
An Evolution Strategy with Progressive Episode Lengths for Playing Games

Lior Fuks , Noor Awad , Frank Hutter and Marius Lindauer
University of Freiburg, Germany

{fuksl, awad, fh, lindauer}@cs.uni-freiburg.de

Abstract

Recently, Evolution Strategies (ES) have been suc-
cessfully applied to solve problems commonly ad-
dressed by reinforcement learning (RL). Due to the
simplicity of ES approaches, their runtime is of-
ten dominated by the RL-task at hand (e.g., playing
a game). In this work, we introduce Progressive
Episode Lengths (PEL) as a new technique and in-
corporate it with ES. The main objective is to al-
low the agent to play short and easy tasks with lim-
ited lengths, and then use the gained knowledge to
further solve long and hard tasks with progressive
lengths. Hence allowing the agent to perform many
function evaluations and find a good solution for
short time horizons before adapting the strategy to
tackle larger time horizons. We evaluated PEL on
a subset of Atari games from OpenAI Gym, show-
ing that it can substantially improve the optimiza-
tion speed, stability and final score of canonical
ES. Specifically, we show average improvements
of 80% (32%) after 2 hours (10 hours) compared
to canonical ES.

1 Introduction
In reinforcement learning (RL), an agent learns how to solve
a given task by interacting with its environment. Recent
advances using deep policy networks have successfully ad-
dressed problems previously considered to be unsolvable,
including surpassing the level of a world champion Go
Player [Silver et al., 2017] and playing well a large collec-
tion of Atari games [Mnih et al., 2015].

Recently, evolution strategy (ES) showed surprisingly
good performance as an alternative approach to deep RL-
algorithms for playing Atari games [Salimans et al., 2017;
Conti et al., 2018; Chrabaszcz et al., 2018]. The ES di-
rectly optimizes the weights of deep policy networks encod-
ing a mapping from states to actions. Thus, an ES approach
for RL consists of optimizing a population of policies in the
spaces of potentially millions of network weights. The advan-
tages of ES compared to gradient-based optimizers are that
(i) ES is a gradient-free black-box approach which is able to
optimize non-differentiable functions and more importantly,

(ii) ES can be efficiently parallelized resulting in short opti-
mization time compared to sequential optimizers and many
deep RL-algorithms [Salimans et al., 2017].

Whereas the advantages of ES are intriguing, ES has some
drawbacks similarly to the ones observed in RL. Although
ES uses parallel resources efficiently, ES still has to evalu-
ate many episodes and thus needs a lot of CPU time, e.g.,
Chrabaszcz et al. [2018] used 4 000 CPU hours for a single
ES run. Nevertheless, ES approaches are often trapped in lo-
cal optima shown by better policies found by RL-approaches
or even random search on some games [Such et al., 2017].

In this work, we aim to advance the state-of-the-art of ES
for RL-problems and propose a new algorithm, evaluated on
Atari games from OpenAI. The contributions of this work are:

1. We introduce a novel technique which we dub Progres-
sive Episode Lengths (PEL) and show how to incorpo-
rate it into canonical ES [Rechenberg, 1973; Chrabaszcz
et al., 2018]. The underlying idea is to allow an agent to
play short and easy tasks first, and then use the gained
knowledge to further solve longer and harder tasks, sim-
ilar as in transfer learning and curriculum learning.

2. We demonstrate the use of different time and episode
schedulers in PEL, controlling the maximal episode
length for a given time frame.

3. On a set of OpenAI Gym games, we show that ES is
often able to learn a policy on short episodes and transfer
this policy to longer episodes.

4. We study the empirical performance of PEL approach
with different time schedulers and show that after 2 (10)
hours of training, the agent is able to play the game with
an average improvement of 80% (32%) compared to the
use of canonical ES without PEL.

2 Related Work
The foundation of ES approaches are built upon the early
work of Rechenberg [1973]. In recent years, ES has been
proposed as an alternative approach to RL algorithms. Sal-
imans et al. [2017] showed that using a natural ES [Wier-
stra et al., 2014] can achieve comparable results in a few
hours compared to sequential RL methods (e.g., [Mnih et al.,
2015; Schulman et al., 2017]). Following Salimans’s work,
Chrabaszcz et al. [2018] showed that an even simpler canon-
ical ES can achieve better results.



Conti et al. [2018] proposed a method that improves the
exploration of ES by introducing novelty seeking. This tech-
nique tries to avoid local optima and induce exploration by
completely ignoring the reward function and selecting agents
which perform new behaviors. The results show that the pro-
posed algorithm can learn to play Atari games and solve Mu-
JoCo 3D humanoid tasks even when completely ignoring the
reward input. LaPorte et al. [2015] proposed an adaptive par-
ent population method in ES, aiming to adapt the parent pop-
ulation size which maximizes the final results.

ES approaches are applied in various disciplines and have
been incorporated in various fields in machine learning.
Cuccu et al. [2018] incorporated an ES approach with com-
pact state representation. Using vector quantization and
sparse coding, the used neural network containing only 6
to 18 neurons is capable of playing Atari games. Miller et
al. [1989] used ES to design neural networks, leading to a
modern ES for neural architecture search (e.g., [Real et al.,
2017]) and neuroevolution for playing games [Risi and To-
gelius, 2017]. Furthermore, Alvernaz and Togelius [2017]
and Poulsen et al. [2017] combined gradient-based RL-
approaches and ES-based approaches.

Our work is also related to the recent trend of multi-fidelity
Bayesian Optimization, in particular for hyperparameter opti-
mization, e.g., multi-task Bayesian Optimization [Swersky et
al., 2013], successive halving as a bandit strategy [Karnin et
al., 2013] and a combination of both [Falkner et al., 2018].
Similarly, we also try to approximate the learning task by
cheaper fidelities (here the episode length) and invest only
a fraction of the overall optimization budget on the full ex-
pensive learning task.

Furthermore, our work is closely related to curriculum
learning [Bengio et al., 2009; Jiang et al., 2015], since we
also organize experiences in a meaningful order which grad-
ually introduces more concepts and more complex concepts.
In contrast to curriculum learning for RL (e.g. [Narvekar,
2017]), we do not divide the main task into sub tasks, but
we rather use the fact that shorter episodes naturally contain
less (and less complex) concepts; we also demonstrate that
the knowledge learned from such short episodes does indeed
transfer to longer episodes.

3 Background
In this section, we present canonical ES for playing Atari
games [Chrabaszcz et al., 2018] as prototypical algorithm
where progressive episode lengths (PEL) can be applied to.

3.1 Canonical Evolution Strategy
Following the work of Salimans et al. [2017], Chrabaszcz et
al. [2018] presented a simple ES algorithm dubbed canoni-
cal evolution strategy which achieved comparable results for
playing Atari games as the more complex variant by Salimans
et al. The algorithm is shown in Algorithm 1. Slightly adapt-
ing the original algorithm to the need of progressive episode
lengths, we assume that an initial policy θ0 (representing the
policy network weights) is an argument of the algorithm; in
the simplest case, θ0 is randomly sampled. Then an optimiza-
tion loop (Line 4) is started in which the initialized policy is

Algorithm 1: Canonical Evolution Strategy
Input:
θ0 - Initial policy vector parameters
T - time budget
E - max length for each episode
λ - Population size
µ - Parent population size
σ - Mutation step-size
F (θ) - Fitness function for policy evaluation

1 for j ∈ {1 . . . µ} do
2 wj =

log(µ+0.5)−log(j)∑µ
k=1 log(µ+0.5)−log(k)

3 end
4 for t = 0, 1, . . . , T do
5 for i = 1, 2, . . . , λ do
6 εi ∼ N (0, I)
7 si ← FE(θt + σ · εi)
8 end
9 Sort (ε1, . . . , ελ) according to s in ascending order

10 Update policy: θt+1 ← θt + σ ·
∑µ
j=1 wj · εj

11 end
Output: Return best found policy θt

mutated in a similar fashion to the one done by the natural
evolution approach, where random noise εi ∼ N (0, σ2) is
added to its parameters vector (θt + σ · ε) for a fixed given
step size σ (Lines 6 and 7). The performance of the newly
mutated policy (θt+σ · εi) is then evaluated by a fitness func-
tion (F (θt + σ · εi)) (Line 7), representing the cumulative
reward of an entire episode. The entire population of new
agents is then ranked and sorted in an ascending order based
on their evaluation scores si (Line 9). Finally, the current
policy θt is updated using the update step by computing the
weighted mean of the top µ policies denoted as

∑µ
j=1 wj · εj

(Line 10) where w is a vector of predefined weights (Lines 1
and 2) such that better ranked policies have a larger impact on
the updated policy θt+1. This new policy is then forwarded
to the next generation from which a new optimization loop
is started. The whole optimization process is repeated itera-
tively to improve the policy performance over time.

3.2 Network Architecture
The policy network represented as θ in Algorithm 1 is based
on the architecture proposed by Mnih et al. [2015]. For our
approach, we strictly follow the slightly modified architecture
proposed by Chrabaszcz et al. [2018], as shown in Figure 1.
The number of parameters in each layer which represent the
batch norm and kernel parameters are shown on top. The
activation function is changed from ReLU to ELU as pro-
posed by Clevert et al. [2016] and a virtual batch normaliza-
tion layer is added as done by Salimans et al. [2016]. Virtual
batch normalization is a variant of batch normalization, where
instead of using mini-batches to compute the normalization
statistics, a reference batch is collected at the beginning of
the optimization and is fixed for the entire optimization pro-
cess. The reference batch is collected by playing an Atari
game with randomized actions and saving the current states



Figure 1: Playing Atari games using Deep Neural Networks following Chrabaszcz et al.

with a probability of 1% until 128 samples are collected. The
policy vector weights of the network which consists of 1.7M
parameters are initialized by sampling from a normal distri-
bution N (µ = 0, σ = 0.05).

The input data given by the Atari Gym environment is an
image with pixel size of 210x160 and 3 color channels. Fol-
lowing the pre-preprocessing procedure proposed by Mnih et
al. [2013], the image is resized and stacked into 4 consecutive
frames resulting in an image tensor of size 84x84x4. In order
to speed up the policy evaluation step in Algorithm 1, every
4th frame is collected instead of collecting over each frame.

4 Evolution Strategy with Progressive
Episode Lengths

In this section, we introduce Progressive Episode Lengths,
discuss its components and show how we incorporate it into
canonical ES.

4.1 Problems of Canonical ES
Although Chrabaszcz et al. [2018] showed that ES can per-
form quite well quantitatively, i.e., reaching a good score, the
learned policies are quite poor from a qualitative perspective
of humans. For example, in the game of Pong, a trained agent
might score quite well, but fails to hit even easy balls reli-
ably, an easy task for human players. The same observation
applies to other Atari games as well in which the agent fol-
lows a good strategy to maximize its main scores, but fails to
solve easy tasks and to play in a natural way. This leads to a
brittle performance and high variance.

4.2 PEL: Progressive Episode Lengths
Inspired by the human strategy to first learn short and easy
tasks, before learning the hard tasks, we propose to use pro-
gressive episode lengths (PEL), i.e., first train an agent to play
short episodes and then based on the experience gained on
these short episodes, train an agent on longer episodes.

The PEL approach is based on incremental learning, where
an agent utilizes the capabilities obtained in limited games
to an entire episodic run. The goal of this approach is to
achieve more stable and faster optimization process by fo-
cusing on simpler and shorter tasks first. When integrating it

Algorithm 2: ES-based Progressive Episode Length
Input:
E - Episode Scheduler
T - Time Scheduler
N - Maximal number of iterations

1 Initialize a policy from normal distribution θ0 ∼ N ;
2 for n ∈ {1, . . . , N} do
3 Set episode length according to E(n− 1);
4 Set time limit according to T (n− 1);

/* Perform ES as in Algorithm 1 */
5 θn ← ES(θn−1, T (n− 1), E(n− 1));
6 end

Output: θN

with canonical ES, the latter is able to optimize by only play-
ing a portion of a game, transferring the abilities obtained in a
short game to a longer one. For example in the game of Pong,
by solely learning to hit the ball, the algorithm could learn to
play an entire game.

Another important advantage of the proposed PEL is that
the ES approach can evaluate more policies by playing shorter
games and thus, it can potentially make progress much faster.
This applies in particular to tasks in RL, since the most time-
consuming step is often the evaluation of policies and not the
ES-update of the policies. For the case of Atari games, these
games typically last until the player loses all its in-game lives,
which can take quite some time in certain games even if only
a simple policy is applied. Therefore, limited episode lengths
for evaluating more policies can speed up the optimization
process substantially.

We formalized the idea of PEL in Algorithm 2. The input
to PEL are two components: (i) the time scheduler T and (ii)
the episode scheduler E (both discussed in the next subsec-
tions) and a maximal number of iterations (or another bud-
get for running PEL). First we initialize the policy randomly
(Line 1). In each iteration n, we update the maximal episode
length using E (Line 3) and the time limit using T (Line 4)
depending on n − 1 to run ES given an initial policy θn−1

(Line 5). The further improved policy θn returned by ES is
used in the next iteration with potentially larger budgets.



ES

κ

θ0 θ1

ES

21 · κ

θ2

ES

22 · κ

θ3

Environment Agent

Reward(si)
State

Action

ES(θ1 ,T (1),E(1))

T (1) = 21 · κ
E(1) = 21 · E(0)

0 t

Figure 2: A framework of ES-based limited episode’s length

4.3 Episode Scheduler
One of the main components of PEL is the episode scheduler
to determine how many steps an episode should have at most.
Partially following the idea of successive halving by Karnin et
al. [2013], we propose a simple, yet effective episode sched-
uler that doubles the maximal episode length in each step, i.e.,
E(n) = 2n · E(0).

In preliminary experiments, we observed that in practice
an important design decision is how to initialize the episode
scheduler with E(0)—similar to the important minimal bud-
get in successive halving and approaches build upon it [Li
et al., 2017; Falkner et al., 2018]. For playing Atari games,
we found that using the expected number of steps in playing
random games is a good first estimate for E(0). However, on
some games even more aggressive strategies can be beneficial
such that we initialize E(0) by the expected number of steps
in playing random games divided by a constant; we used 2 in
our experiments.1 To approximate the expectation, we used
Monte-Carlo roll-outs.

4.4 Time Scheduler
The second main component of PEL is the time scheduler
T (n) defining how long to run ES given a limited episode
length E(n). We propose two simple but yet effective sched-
ulers. The first scheduler simply uses the time uniformly,
i.e., T (n) is constant (in our experiments, we used 1 hour).
The second schedule is again motivated by successive halv-
ing [Karnin et al., 2013] such that we double the time budget
in each iteration, i.e., T (n) = 2n · κ for some user-defined
κ (20min in our experiments). Using the second scheduler
combined with our proposed episode scheduler, PEL will
spend half of its overall optimization budget on the maximal
episode length. Therefore, even if our heuristic assumption
of learning on short games how to play long games should
not hold, PEL will still focus on long games for most of its
optimization budget.

4.5 An Example for PEL on Evolution Strategies
Figure 2 illustrates an instance of PEL where we double the
episode length and the time frame simultaneously. To play

1We show all further empirical results in an online appendix.

a game for a total time budget t, runs of ES with different
limited episodes are carried out. For each of these maxi-
mal episode lengths, the canonical ES is performed for a time
limit defined by the time scheduler. For example in Figure 2,
in the second iteration, n = 2, the ES algorithm starts its op-
timization loop from the policy θ1 which is passed from the
first iteration. The ES evaluates episodes with at most E(1)
actions, which is twice as much as in the previous iteration.
Furthermore, the ES algorithm itself runs for at most T (1)
(e.g., seconds or generations). The improved policy θ2 is then
passed to the third run of ES.

5 Experiments
In this section, we will address the following research ques-
tions:

Q1 How does PEL compare to the canonical ES by
Chrabaszcz et al. [2018] for playing Atari games?

Q2 How well do the proposed time schedulers perform?

Q3 Is it possible to learn well-performing policies for long
games by training only on short games?

5.1 Experimental Setup
To evaluate the performance of our proposed algorithm, we
used a set of Atari games [Chrabaszcz et al., 2018] from
OpenAI Gym [Brockman et al., 2016] and used the paral-
lelization technique introduced by Salimans et al. [2017] that
reduces the communication needed between workers. Each
run used 400 CPUs on a high-performance cluster equipped
with Intel Xeon E5-2630v4 processors and 128GB RAM.

We evaluated two time schedulers:

Tc → The time limit is set to a constant of 1 hour, Tc(n) = 1

Td → The time limit is set to 20 minutes and doubled in each
iteration, Td(n) = 20 · 2n.

Both versions use a doubling scheme to increase the maximal
episode length. To compare PEL against canonical ES, we
computed the relative improvement on each game and aggre-
gated it by using a geometric mean. In our comparison, we
used the same parametric setup for both PEL and canonical
ES which is presented in Table 1. In order to estimate the
initial episode length E(0) for PEL, we played each game
multiple times using random actions and then divided by 2
the average number of actions until the episodes ended. To
evaluate an approach, we ran five independent repetitions and
evaluated the top found policy for 30 times. We report the
mean evaluation scores of each of the five runs for both PEL
(with Td and Tc) in comparison with canonical ES.2

5.2 Q1: Comparison against Canonical ES
Table 2 shows our results for the two time schedulers Tc and
Td and compare them to canonical ES. After 2 hours of train-
ing, the PEL approach with both schedulers outperformed the

2We note that the code of Salimans et al. [2017] is not publicly
available and Salimans et al. [2017] reported only a single run of
their ES approach such that their performance estimate is potentially
very noisy and not comparable with our results.



Variable Symbol Value
Population size λ 800
Parent population size µ 50
Mutation step size σ 0.01

Table 1: Hyperparameters used in all ES variants (same as used by
Chrabaszcz et al).

canonical ES in 5 and 6 games out of 9 and improved the
scores by 49% and 80% on average, respectively. This shows
the effectiveness of using the proposed PEL approach to im-
prove the performance of canonical ES by optimizing differ-
ent episode lengths, and utilizing the best-so-far policy of the
previous iteration to improve further. After 10 hours, both
schedulers are better than canonical ES in 7 out of 9 games,
with an average improvement of 28% and 32% respectively.
We conjecture that by running canonical ES for a longer time,
the effect of PEL evaluating more policies decreases in com-
parison, such that the average improvement drops. On the
other hand, PEL increases the episode lengths more often by
running for 10 hours such that the PEL is more robust in this
setting. (Please note that PEL with Tc increased the episode
length only once within 2 hours).

Figure 4 shows that PEL optimized for more iterations than
canonical ES on most games, shown by the red line (canoni-
cal ES) which ends earlier than the green line (PEL with Td)
and the blue line (PEL with Tc). On the game of Phoenix,
it is obvious that this led to much better scores. However,
on Enduro all approaches performed nearly the same amount
of iterations; nevertheless, PEL achieved higher scores and
had a much smaller variance across our repeated experiments
(shown by a smaller shaded area).

Playing the game SpaceInvaders, PEL performed worse
than canonical ES. In this specific game, the agent trained by
PEL has never seen a major event in the game after optimiz-
ing for 2 hours: the arrival of the mothership which provides
many points by shooting it. Therefore, PEL struggled to learn
shooting the mothership reliably and obtained smaller scores
on average.

5.3 Q2: Comparison of Time Schedulers
Comparing both schedulers, Td performed better in 6 out of
9 games both after 2 and 10 hours. The average improvement
of Td after 2 hours is much higher than Tc’s, but it is quite
similar after 10 hours. To study the performance of both ap-
proaches over time in more detail, Figure 3 shows the per-
formance of the best-so-far found policy evaluated on the full
game lengths at each time point. Td performed particularly
well after the first 5 hours and benefited from running longer
games later on more than Tc. We draw a similar conclusion
from studying the performance over the number of iterations
(i.e., updates of the population), as shown in Figure 4.

5.4 Q3: Learning on Short Games
In order to verify whether an agent can learn a reasonable
policy on short games, we studied the performance of PEL
with Tc after 2 hours. At this point, PEL has not seen the full
game, as shown in Figure 5 by the vertical lines. Neverthe-
less, PEL was able to find policies that played well on these

short games (until the vertical line), but which are also able to
perform well if we let them continue playing the games (after
the vertical line). This verifies that the policies found by ES
generalize to longer games and therefore, PEL is an efficient
approach on these games.

6 Discussion and Future Work
We introduced a new approach dubbed Progressive Episode
Lengths (PEL) and integrated it with (canonical) ES. The
main idea of PEL is to divide the time budget into differently
limited time slots, and perform ES for each to firstly focus on
solving simple tasks (e.g., shorter games). We then use the
policies found on these short games to warm start ES to run
on harder tasks (e.g., longer games) which leads to better re-
sults. We evaluated the performance of PEL on a set of Atari
games from OpenAI Gym, and the results demonstrate that
the proposed approach is able to provide better results com-
pared to canonical ES, which always evaluated on full games.

The PEL approach has several assumptions: (i) We can find
a well-performing policy on short games that generalizes well
to longer games. We showed that this holds for many Atari
games. For other tasks with sparse rewards or substantially
delayed rewards, our approach has some limitations and will
likely not perform well if the agent needs to play for a long
time to get some rewards. Nevertheless, the PEL approach
will not entirely fail in such tasks but it will lead to a slow-
down such that the agent is still able to learn well. In the
future, we will study whether this also holds for other RL-
tasks such as MuJoCo. (ii) We initialize our minimal episode
length by playing random games. For games with a survival
component, this often provides a reasonable starting point.
However, preliminary results already indicate that for some
Atari games a more aggressive strategy and for some others
a less aggressive strategy will perform better. For RL-tasks
with no natural episode lengths and for tasks where shorter
episodes increase the difficulty, this heuristic will fail. There-
fore, future work will include finding a more reliable heuristic
to initialize episode lengths, and to start the evolution from
different game fragments instead of playing the game from
the beginning all the time.

Another direction for future work is to include a self-
adapting scheduler such that the maximum number of al-
lowed actions can be increased or decreased based on a poten-
tially learned heuristic. Also, ES in its current form explores
its environment by injecting random noise to its policy vector.
Introducing a guided exploration by estimating the direction
of a more rewarding space can improve the optimization pro-
cess. Overall, we believe that integrating PEL into deep re-
inforcement learning algorithms is a promising direction and
can lead to new advances in the state of the art.

Acknowledgments
Robert Bosch GmbH is acknowledged for financial support.
The authors acknowledge support by the state of Baden-
Würrtemberg through bwHPC and the German Research
Foundation (DFG) through grant no. INST 39/963-1 FUGG.



Game 2H 10H
Can. ES PEL-ESTc PEL-ESTd Can. ES PEL-ESTc PEL-ESTd

Alien 1962 3673.4 3108.2 4063 5763.6 5509.6
BankHeist 41.6 214.2 229.8 192.4 341.8 269.4
BeamRider 743 718 734.8 1259 1107.6 1744.2
Breakout 16.4 10 44.8 64.6 110.4 120.2
Enduro 55.6 82.4 88 78.6 106 108.6
Phoenix 1011.6 3330.8 2872.6 2203.2 3821.6 3888.2
Pong 4.8 9.6 14.4 11 14.2 15.2
Seaquest 1263 1008.2 797.2 1914.2 2123.6 1755
SpaceInvaders 960.8 790 930 2030.6 1448 1610.6

Average Improvement 49% 80% 28% 32%

Table 2: Mean evaluation scores for PEL-ES approach with two different time limits compared to canonical ES. Each entry in the table is
the mean score over 5 optimization runs in which 30 evaluations runs are performed for each. The average improvement is computed in
comparison with canonical ES. Bold values indicate the highest mean scores.

Figure 3: Score over time for PEL (blue Tc and green Td) and canonical ES (red). Each line is the median score of 5 optimization runs and
the shaded areas show the 25% and 75% percentiles of these runs.

Figure 4: Score over time for PEL (Tc and Td) and canonical ES. Each line is the median score of 5 optimization runs and the shaded areas
show the 25% and 75% percentiles of these runs. The vertical lines show the points after which the maximal episode lengths were increased.

Figure 5: Mean of cumulative reward for 30 evaluation runs for PEL with Tc with 2 hours time budget. The red dashed line indicates the
maximal number of actions observed by PEL.



References
[Alvernaz and Togelius, 2017] S. Alvernaz and J. Togelius.

Autoencoder-augmented neuroevolution for visual doom
playing. In Proc. of IEEE CIG, pages 1–8, 2017.

[Bengio et al., 2009] Y. Bengio, J. Louradour, R. Collobert,
and J. Weston. Curriculum learning. In Proc. of ICML,
pages 41–48, 2009.

[Brockman et al., 2016] G. Brockman, V. Cheung, L. Pet-
tersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym. arXiv:1606.01540 [cs.LG],
2016.

[Chrabaszcz et al., 2018] P. Chrabaszcz, I. Loshchilov, and
F. Hutter. Back to basics: Benchmarking canonical evolu-
tion strategies for playing atari. In Proc. of IJCAI, pages
1419–1426, 2018.

[Clevert et al., 2016] D.-A. Clevert, T. Unterthiner, and
S. Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). In Proc. of ICLR, 2016.

[Conti et al., 2018] E. Conti, V. Madhavan, F. Such,
J. Lehman, K. Stanley, and J. Clune. Improving ex-
ploration in evolution strategies for deep reinforcement
learning via a population of novelty-seeking agents.
arXiv:1712.06560 [cs.AI], 2018.

[Cuccu et al., 2018] G. Cuccu, J. Togelius, and P. Cudre-
Mauroux. Evolutionary generative adversarial networks.
arXiv:1803.00657 [cs.LG], 2018.

[Falkner et al., 2018] S. Falkner, A. Klein, and F. Hutter.
BOHB: robust and efficient hyperparameter optimization
at scale. In Proc. of ICML, pages 1436–1445, 2018.

[Jiang et al., 2015] L. Jiang, D. Meng, Q. Zhao, S. Shan, and
A. Hauptmann. Self-paced curriculum learning. In Proc.
of AAAI, pages 2694–2700, 2015.

[Karnin et al., 2013] Z. Karnin, T. Koren, and O. Somekh.
Almost optimal exploration in multi-armed bandits. In
Proc. of ICML, pages 1238–1246, 2013.

[LaPorte et al., 2015] G. LaPorte, J. Branke, and C.-H.
Chen. Adaptive parent population sizing in evolution
strategies. Evolutionary Computation, 23:397–420, 2015.

[Li et al., 2017] L. Li, K. Jamieson, G. DeSalvo, A. Ros-
tamizadeh, and A. Talwalkar. Hyperband: A novel bandit-
based approach to hyperparameter optimization. Journal
of Machine Learning Research, 18:185:1–185:52, 2017.

[Miller et al., 1989] G. Miller, P. Todd, and S. Hegde. De-
signing neural networks using genetic algorithms. In Proc.
of ICGA, pages 379–384, 1989.

[Mnih et al., 2013] V. Mnih, K. Kavukcuoglu, D. Silver,
A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller. Playing atari with deep reinforcement learning.
arXiv:1312.5602 [cs.LG], 2013.

[Mnih et al., 2015] V. Mnih, K. Kavukcuoglu, D. Silver,
A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Ried-
miller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level

control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[Narvekar, 2017] S. Narvekar. Curriculum learning in rein-
forcement learning. In Proc. of IJCAI, pages 5195–5196,
2017.

[Poulsen et al., 2017] A. Poulsen, M. Thorhauge, M. Funch,
and S. Risi. DLNE: A hybridization of deep learning and
neuroevolution for visual control. In Proc. of IEEE CIG,
pages 256–263, 2017.

[Real et al., 2017] E. Real, S. Moore, A. Selle, S. Saxena,
Y. Suematsu, J. Tan, Q. Le, and A. Kurakin. Large-scale
evolution of image classifiers. In Proc. of ICML, pages
2902–2911, 2017.

[Rechenberg, 1973] I. Rechenberg. Evolutionsstrategie opti-
mierung technisher systeme nach prinzipien der biologis-
chen evolution. PhD thesis, Frommann-Holzboog, 1973.

[Risi and Togelius, 2017] S. Risi and J. Togelius. Neuroevo-
lution in games: State of the art and open challenges.
IEEE Trans. Comput. Intellig. and AI in Games, 9(1):25–
41, 2017.

[Salimans et al., 2016] T. Salimans, I. Goodfellow,
W. Zaremba, V. Cheung, A. Radford, and X. Chen.
Improved techniques for training gans. In Pros. of NIPS,
2016.

[Salimans et al., 2017] T. Salimans, J. Ho, X. Chen, and
S. Sidor amd I. Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning.
arXiv:1703.03864 [stat.ML], 2017.

[Schulman et al., 2017] J. Schulman, S. Levine, P. Moritz,
M. Jordan, and P. Abbeel. Trust region policy optimiza-
tion. arXiv:1502.05477 [cs.LG], 2017.

[Silver et al., 2017] D. Silver, J. Schrittwieser, K. Simonyan,
I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. Driessche, T. Graepel, and Demis Hassabis. Master-
ing the game of go without human knowledge. Nature,
550:354–359, 2017.

[Such et al., 2017] F. Such, V. Madhavan, E. Conti,
J. Lehman, K. Stanley, and J. Clune. Deep neuroevolu-
tion: Genetic algorithms are a competitive alternative for
training deep neural networks for reinforcement learning.
CoRR, abs/1712.06567, 2017.

[Swersky et al., 2013] K. Swersky, J. Snoek, and R. Adams.
Multi-task bayesian optimization. In Proc. of NIPS, pages
2004–2012, 2013.

[Wierstra et al., 2014] D. Wierstra, T. Schaul, T. Glasmach-
ers, Y. Sun, J. Peters, and J. Schmidhuber. Natural evolu-
tion strategies. JMLR, 15:949–980, 2014.



Appendix

Game Number of steps
Alien ∼650
BankHeist ∼550
BeamRider ∼1400
Breakout ∼150
Enduro ∼3200
Phoenix ∼1200
Pong ∼950
Seaquest ∼500
SpaceInvaders ∼700

Table 1: Number of average steps taken until the end of an episode
in different Atari games with randomized actions.



Game 2H 10H
Can. ES PEL-ESTc PEL-ESTd Can. ES PEL-ESTc PEL-ESTd

Alien 1283 ± 992 4681 ± 48 3565 ± 1787 3926 ± 666 4750 ± 35 6601 ± 293
2070 ± 747 3380 ± 1090 3213 ± 1361 6373 ± 17 4411 ± 706 4874 ± 1947

3363 ± 1206 5569 ± 746 3035 ± 1297 4581 ± 1215 6447 ± 1988 5419 ± 2456
900 ± 673 1994 ± 1194 3701 ± 37 1372 ± 1126 5675 ± 744 6673 ± 767

2194 ± 561 2743 ± 1625 2027 ± 1455 4063 ± 1409 7535 ± 1659 3981 ± 2894
Mean score 1962 3673.4 3108.2 4063 5763.6 5509.6
BankHeist 0 ± 0 200 ± 0 213 ± 5 110 ± 0 600 ± 0 239 ± 5

54 ± 48 300± 0 230 ± 0 194 ± 17 321 ± 19 230 ± 0
84 ± 12 130 ± 1 193 ± 4 231 ± 2 167 ± 14 299 ± 3

11 ± 6 271 ± 16 200 ± 1 237 ± 69 360 ± 0 200 ± 1
59 ± 5 170 ± 0 313 ± 40 190 ± 0 261 ± 33 379 ± 29

Mean score 41.6 214.2 229.8 192.4 341.8 269.4
BeamRider 752 ± 318 783 ± 210 701 ± 194 1975 ± 1141 1078 ± 483 858 ± 208

748 ± 164 750 ± 143 736 ± 246 908 ± 235 1758 ± 1130 1946 ± 1081
748 ± 144 663 ± 221 694 ± 426 778 ± 218 793 ± 215 1370 ± 806
697 ± 243 687 ± 171 806 ± 229 1825 ± 974 932 ± 276 2001 ± 1206
770 ± 168 707 ± 169 737 ± 187 809 ± 176 977 ± 272 2546 ± 1498

Mean score 743 718 734.8 1259 1107.6 1744.2
Breakout 19 ± 21 11 ± 8 11 ± 8 77 ± 94 195 ± 194 95 ± 114

14 ± 17 5 ± 4 107 ± 130 25 ± 26 13 ± 13 139 ± 192
21 ± 21 14 ± 10 12 ± 12 117 ± 142 184 ± 199 167 ± 178
12 ± 13 6 ± 4 9 ± 5 15 ± 16 16 ± 11 28 ± 25
16 ± 15 14 ± 10 85 ± 125 89 ± 117 144 ± 185 172 ± 178

Mean score 16.4 10 44.8 64.6 110.4 120.2
Enduro 15 ± 9 55 ± 17 115 ± 19 29 ± 12 97 ± 22 122 ± 18

104 ± 18 80 ± 24 74 ± 29 120 ± 23 92 ± 21 122 ± 19
78 ± 19 110 ± 24 107 ± 17 97 ± 23 127 ± 26 118 ± 20

7 ± 10 70 ± 30 74 ± 23 25 ± 12 102 ± 21 93 ± 22
74 ± 24 97 ± 17 70 ± 24 122 ± 21 112 ± 15 88 ± 18

Mean score 55.6 82.4 88 78.6 106 108.6
Phoenix 849 ± 766 3019 ± 1547 2917 ± 1462 1798 ± 1248 3019 ± 1547 3543 ± 1369

940 ± 799 2909 ± 1379 3223 ± 1501 2551 ± 1203 4348 ± 1338 4998 ± 1160
1373 ± 1307 3268 ± 1204 2603 ± 1672 1970 ± 1015 3929 ± 1030 3943 ± 1419

1046 ± 747 3729 ± 1435 3021 ± 1127 2154 ± 1150 3929 ± 1296 3294 ± 1483
850 ± 595 3729 ± 902 2599 ± 1500 2543 ± 1470 3883 ± 1006 3663 ± 1503

Mean score 1011.6 3330.8 2872.6 2203.2 3821.6 3888.2
Pong 7 ± 18 9 ± 17 6 ± 19 14 ± 15 18 ± 10 9 ± 18

0 ± 0 21 ± 0 7 ± 19 0 ± 0 21 ± 0 8 ± 19
7 ± 16 1 ± 20 20 ± 0 21 ± 0 1 ± 20 20 ± 0
7 ± 19 10 ± 15 21 ± 0 12 ± 13 10 ± 15 21 ± 0
3 ± 20 7 ± 19 18 ± 2 8 ± 19 21 ± 0 18 ± 2

Mean score 4.8 9.6 14.4 11 14.2 15.2
Seaquest 1327 ± 384 1911 ± 157 578 ± 85 2090 ± 368 4126 ± 81 1715 ± 8

1137 ± 25 866 ± 236 850 ± 190 1200 ± 0 1076 ± 576 1486 ± 198
1490 ± 147 621 ± 171 615 ± 31 3128 ± 920 1434 ± 156 2098 ± 1232

1172 ± 21 833 ± 242 1060 ± 137 1896 ± 32 1429 ± 490 1807 ± 37
1189 ± 9 810 ± 104 883 ± 428 1257 ± 30 2553 ± 59 1669 ± 124

Mean score 1263 1008.2 797.2 1914.2 2123.6 1755
SpaceInvaders 776 ± 232 748 ± 384 1018 ± 372 2226 ± 97 1515 ± 1044 1468 ± 1245

828 ± 72 749 ± 87 1031 ± 167 1346 ± 328 1531 ± 1389 1770 ± 922
1159 ± 236 1092 ± 78 864 ± 292 2227 ± 166 1568 ± 726 1534 ± 945

903 ± 252 665 ± 125 870 ± 355 2335 ± 0 1296 ± 602 1493 ± 1073
1138 ± 417 660 ± 60 867 ± 92 2019 ± 401 1330 ± 927 1788 ± 121

Mean score 960.8 790 930 2030.6 1448 1610.6
Average Improvement 49% 80% 28% 32%

Table 2: A comparison of mean evaluation scores for PEL-ES approach with two different time limits and canonical ES. Five independent
runs are performed and each entry in the table is the mean score over 30 evaluation runs. The average improvement is computed in

comparison with canonical ES. Bold values indicate the highest mean scores



Game Can. ES PEL-ESTc PEL-ESTc PEL-ESTc
R = 2 R = 4 R = 8

Alien 1345 ± 857 4665 ± 56 2717 ± 665 1624 ± 667
2215 ± 636 3951 ± 1087 2606 ± 198 2941 ± 1235
3649 ± 1595 5668 ± 737 1766 ± 738 3443 ± 741

Mean score 2403 4761 2366 2669
BankHeist 0 ± 0 200 ± 0 413 ± 14 300 ± 0

38 ± 36 300± 0 130 ± 0 70 ± 0
87 ± 9 130 ± 0 399 ± 38 250 ± 0

Mean score 42 210 314 206
BeamRider 818 ± 218 818 ± 261 728 ± 275 660 ± 165

730 ± 220 759± 202 731 ± 212 794 ± 281
741 ± 98 819 ± 346 784 ± 215 686 ± 152

Mean score 768 798 747 713
Breakout 26 ± 21 15 ± 11 15 ± 4 7 ± 4

18 ± 18 6 ± 4 9 ± 8 5 ± 3
22 ± 22 17 ± 6 9 ± 3 68 ± 3

Mean score 22 13 10 6
Enduro 18 ± 11 69 ± 27 38 ± 36 57 ± 38

107 ± 23 79 ± 28 103 ± 11 23 ± 6
80 ± 31 118 ± 19 45 ± 24 13 ± 8

Mean score 68 89 62 31
Phoenix 836 ± 603 3262± 1063 4927 ± 463 3004 ± 1879

979 ± 726 3621 ± 1364 3273 ± 1406 3318 ± 2378
1207 ± 1327 3862 ± 644 3606 ± 1038 1806 ± 480

Mean score 1007 3582 3935 2709
Pong 2 ± 19 16 ± 12 17 ± 21 21 ± 0

0 ± 0 21± 0 21 ± 0 21 ± 0
8 ± 18 4 ± 20 21 ± 0 21 ± 0

Mean score 3 14 19 21
Seaquest 1444 ± 306 2005 ± 139 466 ± 45 482 ± 101

1144 ± 24 858 ± 168 584 ± 12 512 ± 93
1420 ± 177 622 ± 64 610 ± 73 584 ± 63

Mean score 1336 1161 533 526
SpaceInvaders 782 ± 201 728 ± 521 681 ± 282 524 ± 44

846 ± 45 758 ± 91 933 ± 620 541 ± 170
1133 ± 201 1097 ± 74 523 ± 201 406 ± 260

Mean score 920 861 732 490

Table 3: Compare the LEL approach with different step-limitation division constants (R = [2, 4, 8]) against the Canonical Evolutionary
Strategy after 5 hours of optimization. Each entry is the top mean score of 10 policy runs.



Game Can. ES PEL-ESTc PEL-ESTc PEL-ESTc
R = 2 R = 4 R = 8

Alien 3958 ± 932 4758 ± 38 5931 ± 2585 2849 ± 1883
6371 ± 20 4436 ± 438 2894 ± 591 4398 ± 3251
5025 ± 358 7290 ± 2438 2895 ± 220 4700 ± 220

Mean score 5118 5495 3906 3982
BankHeist 110 ± 0 600 ± 0 413 ± 14 300 ± 0

200 ± 0 324 ± 17 130 ± 0 90 ± 0
232 ± 4 168 ± 14 424 ± 52 250 ± 0

Mean score 180 364 322 213
BeamRider 2168 ± 1162 1536 ± 1259 886 ± 198 732 ± 246

962 ± 237 1593 ± 771 1002 ± 307 862 ± 212
858 ± 208 824 ± 163 891 ± 306 813 ± 254

Mean score 1329 1317 926 802
Breakout 115 ± 94 234 ± 190 205 ± 167 196 ± 188

35 ± 28 15 ± 12 195 ± 192 210 ± 206
161 ± 105 207 ± 205 249 ± 163 56 ± 66

Mean score 103 152 216 150
Enduro 30 ± 14 96 ± 15 120 ± 22 104 ± 19

129 ± 9 101 ± 23 121 ± 14 127 ± 13
93 ± 16 126 ± 21 121 ± 19 56 ± 35

Mean score 84 108 120 95
Phoenix 1882 ± 1361 3953 ± 1051 5100 ± 964 3883 ± 2399

1804 ± 935 4669 ± 1111 4410 ± 1542 3986 ± 1923
1951 ± 1136 3964 ± 859 3752 ± 2005 3900 ± 2776

Mean score 1879 4195 4420 3923
Pong 13 ± 16 21 ± 19 21 ± 0 21 ± 0

0 ± 0 21 ± 0 21 ± 0 21 ± 0
21 ± 0 8 ± 0 21 ± 0 21 ± 0

Mean score 11 17 21 21
Seaquest 2100 ± 262 4087 ± 63 1168 ± 18 1784 ± 264

1200 ± 0 1216 ± 623 1636 ± 23 1204 ± 39
2712 ± 820 1434 ± 48 1744 ± 19 904 ± 332

Mean score 2004 2245 1516 1297
SpaceInvaders 2228 ± 154 1629 ± 996 1268 ± 701 1567 ± 606

1468 ± 332 1536 ± 1369 1749 ± 938 1439 ± 884
2218 ± 190 1604 ± 1182 1363 ± 952 1191 ± 1089

Mean score 1971 1589 1460 1399

Table 4: Compare the LEL approach with different step-limitation division constants (R = [2, 4, 8]) against the Canonical Evolutionary
Strategy after 5 hours of optimization. Each entry is the top mean score of 10 policy runs.


	Introduction
	Related Work
	Background
	Canonical Evolution Strategy
	Network Architecture

	Evolution Strategy with Progressive Episode Lengths
	Problems of Canonical ES
	PEL: Progressive Episode Lengths
	Episode Scheduler
	Time Scheduler
	An Example for PEL on Evolution Strategies

	Experiments
	Experimental Setup
	Q1: Comparison against Canonical ES
	Q2: Comparison of Time Schedulers
	Q3: Learning on Short Games

	Discussion and Future Work

