussion.

5 Experiments

We apply NES using the cell-based search space for DARTS [36] and evaluate the ensembles found
on two image classification datasets: Fashion-MNIST [54] and CIFAR-10-C [24]. CIFAR-10-C
is a dataset based on CIFAR-10 but also includes validation and test dataset shifts, each with five
severity levels. We use three metrics: NLL, classification error and expected calibration error (ECE)
[20, 41]. Hyperparameter choices, experimental and implementation details are available in Appendix
B. Note that we do not aim for state-of-the-art performance but rather focus on understanding the
improvement over baselines based on deep ensembles. Unless stated otherwise, all evaluations are on
the test dataset.

Baselines. We compare the ensembles found by NES to the baseline of deep ensembles built using
a fixed, optimized architecture. The fixed architecture is either: (1) optimized by random search,
called DeepEns (RS), (2) the architecture found using DARTS, called DeepEns (DARTS) or (3) the
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Figure: NES-RE. fθ,α is a network with weights θ and architecture α.

Algorithm 2: NES with Regularized Evolution
Data: Search space A; ensemble size M ; comp. budget K; Dtrain,Dval; population size P ;

number of parent candidates m.
1 Sample P architectures α1, . . . , αP independently and uniformly from A.
2 Train each architecture αi using Dtrain, and initialize p = P = {fθ1,α1

, . . . , fθP ,αP
}.

3 while |P| < K do
4 Select m parent candidates {fθ̃1,α̃1

, . . . , fθ̃m,α̃m
} = ForwardSelect(p,Dval,m).

5 Sample uniformly a parent architecture α from {α̃1, . . . , α̃m}. // parent stays in p.
6 Apply mutation to α, yielding child architecture β.
7 Train β using Dtrain and add the trained network fθ,β to p and P .
8 Remove the oldest member in p. // as done in RE [44].

9 Select base learners {fθ∗1 ,α∗
1
, . . . , fθ∗M ,α∗

M
} = ForwardSelect(P,Dval,M) by forward

step-wise selection without replacement.
10 return ensemble Ensemble(fθ∗1 ,α∗
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)

the ensemble to be the parent. A mutated copy of the parent is added to p and the oldest network
is removed, as in regularized evolution. This process is repeated until the computational budget is
reached, and the history is returned as the pool P . See Algorithm 2 for pseudocode and Figure 2 for
an illustration.

Also, note the distinction between the population and the pool in NES-RE: the population is evolved,
whereas the pool is the set of all networks evaluated during evolution (i.e., the history) and is used
post-hoc for selecting the ensemble. Moreover, ForwardSelect is used both for selecting m parent
candidates (line 4 in NES-RE) and choosing the final ensemble of size M (line 9 in NES-RE). In
general, m 6=M .

4.3 Ensemble Adaptation to Dataset Shift

Using deep ensembles is a common way of building a model robust to distributional shift relative to
training data. In general, one may not know the type of distributional shift that occurs at test time.
However, by using an ensemble, diversity in base learner predictions prevents the model from relying
on one base learner’s predictions which may not only be incorrect but also overconfident.

We assume that one does not have access to data points with test-time shift at training time, but one
does have access to some validation dataDshift

val with a validation shift, which encapsulates one’s belief
about test-time shift. A simple way to adapt NES-RS and NES-RE to return ensembles robust to shift
is by using Dshift

val instead of Dval whenever applying ForwardSelect to select the final ensemble. In
algorithms 1 and 2, this is in lines 3 and 9, respectively. Note that in line 4 of Algorithm 2, we can
also replace Dval with Dshift

val when expecting test-time shift, however to avoid running NES-RE once
for each of Dval,Dshift

val , we simply sample one of Dval,Dshift
val uniformly at each iteration, in order to

explore architectures that work well both in-distribution and during shift. See Appendices C.2 and
B.3 for further discussion.

5 Experiments

We apply NES using the cell-based search space for DARTS [36] and evaluate the ensembles found
on two image classification datasets: Fashion-MNIST [54] and CIFAR-10-C [24]. CIFAR-10-C
is a dataset based on CIFAR-10 but also includes validation and test dataset shifts, each with five
severity levels. We use three metrics: NLL, classification error and expected calibration error (ECE)
[20, 41]. Hyperparameter choices, experimental and implementation details are available in Appendix
B. Note that we do not aim for state-of-the-art performance but rather focus on understanding the
improvement over baselines based on deep ensembles. Unless stated otherwise, all evaluations are on
the test dataset.

Baselines. We compare the ensembles found by NES to the baseline of deep ensembles built using
a fixed, optimized architecture. The fixed architecture is either: (1) optimized by random search,
called DeepEns (RS), (2) the architecture found using DARTS, called DeepEns (DARTS) or (3) the
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Experimental results
On Fashion-MNIST

• We compare ensembles found by NES with the baseline of deep ensembles
composed of a fixed, optimized architecture; the optimized arch is either DARTS,
AmoebaNet or optimized by RS.
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Figure: Negative log-likelihood achieved by ensembles on test data. Note that AmoebaNet arch
is deeper than all other methods shown. M is ensemble size.
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Ensemble Adaptation to Dataset Shift

• We assume that at test time, the data will contain a distributional shift(s) wrt
training data. The shift(s) is assumed to be unknown at training time.

• We consider the case where a validation dataset with validation shift(s) is
available.
• To adapt the ensembles to shift, simply replace Dval with the shifted validation

dataset Dshift
val .

• Roughly (and heuristically), diversity in ensembles is particularly useful during
shift, because baselearners can make different predictions during uncertainty.
Using a shifted validation allows NES algorithms to “consider” what happens to
baselearners when they’re used during shift (and are likely to fail).
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Experimental results
On CIFAR-10-C (Hendrycks & Dietterich, 2019)
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Figure: Test NLL of ensembles. Top row involves no distributional shifts. Bottom row involves
shift with maximum severity available in CIFAR-10-C.
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Experimental results: predictive uncertainty calibration and classification error
On CIFAR-10-C (Hendrycks & Dietterich, 2019)
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Figure 5: Results on CIFAR-10-C for the average base learner loss and the oracle ensemble loss (see
Section 3 for details), with K = 400. Recall that small oracle ensemble loss generally corresponds to
higher diversity.

Classification error and uncertainty calibration. We also assess the ensembles using classifica-
tion error and expected calibration error (ECE). ECE measures whether the predicted probabilities
are calibrated. Intuitively, whenever the ensemble makes a particular prediction with probability, e.g.,
70%, one should expect the model to be correct around 70% of the times; ECE measures the extent
of mismatch between the model’s confidence and accuracy. The results comparing NES-RE and
NES-RS with baselines are shown in Table 1. In terms of classification error, we find that ensembles
built by NES consistently outperform the baseline across ensemble sizes and shift severities, with
reductions of up to 5 percentage points in error. As with loss, NES-RE outperforms NES-RS during
dataset shift. We also see that ensembles found by NES exhibit superior uncertainty calibration,
reducing ECE by up to 40% against baselines. Note that good uncertainty calibration is especially
important when models are used during dataset shift.

Table 1: Error and ECE of ensembles on CIFAR-10-C for different shift severities and ensemble sizes
M with K = 400. Best values and all values within 95% confidence interval are bold faced. See
Table 3 for an extended version.

Classification Error (out of 1) Expected Calibration Error (ECE)
Shift

Severity M NES-RS NES-RE DeepEns
(RS)

DeepEns
(DARTS)

DeepEns
(AmoebaNet) NES-RS NES-RE DeepEns

(RS)
DeepEns
(DARTS)

DeepEns
(AmoebaNet)

5 0.098±0.001 0.098±0.002 0.112±0.002 0.101 0.098 0.012±0.001 0.013±0.002 0.011±0.002 0.015 0.016
10 0.094±0.001 0.094±0.002 0.108±0.002 0.100 0.097 0.012±0.001 0.013±0.001 0.011±0.001 0.011 0.013

0
(no shift) 30 0.092±0.001 0.092±0.001 0.105±0.002 0.095 0.094 0.012±0.001 0.012±0.001 0.012±0.001 0.011 0.012

5 0.238±0.002 0.233±0.003 0.255±0.007 0.266 0.267 0.045±0.002 0.044±0.002 0.062±0.002 0.075 0.085
3 10 0.232±0.002 0.229±0.002 0.251±0.007 0.263 0.256 0.034±0.001 0.033±0.002 0.052±0.002 0.067 0.064

30 0.231±0.001 0.228±0.002 0.249±0.007 0.258 0.252 0.029±0.001 0.028±0.002 0.049±0.002 0.057 0.054

5 0.387±0.003 0.376±0.003 0.415±0.011 0.429 0.438 0.117±0.004 0.115±0.008 0.152±0.002 0.177 0.199
5 10 0.380±0.002 0.374±0.004 0.411±0.009 0.429 0.427 0.104±0.004 0.105±0.007 0.144±0.002 0.168 0.174

30 0.382±0.002 0.375±0.003 0.408±0.009 0.427 0.422 0.103±0.002 0.102±0.006 0.136±0.003 0.160 0.160

Diversity and average base learner strength. To understand why ensembles found by NES
algorithms outperform deep ensembles with fixed, optimized architectures, we view the ensembles
through the lens of the average base learner loss and oracle ensemble loss as defined in Section 3, as
shown in Figure 5. Recall that small oracle ensemble loss indicates higher diversity. We see that
NES finds ensembles with smaller oracle ensemble losses indicating greater diversity among base
learners. Unsurprisingly, the average base learner is weaker for NES as compared to DeepEns (RS).
Despite this, the ensemble performs better, highlighting once again the importance of diversity.

6 Conclusion

We showed that ensembles with varying architectures are more diverse than ensembles with fixed
architectures and argued that deep ensembles with fixed, optimized architectures neglect diversity.
To this end, we proposed Neural Ensemble Search, which exploits diversity between base learners
of varying architectures to find strong ensembles. We demonstrated empirically that NES-RE
and NES-RS outperform deep ensembles in terms of both predictive performance and uncertainty
calibration, for in-distribution data and also during dataset shift. We found that even NES-RS, a
simple random search based algorithm, found ensembles capable of outperforming deep ensembles
built with state-of-the-art architectures.

8

Figure: Classification error and ECE of ensembles on test data. ECE measures uncertainty
calibration, that is, the mismatch between the model’s confidence and accuracy. Smaller ECE
is better.
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Experimental results: diversity vs. average base learner strength
On CIFAR-10-C (Hendrycks & Dietterich, 2019)

• Strong ensembles require not only strong base learners but also diverse ones.
• One measurement of diversity is the oracle ensemble loss. Recall: small oracle

ensemble loss corresponds to high diversity.
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Summary

• Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift. Deep Enselmbles are a strong
baseline.

• Varying architectures of base learners improves diversity.
• We propose ways to effectively search for these architectures.
• NES searches for more diverse ensembles without ever explicitly defining diversity.
• We show improved performance and better calibration for in-distribution and

shifted data.

July 2020 Neural Ensemble Search 45



Summary

• Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift. Deep Enselmbles are a strong
baseline.
• Varying architectures of base learners improves diversity.

• We propose ways to effectively search for these architectures.
• NES searches for more diverse ensembles without ever explicitly defining diversity.
• We show improved performance and better calibration for in-distribution and

shifted data.

July 2020 Neural Ensemble Search 46



Summary

• Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift. Deep Enselmbles are a strong
baseline.
• Varying architectures of base learners improves diversity.
• We propose ways to effectively search for these architectures.

• NES searches for more diverse ensembles without ever explicitly defining diversity.
• We show improved performance and better calibration for in-distribution and

shifted data.

July 2020 Neural Ensemble Search 47



Summary

• Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift. Deep Enselmbles are a strong
baseline.
• Varying architectures of base learners improves diversity.
• We propose ways to effectively search for these architectures.
• NES searches for more diverse ensembles without ever explicitly defining diversity.

• We show improved performance and better calibration for in-distribution and
shifted data.

July 2020 Neural Ensemble Search 48



Summary

• Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift. Deep Enselmbles are a strong
baseline.
• Varying architectures of base learners improves diversity.
• We propose ways to effectively search for these architectures.
• NES searches for more diverse ensembles without ever explicitly defining diversity.
• We show improved performance and better calibration for in-distribution and

shifted data.

July 2020 Neural Ensemble Search 49


