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Abstract— Automated detection of cancer metastases
in lymph nodes has the potential to improve the assess-
ment of prognosis for patients. To enable fair compari-
son between the algorithms for this purpose, we set up
the CAMELYON17 challenge in conjunction with the IEEE
International Symposium on Biomedical Imaging 2017 Con-
ference in Melbourne. Over 300 participants registered
on the challenge website, of which 23 teams submit-
ted a total of 37 algorithms before the initial deadline.
Participants were provided with 899 whole-slide images
(WSIs) for developing their algorithms. The developed algo-
rithms were evaluated based on the test set encompassing
100 patients and 500 WSIs. The evaluation metric used
was a quadratic weighted Cohen’s kappa. We discuss the
algorithmic details of the 10 best pre-conference and two
post-conference submissions. All these participants used
convolutional neural networks in combination with pre-
and postprocessing steps. Algorithms differed mostly in
neural network architecture, training strategy, and pre- and
postprocessing methodology. Overall, the kappa metric
ranged from 0.89 to −0.13 across all submissions. The best
results were obtained with pre-trained architectures such
as ResNet. Confusion matrix analysis revealed that all par-
ticipants struggled with reliably identifying isolated tumor
cells, the smallest type of metastasis, with detection rates
below 40%. Qualitative inspection of the results of the top
participants showed categories of false positives, such as
nerves or contamination, which could be targeted for further
optimization. Last, we show that simple combinations of the
top algorithms result in higher kappa metric values than any
algorithm individually, with 0.93 for the best combination.

Index Terms— Breast cancer, sentinel lymph node, lymph
node metastases, whole-slide images, grand challenge.

I. INTRODUCTION

BREAST cancer is the most common cancer among
women in the United States of America [1]. Within

their lifetime, 12% of women are diagnosed with breast
cancer. In 2017, an estimated 252,710 women were diagnosed
with breast cancer, which accounts for 30% of all diagnosed
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cancer cases, and approximately 40,610 women died from the
disease.

The prognosis of breast cancer patients is mainly determined
by whether the cancer is organ-confined or has spread to other
parts of the body [2]. An internationally accepted means to
classify the extent of cancer is the tumor, (regional) lymph
nodes, distant metastasis (TNM) staging system [3]. The
TNM staging system is one of the most important tools
for clinicians to select a suitable treatment for the patient.
In breast cancer, TNM staging takes into account the size
of the tumor (T-stage), whether the cancer has spread to the
(regional) lymph nodes (N-stage), and whether the tumor has
metastasized to other parts of the body (M-stage).

The axillary lymph nodes are typically the first location
breast cancer metastasizes to. Currently, the status of these
lymph nodes is almost always assessed by applying the
sentinel lymph node procedure. This procedure tries to identify
the nearest lymph nodes to which the tumor drains, which are
then excised for pathologic examination [4], [5]. Typically,
a blue dye and/or a radioactive tracer is injected in or near the
tumor prior to surgery to identify these sentinel lymph nodes.

After formalin fixation and paraffin embedding, a couple
of micrometers thin slices are cut from the excised nodes
and placed on glass slides (typically 3-5 sections per lymph
node). These slides are then stained with hematoxylin and
eosin (H&E) to highlight the cell nuclei and the general
structural features of the tissue (Figure 1). Through micro-
scopic assessment the pathologist screens the slides for tumor
presence. If tumor cells are found, the pathologist measures
their extent in order to determine the pathologic N stage (pN-
stage) of the tumor. In case of unclear diagnosis on H&E,
immunohistochemical (IHC) staining for cytokeratin can be
used for clarification and is standard diagnostic practice in the
Netherlands [6], [7].

The histopathological analysis of lymph nodes is time
consuming, tedious and pathologists may miss small metas-
tases [8]. The introduction of whole-slide imaging, which
allows for the high-resolution digitization of glass slides, has
paved the way for (partly) automating this work [9]. Automa-
tion can potentially improve the efficiency and accuracy of
histopathological lymph node assessment.

In the medical image analysis research field, grand chal-
lenges have shown to be a very successful approach to quickly
advance the state of the art. Typically, the challenge organizers
define a clinically relevant task and release a sufficiently large
and diverse training set to allow participants to build algo-
rithms to solve a specific problem. Subsequently, algorithms
are uniformly evaluated by the organizers to allow a fair
performance comparison. There have been many successful
challenges in recent years, in many medical imaging fields,
for example: liver segmentation in CT (SLIVER07) [10], brain
tumor segmentation in MRI (BRATS) [11], or lung nodule
detection in CT (LUNA16) [12].

In 2016, we organized the ’CAncer MEtastases in LYmph
nOdes challeNge’ (CAMELYON16) to improve automated
breast cancer metastases detection in whole-slide images
(WSIs) of sentinel lymph nodes [13]. As part of the chal-
lenge, we organized a reader study in which 11 pathologists

under time constraint and 1 pathologist without time-constraint
performed the same task as the algorithms in the challenge.
We found that the best performing algorithms in the challenge
perform at the level of the pathologist without time-constraint
and perform significantly better than pathologists under time
pressure. However, CAMELYON16 did not yet mimic clin-
ical practice, limiting the conclusions that could be drawn
from its results. We sought to amend these limitations with
CAMELYON17. The following key changes were made to
the setup of CAMELYON16:

• In CAMELYON16 we focused on classification of single
WSIs whereas in CAMELYON17 we focus on patient-
level pN-stage prediction including multiple WSIs per
patient.

• Isolated tumor cells (ITC), the smallest type of metastasis,
were excluded in CAMELYON16 and have now been
included.

• Five centers providing cases were included instead of
only two centers, allowing for a more accurate rep-
resentation of preparation and staining diversity across
laboratories and scanners.

• The challenge data set size increased from 399 to 1399
WSIs to get a better estimate of algorithm performance
and allow participants to train better systems.

This paper discusses the results of the CAMELYON17 chal-
lenge, which were partly presented in a workshop during the
IEEE International Symposium on Biomedical Imaging (ISBI)
2017 in Melbourne, Australia. The next sections describe the
data set, the challenge setup, and the algorithm evaluation
strategy. Subsequently, we describe the methodology of the
ten best pre-workshop and two post-workshop submissions and
compare their results (ranking in Table I). Last, we discuss the
results, the limitations of the study and recommendations for
future work.

II. MATERIALS

A. Whole-Slide Images

We included patients from five different medical
centers from the Netherlands: slides from 130 lymph
node resections from Radboud University Medical Center
in Nijmegen (RUMC), 144 from Canisius-Wilhelmina
Hospital in Nijmegen (CWZ), 129 from University Medical
Center Utrecht (UMCU), 168 from Rijnstate Hospital in
Arnhem (RST), and 140 from Laboratory of Pathology
East-Netherlands in Hengelo (LPON). Of these patients we
collected glass slides of H&E-stained sentinel lymph nodes.
Whenever available, we also collected the corresponding
IHC slides, stained for cytokeratin, to establish the reference
standard. IHC slides were generally only available for more
difficult cases for which in the H&E slides no tumor was
detected on first reading. No consecutive H&E-slides from
the same lymph node were included.

The glass slides were digitized with whole-slide scanners,
resulting in WSIs. The slides from RUMC, CWZ and RST
were scanned in the RUMC with an 3DHistech P250 whole-
slide scanner with a pixel size of 0.24 μm. The slides from
LPON were scanned locally with their Philips IntelliSite Ultra
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TABLE I
CAMELYON17 COMBINED LEADERBOARD (PRE- AND POST-WORKSHOP SUBMISSIONS)

Fig. 1. Example of a WSI of a H&E stained section with a delineated micro-metastasis at increasing zoom levels, and the corresponding IHC
(cytokeratin 8-18 stained) slide at the same location. The metastasis is outlined with black.

Fast Scanner with a 0.25 μm pixel size. The UMCU used a
Hamamatsu XR C12000 whole-slide scanner with a 0.23 μm
pixel size.

The WSIs contained multiple resolution levels, with approx-
imately 1×105 by 2×105 pixels at the highest resolution level.
Each consecutive resolution level doubled the pixel size in both
directions and halved the pixel count in each dimension. The
typical file size of a WSI was about 4 GB, but it varied greatly
depending on the scanner and tissue content of the image. The
vendor-specific image formats were anonymized and converted
to standard multi-resolution TIFF image files. For a description
of the file format, see http://openslide.org/formats/generic-tiff/.
The size of the complete data set was 3030.5 GB divided
as 715.9 GB and 2314.6 GB between CAMELYON16 and
CAMELYON17, respectively.

B. WSI Labeling

Clinically, three types of metastases are distinguished,
based on size: macro-metastases, micro-metastases and ITC
(Table II). Although the clinical relevance of ITCs is debated,
they have to be reported by pathologists and affect the pN-
stage when no macro- or micro-metastases are present. When
multiple metastases are present in a slide, the metastasis with
the largest size determines the slide label.

Every WSI was labeled with one of the “macro”,
“micro”, or “ITC” metastasis categories by a pathologist,
based on the largest lesion present in the H&E stained
slide using the corresponding cytokeratin-stained slide as

TABLE II
RULES FOR ASSIGNING SINGLE CELLS OR CLUSTERS

OF METASTASIZED TUMOR CELLS TO A

METASTASIS CATEGORY

a reference, if available. When no metastasis was present in
the H&E stained slide, it was labeled “negative”. Examples are
shown in Figure 1 and 2.

C. Assigning pN-Stage Labels

The pN-stages are based on several slides per lymph node
and, depending on the surgical procedure, several lymph
nodes per patient. Furthermore, some pN-stages are based
on lymph node locations or extra molecular tests. To keep
the total data set size of CAMELYON17 within reasonable
limits, the stages which require more than 5 lymph nodes
per patient were excluded. Furthermore, as this is an image
analysis challenge, we removed the stages that depend on non-
imaging information. The final subset of pN-stages used in the
challenge is indicated in Table III. For a full listing we refer
the reader to the seventh edition of the TNM Classification of
Malignant Tumors [3].
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Fig. 2. Low-resolution examples of WSIs. One H&E stained slide from each medical center in the training set and the corresponding IHC
(cytokeratin 8-18 stained) slide for the last H&E stained slide.

TABLE III
PN-STAGES USED IN THE CHALLENGE

As it is almost impossible to find a roughly uniform distrib-
ution of patients across pN-stages at multiple institutions. For
the purpose of this challenge we decided to create artificial
patients. These artificial cases were constructed by grouping
5 WSIs from different patients from a single center as being
from one individual, where each WSI resembled one lymph
node. This facilitated a comparable pN-stage distribution
between centers. We shared 40 of these artificial patients per
medical center. The training set included 20 patients from each
center with a disclosed pN-stage for each artificial patient and
the metastasis label for each individual slide in the set.

The test set was composed of another 100 artificial patients
(Table IV). The complete CAMELYON17 data set contained
1000 WSIs of H&E stained slides. The complete CAME-
LYON16 data set (training and test), was made available to
give participants a good starting point for training algorithms.
Altogether, 1399 WSIs were shared for the challenge (TableV).

D. Detailed Lesion Annotations

In addition to the patient and slide level labels, a pathologist
exhaustively annotated 10 WSIs from each of the 5 centers in
the CAMELYON17 training set by carefully outlining each
lesion in the WSIs with polygons (TableVI). The cytokeratin-
stained slides were used as a reference, when available.
Additionally, the detailed annotations of the 159 WSIs with
metastases of the complete CAMELYON16 data set were
made available. The annotation polygons were shared as a

TABLE IV
PATIENT-LEVEL CHARACTERISTICS FOR THE CAMELYON17 DATA SET

TABLE V
WSI-LEVEL CHARACTERISTICS FOR THE COMPLETE DATA SET

TABLE VI
EXHAUSTIVE ANNOTATIONS IN THE CAMELYON17 DATA SET

series of pixel coordinates on the highest resolution level in
XML file format.

III. METHODS

A. Challenge Setup

We set up a website to share information about the challenge
and to provide an interface for all challenge-related issues.
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The website was set up via https://www.grand-challenge.org,
which has hosted over 155 biomedical image analysis chal-
lenges since 2007. The challenge website is accessible directly
at https://camelyon17.grand-challenge.org.

On the website the participants could register and find a
general overview of the challenge including the deadlines,
a brief description of the biomedical background of the prob-
lem, a description of the data set, the rules of the challenge,
the evaluation metrics, and Python code snippets for accessing
the images and the annotations. Finally, through the website
the participants could submit their results and access a forum
to ask questions and provide comments.

Participants were granted access to the data set, forum
and submission system after they registered and accepted
the rules of the challenge. Anonymous participation was
not allowed. The complete data set was made avail-
able under Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. The license is
available at https://creativecommons.org/licenses/by-nc-nd/
4.0/legalcode. The complete CAMELYON16 and CAME-
LYON17 data sets were shared on Google Drive. Since the
access to the services of Google are limited in the People’s
Republic of China (PRC) we mirrored the content of the shared
Google Drive to Baidu Pan which is a local service in the PRC
and can be accessed without restrictions.

The challenge aimed for a fair comparison of algorithms,
therefore participants were not allowed to use other data
sources. Making extra annotations on the training data set was
only allowed if the annotations were subsequently submitted to
the organizers along with the submission of the results so that
these annotations can be made available to other participants.

The participants had to submit their results as CSV files
through the challenge website. The deadline for pre-workshop
submissions was April 6, 2017. Maximum 3 submissions
were allowed per participant with a 4 page ISBI style paper
accompanying each submission describing their methods. The
3 submissions had to be methodologically different. Resubmis-
sions with simple hyper-parameter tuning were not allowed.

During the workshop at ISBI 2017 we presented the results
of the challenge and invited the top 5 teams to present
their methods. The results, presentations and participant’s
algorithms were shared via the challenge website after the
workshop. Subsequently, the challenge was reopened for reg-
istration and submissions.

B. Metrics and Evaluation

Within the challenge, participants were scored based on
the ability of their algorithm to identify the pN-stages of the
100 test patients. To evaluate the performance of the algo-
rithms, we used Cohen’s kappa with 5 classes and quadratic
weights [14] which is a statistic that measures inter-observer
agreement for categorical variables.

Given n test patients and m categories (pN-stages), let ni j

denote the number of patients with the i th pN-stage that were
categorized to the j th pN-stage. Let ri denote the total number
of patients with the i th pN-stage and s j the total number of
patents categorized to the j th pN-stage. Finally, let wi j denote

the disagreement weight associated with the i th and the j th

pN-stages.
The weight matrix is

wi j = (i − j)2, i, j ∈ 1..m (1)

The mean observed degree of disagreement is

Do = 1

n

m∑

i=1

m∑

j=1

ni j wi j (2)

The mean degree of disagreement expected by chance is

De = 1

n2

m∑

i=1

m∑

j=1

ri s j wi j (3)

Weighted kappa is then defined by

κw = De − Do

De
(4)

The κw metric ranges from −1 to +1: a negative value indi-
cates lower than chance agreement, zero indicates exact chance
agreement, and a positive value indicates better than chance
agreement. As pN-stages are ordinal, a quadratic weighted
kappa was chosen to penalize misclassification which are more
than one stage apart more severely.

In this paper we also use confusion matrices at the slide
level for the top 4 teams to assess accuracies for specific
types of metastases. This will allow us to identify the most
promising areas of improvement for the algorithms. Further-
more, we qualitatively inspected the likelihood maps provided
by the best two contestants to assess localization performance
and identify common false positives and negatives.

Last, we assessed whether combining algorithms could lead
to even better performance than each algorithm individually.
We combined the submitted pN-stages and also the reported
slide-level labels of the best 2 up till the best 12 teams by
averaging the labels and by majority voting. The new slide-
level labels were converted to pN-stages by applying the
TNM-criteria. In case of a tie in majority voting, the highest
pN-stage or slide-level label was selected from the votes.

C. Summary of Submitted Algorithms

We had 300 registered participants before March 1, 2017
when the test data set was released and over a 1000 by the
time of writing this article.

Altogether 23 teams submitted their results before the work-
shop deadline. To keep the paper concise we only present the
methodology and results of the ten best performing algorithms.
We also received four submissions after the challenge was re-
opened (but before 31st December 2017), of which one was a
resubmission and one was excluded for not providing sufficient
algorithmic detail. The other two post-workshop submissions
were included. This resulted in a total of twelve algorithms
which are presented in this paper.

All the twelve teams followed the same basic algorithmic
steps: preprocessing, slide-level classification, slide-level post-
processing, and patient-level classification. We first give a brief
summary and then cover each of the four steps in more detail.
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TABLE VII
DIFFERENCES IN PREPROCESSING AND AUGMENTATION.

G: GRAYSCALE (MEAN VALUE OF RGB CHANNELS),
CCA: CONNECTED COMPONENT ANALYSIS, MAX/MIN

Δ: THRESHOLD ON THE DIFFERENCE BETWEEN

MAXIMUM AND MINIMUM VALUE

ACROSS RGB CHANNELS

In the preprocessing step all teams started with identifying
the tissue regions on the WSIs. Typically, large parts of the
slide do not contain tissue (Figure 2), and do not need to
be processed. Therefore, the preprocessing step is essential
for developing efficient algorithms. Subsequently, to perform
metastases detection in each slide, all twelve teams trained
convolutional neural networks architectures (CNN) with image
tiles extracted from the identified tissue regions (normal and
metastatic areas). The trained networks were then applied to
the test images to obtain metastasis-likelihood maps. Within
the postprocessing step, most participants thresholded the like-
lihood map and collected several features from the identified
cancerous areas and used a separate classifier (e.g. random
forest) to determine the class of the WSI: negative, ITC,
micro, or macro. Last, the participants typically followed the
pN-stage definitions to combine their slide-level findings into
a patient-level pN-stage.

1) Preprocessing: All participants used a preprocessing step
to identify tissue regions in the WSIs. All participants used
simple filtering and thresholding algorithms, mostly Otsu’s
adaptive threshold at a low resolution level [15]. Differences
between the methods were mainly found in which color space
the thresholds were applied, for example RGB (red-green-
blue), HSV (hue-saturation-value), or HSI (hue-saturation-
intensity), and the type of morphological operations that
were used to refine the thresholded image. For example,
team 4 and 11 used a median filter to remove small regions,
team 5 used connected component analysis and size filtering,
and team 6 used morphological hole-filling. For a full listing
we refer to Table VII.

2) Slide-Level Classification: Almost all participants used
the CAMELYON16 WSIs, the 50 exhaustively annotated
CAMELYON17 WSIs, and all the negative WSIs from the
CAMELYON17 data set to develop their algorithms. Team 4,
7 and 12 used only the CAMELYON16 data set.

With respect to the different types of algorithms,
all participants used CNNs. Specifically, they used vari-
ants of common network architectures: ResNet [17],
GoogLeNet/Inception [18], VGG-Net [19], U-Net [20], and
one team used DenseNet [21]. In contrast to CAMELYON16,
none of the included twelve algorithms used a custom archi-
tecture. Team 2 and 4 used significantly adapted versions of
the common architectures. Team 2 used a variant of ResNet-
101 called DeepLab [22]. DeepLab employs convolution with
dilated filters instead of downsampling (e.g. max-pooling) to
increase the spatial resolution of the network when applied in
a fully-convolutional fashion. Furthermore, in order to combat
reduced localization accuracy due to inherent translational
invariance in CNNs the architecture also uses conditional
random fields (CRF). Team 4 used GoogLeNet in their ensem-
ble to create texture representation by taking the location-
wise outer product of the feature maps at the ’inc4d’ layer.
Subsequently, these are averaged across location to obtain a
single feature vector. This vector is then fed into a softmax
classifier. This approach is similar to that of the bilinear
CNNs [23].

Five of the teams used model ensembles but only 2 teams,
team 4 and 12 used fundamentally different networks in
their ensembles. For example, team 4 used a combination
of 2 GoogLeNets with different input patch sizes and a
Resnet-50 architecture. The rest of the teams used instances
of the same architecture with different initialization, parame-
ters or patch augmentation settings. Eight of the teams used
pre-trained networks for the challenge. They all used networks
that were pre-trained on the ImageNet challenge [24], except
team 2 who used a network that has been pre-trained on
Microsoft COCO challenge [25].

All participants extracted small image patches of metastases
and normal areas from the WSIs to train their CNNs, although
the exact patch size and pixel resolution differed substantially.
For the complete details of the network architectures and
training parameters we refer to Table VIII.

In addition, almost all teams performed extensive data
augmentation to increase the variation in the training set;
only team 6 did not use any data augmentation. Random
mirroring and rotations of 90◦, 180◦ and 270◦ were the most
popular augmentation strategies. Two teams applied rotations
with angles sampled from the continuous [0◦, 360◦] interval
instead. Other strategies included random cropping of patches,
and applying affine transformations (e.g. scaling).

In addition, to make their CNNs robust to color varia-
tion caused by differences between scanners and/or staining
protocols, most participants used patch color augmentation
in the HSV, RGB or H&E color spaces by adding noise
to the individual color channels. Some of the teams used
additional brightness, contrast and gamma adjustments. Two
teams took a completely different approach and tried to use
stain normalization algorithms [26] to ensure a uniform color
distribution across the images. For the complete details of the
augmentation strategies we refer to Table IX.

3) Slide-Level Postprocessing: All participants used the
trained networks to generate metastasis-likelihood maps for
the WSIs. Team 3 used test time augmentations to generate
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TABLE VIII
NETWORK ARCHITECTURE AND TRAINING DETAILS. DO: DROPOUT, HNM: HARD NEGATIVE MINING

TABLE IX
AUGMENTATION METHODS. AT: AFFINE TRANSFORMATIONS,
AGN: ADDITIVE GAUSSIAN NOISE, M90: MULTIPLES OF 90◦

the likelihood map. Test time augmentation refers to the
practice of applying training augmentations to patches at test
time to get multiple metastasis likelihoods per patch. Often
these are then averaged to obtain the final likelihood for
that patch, but team 3 used the most certain likelihood (i.e.
closest to 1.0). To obtain the actual metastasis candidates most
teams thresholded the likelihood maps and post-processed the
resultant binary masks. A typical strategy, used for example
by team 1 and 6 is to remove small detections to reduce
the amount of false positives. Instead of thresholding, team 3
and team 12 used conditional random fields to assign pixel
labels [27].

Assigning a slide-level label is trivial in case of perfect
pixel level classification: a metastasis class can be assigned
by measuring the largest detected area (Table II). Only two
teams used this approach in CAMELYON17. As we already
learned in the CAMELYON16 challenge, many algorithms
submitted by participants suffer from high false positive
rates [13]. The winner in CAMELYON16 solved this by
extracting features from the binary detection mask and the
likelihood map and feeding these features to a random forest

TABLE X
LIKELIHOOD MAP POSTPROCESSING, SLIDE-LEVEL CLASSIFICATION

AND PN-STAGE ASSIGNMENT. TH: THRESHOLD, CRF: CONDITIONAL

RANDOM FIELD, RFC: RANDOM FOREST CLASSIFIER, RBS:
RULE-BASED SYSTEM, GBT: GRADIENT BOOSTED TREES,

SVM: SUPPORT VECTOR MACHINE

classifier. This approach was replicated by several participants
in CAMELYON17. Features that were typically used are, for
example, the number of detected metastases, mean detection
size and standard deviation, mean detection likelihood and
standard deviation. Team 3 used a different approach by apply-
ing a more extensive rule-based system. To better separate
between micro-metastases and ITC, they tried to calculate
the number of cells via color deconvolution and thresholding
on the hematoxylin channel. Subsequently, the DBSCAN
algorithm was used to group together small metastases areas
which were in close proximity [28].

Most teams determined the patient-level pN-stages by
applying the rules according to the definition of pN-stages,
except team 9 and 12. Team 9 combined the extracted features
of all 5 slides per patient and used gradient boosted trees to
determine the pN-stage of the patient directly. Team 12 on the
other hand used a regression on slide-level prediction instead
of direct rule based method to construct pN-stage from slide
classifications.
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Fig. 3. Examples of likelihood maps. Columns: maps of teams 1 and 2 on low and high magnifications. Rows: nerve, contamination, missed
macro-metastasis, missed micro-metastasis, identified micro-metastasis. The colors range from green to red, representing low to high probability
respectively. The reference is annotated in black.

Team 10 built a two stage binary decision tree to deter-
mine the metastases category on the individual slides. First
they differentiated between negative and ITC; or micro and

macro categories. Then they further divided the two sets into
negative or ITC; and micro- or macro-metastases accordingly.
At each step they used a different combination of the outputs



558 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 38, NO. 2, FEBRUARY 2019

TABLE XI
SLIDE-LEVEL CONFUSION MATRICES OF THE BEST FOUR TEAMS WITH THE ACCURACY INDICATED IN PERCENTAGES. BC IS THE

BEST COMBINATION OF ALGORITHMS. THE CELL COLORS RANGE FROM WHITE, REPRESENTING LOW ERROR RATE TO

RED, REPRESENTING HIGH ERROR RATE

of the 2 networks. For the complete details of the slide-level
postprocessing we refer to Table X.

IV. RESULTS

The metric used to rank the algorithms, the quadratic-
weighted κ score, ranged from 0.8993 to -0.1341 for all
23 participating teams and from 0.8993 to 0.7330 for the meth-
ods included in this paper. As such, in terms of agreement,
performance ranged from near-perfect agreement to worse-
than-chance when including all participants. For a complete
listing of the top 12 teams and their κ scores we refer
to Table I.

Confusion matrices at the slide-level were also generated
for the best 4 teams to inspect the quantitative results in more
detail (Table XI). We can see that all teams performed well
in identifying negative slides and slides containing macro-
metastases. All teams performed poorly in identifying ITC,
although the range in accuracy is quite large (0 – 34.3%
correct). Teams 1 and 2 additionally performed well on slides
containing micro-metastases, whereas team 3 and 4 performed
significantly worse.

When combining the submissions of multiple teams a best
κ score of 0.9261 was obtained by combining the slide-level
classification of teams 1, 2 and 3 by averaging slide-level
labels. This is 0.0268 higher than the single best team. The
κ scores of the 5 best combinations are shown in Table XII.
Focusing on the pN-stage classification specifically, the best
single team assigned 76 out of 100 patients to the correct
pN-stage, whereas the best combination got 77 out of 100 cor-
rect. Furthermore, the largest difference between the pre-
dicted pN-stage and the reference pN-stage was 3 stages for
team 1 and only 2 stages for the best combination. Miss with
larger than 1 difference occurred 5 times for the single best
algorithm and only twice for the best combination. At slide-
level the best combination performed equally on negative and
macro-metastasis class slides, a few percentage points worse
on micro-metastasis class slides but was almost 30 percentage
points better in identifying ITC (Table XI).

Evaluation of the likelihood maps of team 1 and 2 provided
insight in the performance of their algorithms, and clarified
some of the false positives and false negatives. Examples of

TABLE XII
KAPPA SCORES OF DIFFERENT ALGORITHM COMBINATION OUTPUTS

the likelihood maps are depicted in Figure 3. On the first row,
a nerve is depicted that was identified by both teams as a
metastasis. On the second row of Figure 3 an example of con-
tamination is shown. The tissue sample was contaminated with
a small piece of breast tissue during glass slide preparation.
This contamination is not a metastasis but was picked up as
such by both systems. Rows three and four show a macro-
and micro-metastasis, respectively. The macro-metastasis was
missed by team 1 and misclassified as a micro-metastasis by
team 2. The micro-metastasis was missed by both teams. Both
these metastases showed very diffuse infiltration of the healthy
tissue, making it challenging to identify them. Last, the fifth
row shows a micro-metastasis nicely segmented by both
team 1 and 2. The detection of team 1 was a bit more precise
since they correctly identified the extending arms on the top
left and right side.

V. DISCUSSION

Given that the participation requirements for
CAMELYON17 were very high in terms of amounts of
data that had to be processed within a limited time frame,
both the quality and quantity of submissions was high.
With 37 submissions, it was even slightly higher than for
CAMELYON16, which had 32 submissions at the initial
deadline.

The submitted algorithms were not only able to detect the
presence of metastases but also measure their extent to derive
the metastasis category, including ITC, and to determine the
pN-stage that is used in clinical practice. Therefore, the out-
come of CAMELYON17 more directly relates to clinical
practice and the submitted algorithms can more readily be
evaluated in that context.
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A key observation is that the best performing algorithms do
well on slides containing macro-metastases and metastasis-free
slides. However, even the current best algorithm still performs
very poorly on identifying ITC with only 11.4% accuracy.
It has to be noted that ITC only play a very limited role in the
pN-staging system and often are also missed by pathologists
on H&E-stained slides [8]. These very small metastases can
subsequently be picked up by using additional IHC staining.

The data set contained only 36 whole-slide images with
ITCs of which only 16 were annotated. This could limit
the performance of the algorithms detecting ITC. However,
we think another reason might be also be important: to achieve
high sensitivity on the small ITC lesions, one most likely needs
to allow more small false positives in normal cases (i.e. it is
harder to get rid of spurious detections automatically). For
example, team 3, which used a rule-based system to obtain
slide level classifications, was the best in ITC detection but at
a cost of the highest false positive ratio in normal images.

The most important aspect of a well-performing system in
terms of pN-staging and clinical relevance is its ability to
detect macro- and micro-metastases. There are only relatively
minor differences in the ability of the best systems to pick-up
macro-metastases as the accuracies are within 5%. As such,
most of the difference in the ranking is caused by the ability
of the top two to identify micro-metastases much better than
all other algorithms.

With regard to false positive detections, all algorithms still
struggle with benign areas that occur rarely in the training set,
for example the nerve shown in Figure 3 or contamination
caused by tissue processing in the lab. Several teams tried to
circumvent this by including hard-negative mining steps, but
with limited success. Most likely this is caused by the fact
that these benign areas are so rare that it is impossible to
learn an accurate representation, even with the three terabytes
of data in the CAMELYON17 data set. A potential avenue
to address this issue is by incorporating model uncertainty,
for example via test-time dropout [29]. Another type of false
positive which is hard to address is the contamination shown
in row 2 of Figure 3. This can only be identified as a false
positive detection when the global context of the slide is taken
into consideration. As all competing algorithms use mostly
local information (i.e. patches) to train their models, this can
not be incorporated. An efficient strategy to add this global
context to deep networks is interesting for further research.

We tried to identify the key characteristics in terms of
methodology for the top performing algorithms. One important
observation is that it is not possible to achieve competitive
results using only a pre-trained GoogLeNet. Many groups
tried this approach, modeled after the winner of CAME-
LYON16, but their results vary substantially. We also know
from CAMELYON16 that pre-training in itself does not
improve performance, but does offer the benefit of much faster
convergence [30]. Especially in the context of a time-limited
challenge, the reduced training time is beneficial. The fact
that results vary substantially, even when using the same, pre-
trained architecture indicates that the way the networks are
trained or fine-tuned is more important than the architecture
itself.

Observing the training processes used by the teams that are
included in this paper, it can be concluded that the data being
fed to the system is inherently important. All the participating
teams extracted high-resolution patches from the WSIs. The
best eight algorithms used either level 0 (0.25 μm pixel
size) or level 1 (0.5 μm pixel size). The details that are
available on high resolution levels are likely necessary for
achieving good performance for this task. The amount of
context included in the patches did vary greatly between teams.
The smallest spatial area was 256 × 256 pixels at the highest
resolution level, while the the largest spatial area corresponds
to 1920 × 1920 pixels at that same level. Given the results,
the context provided by 256 × 256 pixels at level 0 was
enough for achieving good performance; larger contexts were
not needed.

An interesting characteristic of the best performing algo-
rithm is that it was trained for up to a magnitude more
iterations than most of the other contenders. Only team 5, 9
and team 10 trained longer but they were either using a
VGG architecture, which has roughly three times as many
parameters as the ResNet-101 used by team 1, or U-net,
which has not been pre-trained. Team 1 also used the largest
number of patches in their training set of all contenders. These
observations together might indicate that this network has
learned from a more varied set of patches, which could explain
why it generalizes best on the test set.

The majority of the teams focused on the most challenging
patches using hard negative mining. This seemed to benefit
performance overall as it was used by seven out of ten best
teams, even though the best performing team did not use it.
In CAMELYON17, the hard negative mining was used more
widely than in CAMELYON16, where only two of the top-
performing algorithms used it.

One of the other lessons learned from CAMELYON16 was
that proper handling of stain variation between centers is
key to good performance. In CAMELYON17 this is even
more important as we now included 5 centers instead of 2.
In CAMELYON16 the best performing team used color nor-
malization to pre-process all the slides, whereas in this chal-
lenge most of the teams relied on heavy color augmentation to
force their networks to be robust to color variation. In clinical
practice such networks would be more desirable since they do
not rely on a preprocessing step that could potentially fail.

A common question after every Grand Challenge in medical
image analysis is whether the problem, in this case automatic
identification of breast cancer metastases in sentinel lymph
nodes, has been adequately solved. Up till now we can confi-
dently state that this is not yet the case. Despite the excellent
results of the participating teams the fact that a straightforward
combination of the 3 top teams yields a 0.0268 better kappa
score than the current best of 0.8993 shows that there is
still room for improvement for the individual algorithms.
Even more so when we take into account that even the best
combination only classifies 77 out of 100 patients correctly.
The errors are even worse at the slide level. The best ranked
team misclassified 67 of the 500 slides in the test set. Overall
10 slides containing micro-metastases and 4 slides containing
macro-metastases were classified as negative. That would be
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an unacceptable error in clinical practice. Although the poor
performance on ITC is not immediately relevant from a clinical
perspective, it could undermine the trust clinicians have in
such algorithms. Improving the algorithm performance in this
aspect is thus still worthwhile.

In terms of future work, the CAMELYON17 challenge
will remain open for new submissions to allow improved
algorithms to obtain better results. With respect to extending
the scope of the challenge, adding the IHC stains as an
extra layer of information is an option which would bring
the challenge even closer to clinical practice. Alternatively,
lymph nodes with metastases from other tumor entities, such
as melanoma or colon cancer could be added. From a practical
perspective, sharing 3 terabytes of data with participants
all around the world has been challenging. Increasing the
data size even further could render an expanded challenge
impractical or impossible for many to participate in. A possible
alternative would be to host the data at a single location and
provide an environment to the participants that they could
access remotely and where they could use the data to develop
their algorithms without having to download it.

Summarizing, the algorithms competing in CAME-
LYON17 have proven that it is possible to automatically ana-
lyze histopathological WSIs in a clinically relevant setting, but
can not yet be implemented without some form of supervision
by a clinical expert. In their current state the algorithms
could potentially effectively aid clinicians by pre-screening
the WSIs. The pre-screened images could steer the attention
of the pathologist to the relevant areas and ease the pN-staging
by outlining metastases in advance.
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