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Quantifying Uncertainty in Deep Learning
Why is uncertainty important?

® Predictive uncertainty can be for instance the output label together with the
confidence of that prediction in classification
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Quantifying Uncertainty in Deep Learning
Why is uncertainty important?

® Predictive uncertainty can be for instance the output label together with the
confidence of that prediction in classification

Good uncertainty estimates quantify how much we can trust our model’s
predictions
Some applications where uncertainty quantification is important are:
- Cost-sensitive decision making (healthcare e.g. medical imaging; self-driving cars;
robotics)
- Dealing with distribution shift (Feature skew between train and test sets; test inputs
do not belong to any of the training classes)
- Safe exploration in RL, etc.

Ideally we want a system that knows what it doesn’t know.
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Calibration and Robustness to dataset shift
Are deep neural networks calibrated and robust to OOD data?

e Calibration tells us how well the predicted confidence (probability of correctness)
of the model aligns with the observed accuracy (frequency of correctness).
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Calibration and Robustness to dataset shift
Are deep neural networks calibrated and robust to OOD data?

Calibration tells us how well the predicted confidence (probability of correctness)
of the model aligns with the observed accuracy (frequency of correctness).

E.g. in image classification: if the correct predicted class was always with 80%
probability, then a perfectly calibrated system would imply that on 80% of the
examples it predicted the true class.

Usually neural networks are not well-calibrated making overconfident or
underconfident predictions

Moreover, they are fragile, i.e. they do not have high uncertainty on
out-of-distribution (OOD) inputs.
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Ensembles of neural networks
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® FEnsembles of networks are commonly used to boost performance.
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Ensembles of neural networks
Starting point

® FEnsembles of networks are commonly used to boost performance.

® Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift.

® Diversity among the base learners’ predictions is believed to be key for strong
ensembles.
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Ensembles of neural networks
On diversity in ensembles

® Notation: fy is a network with weights 6, and ¢(fg(x),y) is the loss for (x,y).
Define the ensemble of M networks fy, ..., fs,, by F'(x) = ﬁ Zf\il fo,(x).
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® Notation: fy is a network with weights 6, and ¢(fg(x),y) is the loss for (x,y).
Define the ensemble of M networks fy, ..., fs,, by F'(x) = ﬁ Zf\il fo,(x).

* Average base learner loss: - 3", ((fo, (), y).
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Ensembles of neural networks
On diversity in ensembles

Notation: fp is a network with weights 6, and ¢(fp(x),y) is the loss for (x,y).
Define the ensemble of M networks fy, ..., fs,, by F'(x) = ﬁ Zf\il fo,(x).

Average base learner loss: - S, ¢(fy.(z), y).

Oracle ensemble: given fy,,..., fs,,, the oracle ensemble Fog is defined as

Foe(x) = fo,(x), where k€ argmin{(fp,(x),y).

As a rule of thumb, small oracle ensemble loss indicates more diverse base learner
predictions.
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Ensembles of neural networks
On diversity in ensembles

Proposition
Suppose { is negative log-likelihood (NLL). Then, the oracle ensemble loss, ensemble
loss, and average base learner loss satisfy the following inequality:

M
{(Foe(®), y) < (F(@),5) < - > (o, (2).0).
=1

Proof.
Direct application of Jensen's inequality for the right inequality and definition of oracle
ensemble for the left one. O
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Ensembles of neural networks
Deep Ensembles

® For classification, ensembles are typically constructed as follows. This is referred
to as deep ensembles (Lakshminarayanan et al., 2017).
1. Independently train multiple copies of a fixed architecture with different random
initializations.
2. Create ensemble by averaging outputs, i.e. predicted distributions over the classes.
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Ensembles of neural networks
Deep Ensembles

® For classification, ensembles are typically constructed as follows. This is referred
to as deep ensembles (Lakshminarayanan et al., 2017).
1. Independently train multiple copies of a fixed architecture with different random
initializations.
2. Create ensemble by averaging outputs, i.e. predicted distributions over the classes.
® The fixed architecture used for the base learners is usually a strong architecture
which is hand-crafted or found using Neural Architecture Search (NAS).

® Our work:
® Varying the base learner architectures increases diversity — ensembles have better
predictive performance and uncertainty, in-distribution and during shift.
® Neural Ensemble Search (NES): we propose two algorithms for finding base learner
architectures that combine to form strong ensembles.
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Varying vs. fixed base learner architectures
Visualizing base learner predictions using t-SNE on CIFAR-10
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Figure: Left: Predictions of 5 different archs, each trained with 20 different inits. Right: Predictions of base
learners in an ensemble with varying archs (found using NES) vs. fixed arch (deep ensemble of optimized arch).
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Neural Ensemble Search
General approach

® Qur approach for finding base learner architectures that optimize ensemble
performance consists of two steps. Let fp . denote a network with arch o and
weights 6. Computational budget denoted by K and ensemble size by M.
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General approach

® Qur approach for finding base learner architectures that optimize ensemble
performance consists of two steps. Let fp . denote a network with arch o and
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potential base learners, where each fy, o, is a network trained independently on
Dtrain-
2. Ensemble selection: select M base learners fe;,a;, .. .,f@]*w,ayu from P to form an
ensemble which minimizes loss on D,,. (We assume K > M)

® For step 2, we use forward step-wise selection without replacement: given pool P,
start with an empty ensemble and add to it the network from P which minimizes
ensemble loss on D, ;. We repeat this without replacement until the ensemble is
of size M. (Caruana et al., 2004)
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Neural Ensemble Search
General approach

® Qur approach for finding base learner architectures that optimize ensemble
performance consists of two steps. Let fp . denote a network with arch o and
weights 6. Computational budget denoted by K and ensemble size by M.
1. Pool building: build a pool P = {fg, a1s---, fox,ax } of size K consisting of
potential base learners, where each fy, o, is a network trained independently on
Dtrain-
2. Ensemble selection: select M base learners fe;,a;, .. .,f@]*w,ayu from P to form an
ensemble which minimizes loss on D,,. (We assume K > M)
® For step 2, we use forward step-wise selection without replacement: given pool P,
start with an empty ensemble and add to it the network from P which minimizes
ensemble loss on D, ;. We repeat this without replacement until the ensemble is
of size M. (Caruana et al., 2004)

® Next, we discuss two options for pool building in step 1.
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Neural Ensemble Search
NES-RS: with random search

® NES-RS is a simple random search (RS) based approach: we build the pool by
sampling K architectures uniformly at random.

® Motivation: in NAS, RS is a competitive baseline on well-designed architecture
search spaces. Applying ensemble selection to the pool of randomly sampled archs
is then a simple way to exploit diversity among varying archs.
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Neural Ensemble Search
NES-RS: with random search

Algorithm 1: NES with Random Search
Data: Search space A; ensemble size M; comp. budget K; Dyyin, Dyar-

1 Sample K architectures oy, . .., ax independently and uniformly from .A.
2 Train each architecture «; using Diin, yielding a pool of networks

P = {fel,al’ ) f@K,aK}~

3 Select base learners {fig;a;, -y for, a1, } = ForwardSelect(P, Dyu, M) by forward
step-wise selection without replacement.
4 return ensemble Ensemble(fp; az,-- -, for, az,)

Figure: NES-RS. fy o is a network with weights 6 and architecture .
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Neural Ensemble Search
NES-RE: with Regularized Evolution

® NES-RE uses another approach for pool building inspired by regularized evolution
(Real et al., 2018). The arch search space is explored by evolving a population of
architectures.

Select Sample Update
ensemble parent population

Figure: One iteration of NES-RE. Network architectures are represented as colored bars of
different lengths illustrating different layers and widths. The pool returned is the set of all
architectures evaluated.
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Figure: NES-RE. fy » is a network with weights  and architecture c.

Algorithm 2: NES with Regularized Evolution

Data: Search space A; ensemble size M; comp. budget K'; Dy, Dval; population size P;
number of parent candidates m.
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Figure: NES-RE. fy » is a network with weights  and architecture c.

Algorithm 2: NES with Regularized Evolution

Data: Search space A; ensemble size M; comp. budget K; Dyain, Dval; population size P;
number of parent candidates m.
1 Sample P architectures aq, . .., ap independently and uniformly from A.
2 Train each architecture ; using Dyyin, and initialize p = P = {fo, .a,»-- s fop.ap }-
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Figure: NES-RE. fy » is a network with weights  and architecture c.

Algorithm 2: NES with Regularized Evolution

1
2
3
4

® 9 & W

Data: Search space A; ensemble size M; comp. budget K'; Dyin, Dyval; population size P;
number of parent candidates m.

Sample P architectures «, . . ., p independently and uniformly from A.

Train each architecture a; using Dyin, and initialize p = P = {fo, a1s---» fop.ap -

while [P| < K do
Select m parent candidates {f51-,&1 s f5m.,am} = ForwardSelect(p, Dy, m).
Sample uniformly a parent architecture « from {@, ..., &y }. // parent stays in p.
Apply mutation to «, yielding child architecture /.
Train 3 using Dyy,in and add the trained network fg g to p and P.
Remove the oldest member in p. // as done in RE [44].
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Neural Ensemble Search
NES-RE: with Regularized Evolution

Figure: NES-RE. fy » is a network with weights  and architecture c.

Algorithm 2: NES with Regularized Evolution

Data: Search space A; ensemble size M; comp. budget K'; Diin, Dyvar; population size P;
number of parent candidates m.

1 Sample P architectures «;, .. ., ap independently and uniformly from A.

2 Train each architecture «; using Dyyin, and initialize p = P = {fo, a1»-- - fop,ap }-

3 while |P| < K do

4 Select m parent candidates {f51-,&1 ey, @mam} = ForwardSelect(p, Dy, m).

5 Sample uniformly a parent architecture « from {@, ..., &y }. // parent stays in p.

6 Apply mutation to «, yielding child architecture /.

7 Train 3 using Dyy,in and add the trained network fg g to p and P.

8 Remove the oldest member in p. // as done in RE [44].

9 Select base learners { fo: ;- - -, fo1, a3, } = ForwardSelect(P, Dya, M) by forward
step-wise selection without replacement.

10 return ensemble Ensemble(fyr ax, .-, ff’z*ma}‘u)
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Experimental results
On Fashion-MNIST

® We compare ensembles found by NES with the baseline of deep ensembles
composed of a fixed, optimized architecture; the optimized arch is either DARTS,
AmoebaNet or optimized by RS.

M=3 M =5 M =10 M = 30
0.215 0.22 —¥— NES-RS
0.215 0.210 —%— NES-RE
£ 0.210 —e— DeepEns (RS)
< ) 21 +%--'--- DeepEns (DARTS) 1
§ 0.210 0.205 02050 § 0-21 DeezEns (AmoebaNet)
30205 0.200
=4 0.200
0.200 0.195
0.195
100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400
Number of networks evaluated Number of networks evaluated Number of networks evaluated Number of networks evaluated

Figure: Negative log-likelihood achieved by ensembles on test data. Note that AmoebaNet arch
is deeper than all other methods shown. M is ensemble size.
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Ensemble Adaptation to Dataset Shift

® We assume that at test time, the data will contain a distributional shift(s) wrt
training data. The shift(s) is assumed to be unknown at training time.
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Ensemble Adaptation to Dataset Shift

® We assume that at test time, the data will contain a distributional shift(s) wrt
training data. The shift(s) is assumed to be unknown at training time.

® We consider the case where a validation dataset with validation shift(s) is
available.

® To adapt the ensembles to shift, simply replace D,, with the shifted validation
dataset Dshift.
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Ensemble Adaptation to Dataset Shift

We assume that at test time, the data will contain a distributional shift(s) wrt
training data. The shift(s) is assumed to be unknown at training time.

We consider the case where a validation dataset with validation shift(s) is
available.

To adapt the ensembles to shift, simply replace D, with the shifted validation
dataset Dshift.

val
Roughly (and heuristically), diversity in ensembles is particularly useful during
shift, because baselearners can make different predictions during uncertainty.
Using a shifted validation allows NES algorithms to “consider” what happens to
baselearners when they're used during shift (and are likely to fail).
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Experimental results
On CIFAR-10-C (Hendrycks & Dietterich, 2019)

M=5 M =10 M = 30
0.34 \ﬂ 0.33 0.32
£o33 o~ 0.31 m
W == DeepEns (DARTS)
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Figure: Test NLL of ensembles. Top row involves no distributional shifts. Bottom row involves
shift with maximum severity available in CIFAR-10-C.
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Experimental results: predictive uncertainty calibration and classification error
On CIFAR-10-C (Hendrycks & Dietterich, 2019)

Shift

Classification Error (out of 1)

Expected Calibration Error (ECE)

. M DeepEns DeepEns DeepEns DeepEns DeepEns DeepEns

Severity NES-RS  NES-RE (RS)  (DARTS) (AmocbaNery ~NESRS — NES-RE (RS)  (DARTS) (AmoebaNet)

0 5 0.098z0.001  0.098z0.002 0.112+0.002 0.101 0.098 0.012:0.001  0.013+0.002  0.011:0.002 0.015 0.016

(no shift) 10 0.094+0.001  0.094:0.002  0.1080.002 0.100 0.097 0.012:0.001  0.013+0.000  0.011=x0.001 0.011 0.013

h 30 0.092+0.001  0.092+0.001  0.105+0.002 0.095 0.094 0.012+0.000  0.012+0.000  0.012+0.001 0.011 0.012

5 0.238+0.002  0.23310.003 0.255+0.007 0.266 0.267 0.045+0.002  0.044+0.002  0.062+0.002 0.075 0.085

3 10 0.232+0.002  0.229x0.002  0.251+0.007 0.263 0.256 0.034+0.001  0.033+0.002  0.052+0.002 0.067 0.064

30 0.231x0.001  0.228:0.002  0.249x0.007 0.258 0.252 0.029:0.001  0.028:+0.002  0.049:0.002 0.057 0.054

5 0.387+0.003 0.376x0.003 0.415x0.011 0.429 0.438 0.117+0.004  0.115+0.008  0.152+0.002 0.177 0.199

5 10 0.380+0.002  0.374x0.004  0.411x0.000 0.429 0.427 0.104:0.004  0.105:0.007  0.144:0.002 0.168 0.174

30 0.382+0.002  0.375x0.003  0.408+0.000 0.427 0.422 0.103+0.002  0.102+0.006  0.136+0.003 0.160 0.160

Figure: Classification error and ECE of ensembles on test data. ECE measures uncertainty
calibration, that is, the mismatch between the model's confidence and accuracy. Smaller ECE
is better.
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Experimental results: diversity vs. average base learner strength
On CIFAR-10-C (Hendrycks & Dietterich, 2019)

® Strong ensembles require not only strong base learners but also diverse ones.

® One measurement of diversity is the oracle ensemble loss. Recall: small oracle
ensemble loss corresponds to high diversity.

NLL (no shift)

Average baselearner

Oracle ensemble

Average baselearner

Oracle ensemble
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M (Ensemble size)
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Summary

® Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift. Deep Enselmbles are a strong
baseline.
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Summary

® Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift. Deep Enselmbles are a strong

baseline.
® Varying architectures of base learners improves diversity.
® We propose ways to effectively search for these architectures.
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Summary

Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift. Deep Enselmbles are a strong
baseline.

Varying architectures of base learners improves diversity.

We propose ways to effectively search for these architectures.

NES searches for more diverse ensembles without ever explicitly defining diversity.
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Summary

Recent interest in ensembles has been due to their strong predictive uncertainty
estimation and robustness to distributional shift. Deep Enselmbles are a strong
baseline.

Varying architectures of base learners improves diversity.

We propose ways to effectively search for these architectures.

NES searches for more diverse ensembles without ever explicitly defining diversity.

We show improved performance and better calibration for in-distribution and
shifted data.
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