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Abstract

Much research work in computer vision is being spent
on optimizing existing network architectures to obtain a few
more percentage points on benchmarks. Recent AutoML
approaches promise to relieve us from this effort. How-
ever, they are mainly designed for comparatively small-
scale classification tasks. In this work, we show how to use
and extend existing AutoML techniques to efficiently opti-
mize large-scale U-Net-like encoder-decoder architectures.
In particular, we leverage gradient-based neural architec-
ture search and Bayesian optimization for hyperparameter
search. The resulting optimization does not require a large-
scale compute cluster. We show results on disparity estima-
tion that clearly outperform the manually optimized base-
line and reach state-of-the-art performance.

1. Introduction
Compared to the state of computer vision 20 years ago,

machine learning has enabled more generic methodologies
that can be applied to various tasks rather than a single toy
problem. A convolutional neural network can be trained
on all sorts of classification problems, and a convolutional
encoder-decoder network with skip connections can be set
up for a large selection of high-resolution computer vision
tasks, such as semantic segmentation, optical flow, super-
resolution, and depth estimation, to name just a few. With
this generic methodology in place, why are there more
than 5000 submissions to each computer vision conference?
What do they contribute?

In practice, the methodology is not as generic as it looks
at first glance. While a standard encoder-decoder network
may give a reasonable solution for all these problems, re-
sults can be improved significantly by tweaking the de-
tails of this design: both the detailed architecture and sev-
eral training hyperparameters, such as the learning rate and
weight decay. For example, in the context of disparity esti-
mation, manually optimizing the architecture of the original
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Figure 1: We present AutoDispNet-CSS, a disparity esti-
mation network built using state-of-the-art AutoML tech-
niques which significantly improves over the manually
tuned DispNet-CSS architecture.

DispNet [52] halved the error [37]. Other works on dispar-
ity estimation found other tweaks that also improved the ac-
curacy [44, 16, 66]. While effective, this common practice
of manual architecture and parameter search contradicts the
paradigm of machine learning, namely to replace manual
optimization by numeric optimization.

AutoML [35] in general and automated neural architec-
ture search (NAS [24]) in particular promise to relieve us
from the manual tweaking effort. In principle, an indepen-
dent validation set is enough to optimize the architecture
and the hyperparameters of the learning method. Unfortu-
nately, many of these AutoML methods have extreme com-
putational demands. For this reason, they have been mostly
applied to rather small-scale classification tasks, preferably
on CIFAR, where a single network can be fully trained
within a few hours. Even on such small tasks, some ap-
proaches report hundreds of GPU days to finish optimiza-
tion. For large-scale encoder-decoder networks, such as
DispNet, this is prohibitive.

However, there are also more efficient AutoML ap-
proaches. Although they have not yet been applied to
encoder-decoder architectures, they have the potential to do
so. One of them, on which we will build in this paper, is
DARTS [47]. Its main idea is to have a large network that



includes all architectural choices and to select the best parts
of this network by optimization. This can be relaxed to
a continuous optimization problem, which, together with
the regular network training, leads to a bilevel optimiza-
tion problem. Thanks to its gradient based optimization,
DARTS is very efficient. However, DARTS only allows the
optimization of the architecture but not the training hyper-
parameters.

For the latter, we propose to use an efficient black-box
optimization method called BOHB [26], which builds on
an efficient variant of Bayesian optimization for informed
sampling of the search space. While it is somewhat more
costly than DARTS, it is also entirely flexible with regard to
the hyperparameter search space. We suggest to run BOHB
on the architecture optimized by DARTS to train it with op-
timal hyperparameters.

We compare the optimized network to the already well-
tweaked version of DispNet [37] to investigate who is more
successful in tweaking: the student or the numerical opti-
mization procedure.

2. Related work
Encoder-decoder architectures have led to substantial

improvements in several computer vision tasks like se-
mantic segmentation [48, 59, 3, 29, 18, 19] and flow es-
timation [21, 36, 37, 56, 68]. Pioneering works which
apply learning to disparity estimation consist of extend-
ing classical methods like SGM [30] with metrics learned
by CNNs [73, 50, 62]. The first end-to-end network
for disparity estimation is DispNet [52], which builds on
FlowNetC [21]. Based on rectified stereo images, a corre-
lation layer computes a cost volume which is further pro-
cessed by the network. [37] and [54] expand DispNetC for
much better performance. The extensions consist mainly of
stacking multiple networks and connecting them in a resid-
ual fashion. These networks share the encoder-decoder ar-
chitecture. The first module, the encoder, extracts high-
level information by gradually downsampling the feature
maps while the decoder progressively produces outputs at
increasing resolutions.

To reduce the effort dedicated to designing neural net-
works, neural architecture search (NAS) has been an ac-
tive area of research in the last few years [24]. Early at-
tempts train a recurrent neural network that acts as a meta-
controller using reinforcement learning techniques [4, 81].
It learns to generate sequences encoding potential architec-
tures by exploring a predefined search space. The same
strategy is adopted in many follow-up works [6, 13, 14, 69,
78, 79, 82]. Alternatively, a set of works rely on evolution-
ary algorithms [67, 46, 53, 57, 58, 70]. The best architec-
ture is extracted by iteratively mutating a population of can-
didate architectures. Unfortunately, both strategies require
hundreds to thousands of GPU days. This restricts their use

to rather small networks, and research progress is limited
by availability of large compute clusters.

Speed-up techniques like hypernetworks, network mor-
phisms and shared weights lead to substantial reduction of
the search cost. Hypernetworks [10, 75] generate weights
for candidate networks and evaluate them without training
them until convergence. Network morphisms [12, 14, 23,
25] make use of the previous learned weights to initial-
ize new candidate architectures, thereby speeding up the
performance estimation procedure. Sharing weights [55]
among potential networks decreases the search time by two
orders of magnitude. Multi-fidelity optimization has also
been employed in NAS [5, 26, 43, 74] by exploiting par-
tial training of architectures at the cost of noisy evalua-
tions. Alternatively, some works [7, 15, 47] redesign the
optimization problem by training a large graph containing
all candidate architectures. In [7], sub-networks are prob-
abilistically sampled and trained for a predefined number
of iterations. Orthogonally, relaxations make architectural
decisions like branching patterns [1] and number of chan-
nels per layer [61] learnable via gradient descent. In case of
DARTS [47], real-valued architecture parameters are jointly
trained with weight parameters via standard gradient de-
scent. Cai et al. [15] propose an memory efficient imple-
mentation similar to DARTS by adding path binarization,
while [71] sample from a set of one-hot random variables
encoding the architecture search space and leverage the gra-
dient information for architectural updates by relaxing the
architecture distribution with a concrete distribution [51].
Despite the diversity of NAS approaches for image classi-
fication and object detection, the extension to dense pre-
diction tasks remains restricted. To apply NAS to seman-
tic segmentation, Chen et al. [17] restrict the search to the
small pyramid pooling component of the network and oc-
cupy 370 GPUs for a whole week. In a concurrent work,
Liu et al. [45] also leverage DARTS to find an optimal archi-
tecture for semantic segmentation with reduced search cost.
However, their approach does not handle skip-connections
for U-Net like architectures.

3. Hyperparameter search
Optimizing hyperparameters for dense prediction tasks

with vanilla hyperparameter optimization (HPO) [8, 9, 33,
64, 65, 27] is computationally expensive. Alternatively,
we use a state-of-the-art HPO method named BOHB [26]
which combines the benefits of Bayesian optimization [63]
and Hyperband [43], a multi-armed bandit strategy that dy-
namically allocates more resources to promising configura-
tions.

BOHB uses cheap-to-evaluate approximations f̃(·, b) of
the objective function f(·) (e.g. validation error), where the
so-called budget b ∈ [bmin, bmax] determines the strength
of the approximation. For b = bmax, we recover the true



objective, i.e. f̃(·, bmax) = f(·). In our application, we use
the number of training iterations as a budget to cut off evalu-
ations of poorly-performing hyperparameters early, akin to
approaches based on learning curve prediction [20, 5].

Hyperband repeatedly calls the Successive Halving (SH)
subroutine [38] to advance promising configurations evalu-
ated on small budgets to larger ones. SH starts by evaluat-
ing a fixed number of configurations on the cheapest bud-
get bmin. After these evaluations, the best fraction of η−1

of configurations (based on f̃(·, bmin)) advance to the next
budget η · bmin; here, η is a parameter set to 3 by default.
This procedure repeats until reaching the most expensive
budget bmax with only a few configurations left to evaluate.

While Hyperband selects configurations to evaluate
uniformly at random, BOHB replaced this choice with
Bayesian optimization. Specifically, it employs a multivari-
ate kernel density estimator (KDE) to model the densities
of the best and worst performing configurations and uses
these KDEs to select promising points in the hyperparam-
eter space to evaluate next. More details about BOHB are
included in the supplementary material.

4. Differential architecture search
While BOHB can, in principle, also be used to optimize

architectural parameters [74, 60], its performance degrades
compared to gradient-based approaches as the dimensional-
ity of the search space grows. BOHB also evaluates differ-
ent architectures from scratch rather than exploiting weight
sharing, increasing the computational burden for neural ar-
chitecture search of large-scale vision architectures to a pro-
hibitive range.

Therefore, we tackle the neural architecture search not
with BOHB, but rather use the gradient-based method
DARTS [47]. It combines weight sharing and first order
optimization to speed up the architecture optimization by
orders of magnitude compared to brute-force blackbox op-
timization methods, which can require thousands of GPU
days [57, 82]. We propose to leave the costly architecture
search to DARTS and then optimize important other hyper-
parameters that cannot be integrated into DARTS by BOHB
in a post-hoc step.

We review the components of the DARTS approach be-
fore we adapt DARTS to the context of full encoder-decoder
architectures in Section 5.

4.1. Search space

Similar to other architecture search methods [46, 57, 82],
DARTS optimizes relatively small, repetitive parts of the
network architecture called cells. Learned cells are stacked
to generate the overall network architecture in a user defined
fashion.

A cell is a directed acyclic graph (DAG) consisting of
N nodes. The nodes can be categorized into input, inter-

mediate, and output nodes. Each node x(i) represents a
feature map and each edge (i, j) represents an operation
o(i,j) which transforms x(i). DARTS assumes a cell to have
two input nodes and one output node. The input nodes are
the outputs of the two previous cells. The output node is
obtained by concatenating the outputs of all intermediate
nodes. The output of each intermediate node is computed
as:

x(j) =
∑
i<j

o(i,j)(x(i)) (1)

where o(i,j) ∈ O. O is the set of all candidate operations.
In DARTS, O consists of the following operations: skip

connection, 3×3 average pooling, 3×3 max pooling, 3×3
and 5×5 depthwise separable convolutions, 3×3 and 5×5 di-
lated separable convolutions with dilation factor 2. It also
includes a special ”zero” operation to indicate lack of con-
nectivity between nodes.

For classification tasks there are two cell types: a normal
cell with maintains the spatial resolution of the input and a
reduction cell which reduces the spatial resolution of the in-
put by half. The structure of standard DARTS cell is shown
in Figure 2a.

4.2. Continuous relaxation

To make the search space continuous, DARTS uses re-
laxation based on the softmax function. A variable α(i,j)

o ∈
R is associated with each operation o ∈ O in the edge (i, j)
connecting nodes i and j. The categorical choices in each
edge (i, j) are then relaxed by applying the softmax nonlin-
earity over the α(i,j)

o for all possible operations o ∈ O:

S(i,j)
o =

exp(αi,jo )∑
o′∈O exp(αi,jo′ )

(2)

We set ō(i,j) =
∑
o∈O S

(i,j)
o o

(
x(i)
)
. This weighted aver-

age of
(
x(i)
)

is called ”mixed operation” in the remainder
of this work. Therefore, (1) becomes:

x(j) =
∑
i<j

ō(i,j)(x(i)) (3)

With this relaxation in place, the task of architecture search
is equivalent to learning the set of continuous variables α =
{α(i,j)}, where α(i,j) is a vector of dimension |O|.

4.3. Optimization

Since the continuous relaxation makes the set of archi-
tecture variables α differentiable, we can efficiently opti-
mize them using gradient descent. DARTS [47] proposed a
first order and second order approximation. In this work, we
focus on the first order approximation as the second order
approximation is too costly for large architectures.
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Figure 2: Structure of search cells. In Figure 2a we show the structure of a normal or reduction cell. An upsampling cell is
shown in Figure 2b. In both cases, input nodes are green, intermediate nodes are blue, output nodes are yellow. Upsampling
nodes are marked as orange. A blue edge represents transformations done using mixed operations (see Section 4.2 for more
details).

To solve the bilevel optimization problem, the training
data is split into two disjoint subsets Dtrain and Dval. The
network parametersw and architecture parameters α are op-
timized in an alternating fashion on Dtrain and Dval, respec-
tively, until convergence. The optimization is carried out on
a search network built using stacked normal and reduction
cells.

4.4. Architecture discretization

After training the search network to convergence, a cell
structure is extracted by discretizing the continuous vari-
ables. This is achieved by retaining the top-k strongest op-
erations from all non-zero operations coming from previous
nodes. The strength of an edge (i, j) is set to:

max
o∈O,o6=zero

S(i,j)
o (4)

The extracted cells are then stacked to form a deeper net-
work and retrained for evaluation.

5. DARTS for dense prediction
Dense prediction tasks involve mapping a feature rep-

resentation in the encoder to predictions of larger spatial
resolution using a decoder. Therefore, to apply DARTS
for disparity estimation we need to extend the architecture
search space such that it can support an upsampling trans-
formation. This extension of the search space should be ex-
pressive enough to encompass common deep learning best-
practices and at the same time have enough flexibility to
learn new upsampling transformations. In this section, we
describe our search space and then present a search network
which allows us to learn architectural cells for encoder-
decoder networks.

Upsampling layers. Typically, the decoder unit of
encoder-decoder networks [52, 21, 59] consists of upsam-
pling layers which increase the spatial resolution. The most

commonly used upsampling layers are transposed convolu-
tions. Another common approach is to use billinear inter-
polation for upsampling followed by convolutional opera-
tions. A decoder usually has multiple decoding stages, each
of which increases the spatial resolution by a factor of 2.
The number of stages depends on the downsampling factor
of the encoder.

Skip connections and multi-scale refinement. Skip
connections were introduced in encoder-decoder networks
by [48]. They help preserve fine details in the predictions.
This is achieved by concatenating the upsampled features
with a feature map of the same resolution from the encoder.
A coarser prediction (from the previous decoding stage),
if available, is also concatenated to facilitate feature reuse.
The concatenated features are then processed by convolu-
tions to generate refined predictions. These techniques are
standard for encoder-decoder networks for flow and dispar-
ity estimation [52, 21].

Upsampling cell. Several hand-designed encoder-
decoder architectures have emerged [2, 28, 77, 80] which
incorporate the above architecture design choices. Typi-
cally such methods propose decoding modules which apply
architectural blocks (ShuffleNet [76], DenseNet [32] block,
etc). However, the generic design choice of having skip
connections and multi-scale refinement still remains use-
ful in such cases. In this work, we replace such an ar-
chitectural block in the decoder by a learned upsampling
cell. The same DAG-based formulation for normal and re-
duction cells (see Section 4.1), can be used to define an
upsampling cell. Our upsampling cell has four inputs :
Ik−1, Ik−2,I predk−1 and Iskip. The inputs Ik−1, Ik−2
are the outputs of the last two preceding cells, I predk−1
represents a prediction from the previous decoding stage
and Iskip represents a feature map in the encoder obtained
via skip connection. The inputs Ik−1, Ik−2 are upsampled
by transposed convolutions whereas the input I predk−1
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Figure 3: Dense-DARTS for disparity estimation. The search network used to learn cells for disparity estimation is shown
in Figure 3a. Three types for cells are learned: normal, reduction and upsampling. The stem cells are simple convolutional
layers with a fixed structure. It also contains a correlation layer like a standard DispNetC [52]. Skip connections from encoder
to decoder are denoted by the dashed lines. After training, the three cell structures are extracted as described in Section 4.4.
Using the extracted cells, a final network (Figure 3b) is assembled using the CSS structure introduced in [37].

is upsampled by bilinear interpolation (following [37]). A
schematic of the upsampling cell is shown in Figure 2b. The
intermediate nodes in the upsampling cells process all in-
puts via mixed operations. To be consistent, we use the
same set of operations for a mixed operation as DARTS (see
Section 4.1). The outputs of all intermediate nodes are con-
catenated to form the output of the cell, which is then pro-
cessed by a 2D convolution to get an upsampled disparity
prediction.

Search Network. Compared to standard DARTS which
is trained on CIFAR10 [41] with 32×32 images, train-
ing datasets for disparity estimation [52] consist of images
which are about 500 times larger in terms of pixel amount.
Therefore, to feasibly train a search network on a single
GPU (Nvidia GTX1080Ti), we downsample the training
images by half. Ground truth disparity values are addition-
ally rescaled by a factor of 0.5. The encoder part of the
search network begins with a stem cell followed by stacked
reduction and normal cells. The stem cell consists of two
standard convolutional layers with kernel sizes 7×7 and 5×5
and stride 2 which further downsample the input. Similar to
the DispNetC architecture [52, 37], the stem cell and the
first reduction cell compose the Siamese part of the encoder
which extract features from the left and right rectified stereo
view. The extracted features are processed by a correlation
layer [21]. The correlation layer performs patch comparison
between the two feature maps obtained from the Siamese
part of the network. Such explicit feature matching helps in
significant error reduction [52]. The rest of the encoder is

formed by stacking normal and reduction cells in an alter-
nating fashion. The decoder consists of stacked upsampling
cells with skip connections to the encoder. The encoder has
a total of 6 cells (normal + reduction) with a final down-
sampling factor of 32. The decoder consists of three up-
sampling cells which output predictions at different spatial
resolutions. We pre-define each cell to have three interme-
diate nodes and initialize the first cell to have 24 channels.
Each reduction cell then increases number of channels by
a factor of 2. In the decoder, an upsampling cell reduces
the number of channels by half with each upsampling step.
An illustration of our search network is shown in Figure 3a.
For training the search network, we optimize the end-point-
error (EPE) [21, 52] between the predicted and ground truth
disparity maps. A loss term is added for each prediction af-
ter an upsampling step. The losses are optimized using the
first-order approximation of DARTS as described in Section
4.3. We refer to our search network as Dense-DARTS.

6. Architectures
After training Dense-DARTS, we extract a normal, a re-

duction, and an upsampling cell as described in Section 4.4.
A schematic of the extraction process is shown in Figure 3a.
A network needs to be built using the extracted cells before
it can be trained for final evaluation. In this section we intro-
duce our baseline architecture and present network variants
we consider for evaluation.

Baseline architecture. For a strong baseline we
choose a recent state-of-the-art disparity estimation net-



work, DispNet-CSS [37], which is an improved version of
the original DispNet [52] manually optimized by an expert.
It consists of a stack of three networks, consisting of one
DispNet-C [52] and two DispNet-S [52].

Single network. To compare the performance of the ex-
tracted cells, we first build a single network for comparison
with the first network in the DispNet-CSS stack. In each
network the encoder downsamples the input by a factor of
64 and the output resolution of the decoder is one-fourth of
the input resolution. For a fair comparison, we use seven
encoder cells and four decoder cells to get the same reso-
lutions at the bottleneck and the final layer. This network
is constructed in the same fashion as the search network,
as described in Section 5, but with the extracted cells. The
number of channels for the first cell (Cinit) is set to 42, to
match the number of parameters in DispNet-C. We call this
network AutoDispNet-C.

Refinement with stacks. Using the same configura-
tions as AutoDispNet-C, we construct the AutoDispNet-S
architecture by replacing the Siamese part and correlation
layer with a single stream of cells. In a stacked setting, the
AutoDispNet-S network refines a disparity map from the
previous network. Similar to [37], the input to the refine-
ment network is a concatenation of warped image, previous
disparity prediction and the rectified image pair. The first
network provides an initial disparity estimate. Each follow-
ing network in the stack refines the previous network’s out-
put by predicting the residual disparity. The residual dis-
parity is added to the previous network’s output to obtain a
refined estimate. We denote a stacked AutoDispNet-C and
two AutoDispNet-S as AutoDispNet-CSS. The full network
stack is shown in Figure 3b.

Smaller networks. We also experiment with different
values of Cinit to obtain AutoDispNet architectures with
different numbers of parameters. We choose a smaller vari-
ant with Cinit = 18 for comparison with our baseline. This
configuration is denoted as AutoDispNet-css with a lower-
case ”c” and ”s”.

BOHB variants. We also use BOHB to tune the learning
rate and weight decay of AutoDispNet architectures. We
denote networks of this category by AutoDispNet-BOHB-
(∗), where (∗) stands for C, CS or CSS. Details about train-
ing settings are mention in Section 7.1.

7. Experiments

7.1. Experimental setting

Datasets. For training our search network we use
the standard FlyingThings3D [52] dataset which provides
ground truth disparity maps generated using rendered
scenes. The dataset consists of train and test splits with
21, 818 and 4, 248 samples respectively. Each sample has
a spatial resolution of 960×540.

Training Dense-DARTS. Following [47], we divide the
train split of FlyingThings into two halves. The first and
second halves are used to optimize the train and valida-
tion losses respectively. The test split is left untouched to
evaluate the extracted architectures at a later stage. We use
the same data augmentation settings as commonly used for
training DispNet [52, 37]. The search network is trained by
minimizing the end point error as described in Section 5.
The train loss is optimized using SGD with base learning
rate of 0.025 and annealing to 0.001 using the cosine sched-
ule [49]. To optimize the validation loss, we use the Adam
optimizer [40] with a base learning rate of 1e − 4. We add
L2 regularization on the weight parameters w and architec-
ture parameters α with factors of 3e− 4 and 1e− 3 respec-
tively. Before optimizing w and α alternatingly, we warm
start the search network by optimizing only w for 100k iter-
ations. After the warm-start phase we optimize both w and
α for 200k iterations. We also found that annealing the soft-
max temperature for the mixed operation leads to slightly
better results.

The extracted cells after training the search network
are shown in Figure 4. Note that the search process dis-
cards all pooling operations. We also see that normal
and upsampling cells (which process feature maps at the
same or higher spatial resolution) include dilated convo-
lutions, whereas the reduction cell (which downsamples
feature maps) consists only of separable convolutions and
some skip connections. This observation is in agreement
with common usage patterns of operations for dense pre-
diction. For instance, state-of-the art disparity estimation
methods [44, 37, 68] are fully convolutional and do not con-
tain any pooling operations. Dilated convolutions have been
extensively used to obtain state-of-the art results for seman-
tic segmentation [18, 19].

Training AutoDispNet architectures. For training the
AutoDispNet-CSS stack we follow the same training pro-
cedure as our baseline architecture [37]. For training
each refinement network, all previous network weights are
frozen [37]. Each network is trained for 600k iterations us-
ing the Adam [40] optimizer with a base learning rate of
1e − 4. The learning rate is dropped at 300k, 400k, 500k
with a factor of 0.5.

Hyperparameter tuning with BOHB. For
AutoDispNet-C we optimize the learning rate and
weight decay coefficient. Each function evaluation in
BOHB involves training a network with hyperparameters
sampled from a configuration space and evaluating it
on a validation set. In this case, we use the test split of
FlyingThings3D for validation and use Sintel as a test
set. For small classification networks this usually works
because training takes only a few hours. However, in our
case training is expensive. Training a single network in the
stack takes around 3.5 days on a single Nvidia GTX1080Ti
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Figure 4: Learned cells using Dense-DARTS. We visualize the extracted DAG for each cell type. Ik−1 and Ik−2 denote the
two input nodes and Ok is the output node. The numbered blue nodes depict intermediate nodes, where numbers indicate the
depth at which the node was placed in the DAG before extraction.
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Figure 5: Hyperparameter optimization procedure.
AutoDispNet-C EPE on FlyingThings3D of all sampled
configurations on the different budgets throughout the
BOHB optimization procedure. The black line shows the
best performing configurations (incumbent) as a function
of time. Note that the value on the x axis is the time when
each evaluation finished relative to the BOHB start time,
and not the training time per network.

GPU. Therefore, to make our function evaluations cheaper,
we optimize the learning rate and weight decay for a
restart schedule [49]. Specifically, we take a snapshot
of the network after 450k iterations and restart training
with a learning rate sampled by BOHB. The learning rate
is annealed to zero at 16.67k, 50k and 150k iterations
(depending on which of these budgets BOHB evaluates
the sampled configurations) following a cosine function
[49]. This reduces the training cost by a factor of four. The
optimized hyperparameter are then used to restart training
for successive networks in the stack. We found that using
BOHB to tune hyperparameters for the refinement network
did not boost performance (we include experimental results
in the supplemental).

We ran BOHB in parallel on 5 GPU workers for a total
number of 11 SuccessiveHalving iterations. We used the
default BOHB settings with η = 3 and budgets 16.67k, 50k

and 150k mini-batch iterations. This is equivalent to 26 full
function evaluations on 1 worker, i.e a total of 33.42 GPU
days. Figure 5 shows the EPE of all sampled configurations
throughout the optimization procedure. As we can see, for
the budgets of 16.67k and 50k iterations we do not notice
any major improvement over time. However, for the max-
imum number of iterations we observe that BOHB finds a
good region in the hyperparameter space and keeps sam-
pling around that area.

7.2. Results

Architecture FlyingThings3D Sintel Params FLOPs
(test) (train) (M) (B)

DispNet-C [37] 1.67 3.19 38 75
AutoDispNet-c 1.98 3.53 7 16
AutoDispNet-C 1.53 2.85 37 61
AutoDispNet-BOHB-C (1.51) 2.66 37 61

Table 1: Performance of a single network. We demonstrate
improved accuracy of our AutoDispNetC architecture over
our baseline DispNetC. End-point errors are shown on the
FlyingThings3D and Sintel datasets. The best performance
is obtained by optimizing the hyperparameters with BOHB.
The parentheses indicate that FlyingThings3D test split is
used to optimize hyperparameters.

Single network results. Table 1 shows the result of
the automatically optimized DispNet relative to the base-
line. AutoDispNet yields significantly stronger numbers
with about the same number of parameters. Additional hy-
perparameter optimization with BOHB yields another im-
provement on the Sintel dataset [11]. It is worth noting that
the networks were only trained and optimized on the Fly-
ingThings3D dataset, but not on any part of Sintel. This
shows that the automated optimization not only overfits bet-
ter to a particular dataset but improves the general capability
of the network.

Stacked network results. For state-of-the-art perfor-
mance on disparity estimation, it is necessary to stack mul-
tiple networks. Table 2 shows that the benefits of automated



Number of Networks
1 2 3

DispNet C CS CSS
EPE 3.19 2.49 2.36
Params 38 77 116
FLOPS 75 135 195

AutoDispNet c cs css
EPE 3.53 2.80 2.54
Params 7 14 21
FLOPS 16 30 44

AutoDispNet C CS CSS
EPE 2.85 2.30 2.14
Params 37 74 111
FLOPS 61 110 160

AutoDispNet-BOHB C CS CSS
EPE 2.66 2.14 1.97
Params 37 74 111
FLOPS 61 110 160

Table 2: Performance across the stack. We show improved
performance of AutoDispNet architectures across the net-
work stack. End point errors are reported for the Sin-
tel dataset. AutoDispNet-CS matches the baseline perfor-
mance of three networks with only a single refinement net-
work. The AutoDispNet-BOHB-CS variant outperforms
the three network baseline in the second network itself.

optimization also carry over to the large stacked networks.
There is a significant improvement with both the architec-
ture optimization and the hyperparameter optimization. The
results also reveal that a stack of two networks is already
more accurate than a stack of three networks with the base-
line. Also the small version of AutoDispNet-css is compet-
itive with DispNet-CS, but runs with 3 times less FLOPS.

Comparison to the state of the art. Although we con-
sidered only a limited set of published architectural choices
for AutoDispNet, Table 3 reveals that it is competitive with
the state of the art on the common public benchmarks. Only
PSMNet with its coarse-to-fine strategy performs better on
KITTI 2012, but worse on KITTI 2015.

7.3. Applicability to other tasks

We also tested our approach on single view depth estima-
tion, another dense prediction task and compare with Laina
et al. [42], a state-of-the art single view depth estimation
method. The results are shown in Table 4. On SUN3D we
obtain an improvement over the baseline, however the re-
sults on NYU dataset are slightly worse. For more details
please see the supplement.

8. Conclusion
AutoDispNet extends efficient neural architecture search

to large-scale dense prediction tasks, in particular U-Net-
like architectures. It also leverages hyperparameter tun-
ing by running BOHB on the selected architecture. Re-

Method Sintel KITTI KITTI
(clean) (2012) (2015)
AEE AEE Out-noc AEE D1-all
train train test train test

Others
SGM [31] 19.62 10.06 - 7.21 10.86%
DispNet-CSS [37] 2.33 1.40 - 1.37 -
DispNet-CSS-ft [37] 5.53 (0.72) 1.82% (0.71) 2.19%
iResNet-i2 [44] - - 1.71% - -
EdgeStereo[66] - - - - 2.16%
PSMNet [16] - - 1.49% - 2.32%
GC-Net [39] - - 1.77% - 2.87%
SegStereo [72] - - 1.68% - 2.25%

Ours
AutoDispNet-css 2.53 1.03 - 1.19 -
AutoDispNet-CSS 2.14 0.93 - 1.14 -
AutoDispNet-BOHB-CSS 1.97 0.94 - 1.15 -
AutoDispNet-BOHB-CSS-ft 10.55 (0.45) 1.70% (0.50) 2.18%

Table 3: Benchmark results. We compare performance
of our networks on Sintel and KITTI datasets. For Sintel
and KITTI train sets, we report the average end-point error
(AEE). Out-noc and D1-all are metrics used to rank meth-
ods on the KITTI’12 and KITTI’15 leader boards. Out-noc
is the percentage of outliers exceeding an error threshold of
3px. D1-all is the same metric but applied on all regions
(occ and non-occ). Entries enclosed by parentheses indi-
cate if they were finetuned for the evaluated dataset. On
KITTI’15 we are comparable to our baseline. On KITTI’12
we outperform the baseline with a significant margin.

Method Params Abs. rel Sqr. rel Rmse Rmse (log)
SUN3D
Laina et al. [42] 63M 0.272 0.248 0.703 0.500
AutoDepth-S 63M 0.234 0.202 0.602 0.453
AutoDepth-s 38M 0.234 0.210 0.614 0.518
NYU-Depth-V2
Laina et al. [42] 63M 0.127 - 0.573 0.195
AutoDepth-BOHB-S 63M 0.170 0.141 0.599 0.216

Table 4: Results on single view depth estimation. Auto-
Depth represents a network found using Dense-DARTS.
(For details about the metrics see [22])

sults show that this sort of optimization leads to substan-
tial improvements over a manually optimized baseline and
reaches state-of-the-art performance on the well-optimized
task of disparity estimation. This optimization did not re-
quire a huge compute center but was run on common com-
pute hardware, i.e., it can be run by everybody. The total
time taken to obtain the AutoDispNet-BOHB-CSS archi-
tecture is approximately 42 GPU days.
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[9] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and
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10–15 Jul 2018. PMLR. 2, 14

[27] Matthias Feurer and Frank Hutter. Hyperparameter opti-
mization. In Frank Hutter, Lars Kotthoff, and Joaquin Van-
schoren, editors, AutoML: Methods, Sytems, Challenges,
chapter 1, pages 3–37. Springer, Dec. 2018. 2

[28] Mostafa Gamal, Mennatullah Siam, and Moemen Abdel-
Razek. Shuffleseg: Real-time semantic segmentation net-
work. CoRR, abs/1803.03816, 2018. 4

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Spatial pyramid pooling in deep convolutional networks for
visual recognition. In ECCV (3), volume 8691 of Lecture
Notes in Computer Science, pages 346–361. Springer, 2014.
2

[30] Heiko Hirschmuller. Stereo processing by semiglobal match-
ing and mutual information. IEEE Trans. Pattern Anal.
Mach. Intell., 30(2), Feb. 2008. 2

[31] Heiko Hirschmüller. Stereo processing by semiglobal match-
ing and mutual information. PAMI, 30(2):328–341, 2008. 8

[32] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017. 4

[33] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An
evaluation of sequential model-based optimization for ex-
pensive blackbox functions. In Proceedings of GECCO-
13 Workshop on Blackbox Optimization Benchmarking
(BBOB’13), July 2013. 2

[34] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An
efficient approach for assessing hyperparameter importance.
In Eric P. Xing and Tony Jebara, editors, Proceedings of
the 31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Research,
pages 754–762, Bejing, China, 22–24 Jun 2014. PMLR. 15

[35] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, ed-
itors. Automatic Machine Learning: Methods, Systems,
Challenges. Springer, 2018. In press, available at
http://automl.org/book. 1, 9

[36] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keu-
per, Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0:
Evolution of optical flow estimation with deep networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017. 2, 13

[37] Eddy Ilg, Tonmoy Saikia, Margret Keuper, and Thomas
Brox. Occlusions, motion and depth boundaries with a
generic network for disparity, optical flow or scene flow
estimation. In European Conference on Computer Vision
(ECCV), 2018. 1, 2, 5, 6, 7, 8

[38] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best
arm identification and hyperparameter optimization. In
Arthur Gretton and Christian C. Robert, editors, Proceed-
ings of the 19th International Conference on Artificial In-

telligence and Statistics, volume 51 of Proceedings of Ma-
chine Learning Research, pages 240–248, Cadiz, Spain, 09–
11 May 2016. PMLR. 3, 14

[39] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter
Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.
End-to-end learning of geometry and context for deep stereo
regression. In Proceedings of the International Conference
on Computer Vision (ICCV), 2017. 8

[40] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations, 2015. 6

[41] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009. 5

[42] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-
erico Tombari, and Nassir Navab. Deeper depth prediction
with fully convolutional residual networks. In 3D Vision
(3DV), pages 239–248, 2016. 8, 14

[43] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimiza-
tion. Journal of Machine Learning Research, 18:1–52, 04
2018. 2, 14

[44] Zhengfa Liang, Yiliu Feng, Yulan Guo, Hengzhu Liu, Wei
Chen, Linbo Qiao, Li Zhou, and Jianfeng Zhang. Learning
for disparity estimation through feature constancy. 2018. 1,
6, 8

[45] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan Yuille, and Li Fei-Fei. Auto-deeplab:
Hierarchical neural architecture search for semantic image
segmentation. In CVPR, 2019. 2

[46] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha
Fernando, and Koray Kavukcuoglu. Hierarchical representa-
tions for efficient architecture search. In International Con-
ference on Learning Representations, 2018. 2, 3

[47] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 1, 2, 3, 6, 13

[48] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, pages 3431–3440. IEEE Computer Society, 2015. 2,
4

[49] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradi-
ent descent with warm restarts. In International Conference
on Learning Representations (ICLR) 2017 Conference Track,
Apr. 2017. 6, 7

[50] Wenjie Luo, Alexander G. Schwing, and Raquel Urtasun. Ef-
ficient deep learning for stereo matching. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 5695–
5703, 2016. 2

[51] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The
Concrete Distribution: A Continuous Relaxation of Discrete
Random Variables. In International Conference on Learning
Representations, 2017. 2

[52] Nikolaus Mayer, Eddy Ilg, Philip Häusser, Philipp Fischer,
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Figure S1: Learning curve comparison. We compare
the learning curve of AutoDispNet-C with the baseline
DispNet-C and an architecture built with random cells sam-
pled from our search space (denoted by Random). The evo-
lution of EPE over number of iterations is shown for the
FlyingThings3D dataset (test split).

1. Learning curves
Figure S1 shows the learning curve (evolution of EPE

over number of iterations) of AutoDispNet-C. In addition
to the baseline (DispNet-C), we also compare the learning
curve of a random cell architecture. We randomly sample
cells from the search space and stack them in the same fash-
ion as AutoDispNet-C (see section 6 of main paper). We
sample four times and build four different random archi-
tectures. After training, we pick the best random archi-
tecture based on the validation performance on FlyingTh-
ings3D. All networks are trained using the same settings
as the baseline. Learning curve of the best random architec-
ture is shown in Figure S1. We observe that AutoDispNet-C
clearly outperforms the random architecture and the base-
line. We also observe that the random architecture is com-
parable to the baseline. Our observation is similar to Liu et
al. [47] on classification, where they also report a surpris-
ingly strong performance for random architectures.

2. Performance of smaller networks
We train networks of reduced capacities for both

AutoDispNet-C and DispNet-C architectures. For DispNet-
C smaller networks are obtained by multiplying the number
of channels for each layer by fixed factor (similar to [36]).
Smaller variants of AutoDispNet-C are obtained by reduc-

ing the number of channels (Cinit) for the first cell. A
comparison of EPE vs number of parameters and EPE vs
FLOPS is shown in Figure S2.

3. Optimizing the refinement network

Network stack EPE
C S (Sintel)

Dense-DARTS reuse cells 2.30
Dense-DARTS Dense-DARTS 2.32

Dense-DARTS + BOHB reuse cells + hyperparams 2.14
Dense-DARTS + BOHB reuse cells + BOHB 2.16

Table S1: We show the results of optimizing cells and hy-
perparameters of the refinement network in a stack contain-
ing two networks (AutoDispNet C and S). First row shows
a network where cells for the first network are learned us-
ing Dense-DARTS and the refinement network reuses these
cells. In the second row, we learn new cell structures of the
refinement network using Dense-DARTS. In the third row,
we learn cells for the first network and tune the hyperpa-
rameters using BOHB. In this case, the refinement network
reuses both cells and hyperparameters. In the fourth row,
we learn new hyperparameters for the refinement network
using BOHB but still use the same cell structures as the first
network.

In a stacked setting, the refinement network predicts the
residual for correcting errors in predictions from the pre-
vious network. Since this task is different from predict-
ing disparity from scratch, we trained a search network to
learn specialized cells for the refinement task. However,
we found that learning cells for the refinement network did
not improve performance over reusing cells learned for the
first network. The same argument can also be made for op-
timizing hyperparameters of the refinement network using
BOHB. Surprisingly, even BOHB did not yield improve-
ments over reusing hyperparameters learned for the first net-
work. We show our experimental results in Table S1. We
conjecture that the refinement task is much simpler than es-
timating disparity from scratch and optimizing cells or hy-
perparameters is trivial in this case.

4. Finetuning on the KITTI dataset
For finetuning on KITTI, we optimize the learning rate

and weight decay coefficient using BOHB for the first net-
work in the stack. For running BOHB, we take all samples
from KITTI’12 and KITTI’15 datasets and use 70% of the
mixture for training. The remaining 30% of the samples are
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Figure S2: Performance of smaller networks. We compare the test performance of smaller DispNet and AutoDispNet ar-
chitectures. In Figure S2a, we see that AutoDispNet architectures have a lower error with reduced number of parameters
compared to the baseline. A similar trend is observed on comparing the EPE with respect to FLOPS ( Figure S2b).
The EPE is shown for the Sintel dataset.

used for validation. We ran BOHB in parallel on 5 GPU
workers for a total number of 10 SuccessiveHalving itera-
tions. We used the default BOHB settings with η = 3 and
budgets 10k, 30k and 90k mini-batch iterations. For each
budget the learning rate is annealed to zero using a cosine
schedule. Figure S3 shows the EPE of all sampled config-
urations throughout the optimization procedure. The opti-
mized hyperparameters are then used to finetune the suc-
cessive networks in the stack. For the last network, we add
two more decoding stages to go to full resolution. Here,
we use transposed convolutions instead of upsampling cells
because applying the cell structure at higher resolutions be-
comes computationally expensive.

5. Single view depth estimation
To evaluate on single view depth estimation, we used the

proposed extension of DARTS and compare our results with
the competitive method by Laina et al. [42], which uses a
ResNet based encoder-decoder with hand-designed upsam-
pling blocks. For a fair comparison, we evaluated both
architectures by training them on a subset of the SUN3D
dataset using the same hyperparameters and loss function.
Please note that in this setting, the siamese part of the net-
work is replaced with a single stream. The extracted ar-
chitecture is then fine-tuned on ∼10, 000 samples from the
NYU train dataset using BOHB (optimizing the learning
rate and weight decay).

6. More details on BOHB
BOHB [26] combines Bayesian Optimization (BO) and

Hyperband (HB) [43] in order to exhibit strong anytime and
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Figure S3: Hyperparameter optimization on KITTI.
AutoDispNet-C EPE of all sampled configurations on the
different budgets throughout the BOHB optimization pro-
cedure. The black line shows the best performing configu-
rations (incumbent) as a function of time.

final performance. BOHB follows the same strategy as HB
to allocate resources to configurations calling the Succes-
siveHalving (SH) [38] subroutine repeatedly on its inner
loop. Refer to Algorithm 1 for a pseudo-code for Hyper-
band.

On the outerloop HB samples uniformly N random con-
figurations from the hyperparameter search space (lines 3-
4). Afterwards, SH evaluates these N configurations (line
7) on the smallest available budget for this outerloop itera-
tion (line 5) and advances the best 1/η performing config-
urations (line 8) to evaluate on a higher budget (increased



Algorithm 1: Hyperband pseudocode
input : min/max budgets bmin, bmax, η

1 smax = blogη bmax

bmin
c;

// Begin HB outerloop
2 for s ∈ {smax, smax − 1, ..., 0} do
3 N = d smax+1

s+1
· ηse;

4 sample N configurations C = {c1, c2, ..., cN};
// Initial budget for SH

5 b = η−s · bmax;
// Start SH innerloop

6 while b ≤ bmax do
// Evaluate all configurations in C

for the given budget

7 L = {f̃(c, b)|c ∈ C};
// Keep only the best b|C/η|c ones

8 C = top k(C,L, b|C/η|c);
// Increase budget by a factor of η

9 b = η · b;
10 end
11 end

by a factor of η; line 9). This process goes on until the
maximum available budget is reached (line 6). As an exam-
ple, suppose SH starts with a maximum N = 27 number of
sampled hyperparameter configurations for training a neu-
ral network with a minimum budget of bmin = 1 epoch
(first SH innerloop in Figure S4). With an η = 3 the next
iteration of SH would start the best N/η = 9 configura-
tions evaluated on some validation set with the second bud-
get η · bmin = 3 epochs. This will continue until only one
configuration is evaluated for bmax = 27 epochs.

In order to account for the very aggressive evaluations
with many configurations on the smallest budget (as done in
the first SH innerloop), HB resets SH to start with a smaller
degree of aggressiveness, i.e. evaluating the new sampled
configurations on a larger initial budget (lines 3-5 in Algo-
rithm 1; illustrated in the second innerloop of Figure S4).
Nevertheless, the number of configurations N sampled in
every HB outerloop iteration (line 3 in Algorithm 1) is cho-
sen such that the same total budget is assigned to each SH
run.

Even though BOHB relies on HB to balance the number
of configurations it evaluates and the resources assigned to
each configuration, it replaces the random sampling in line
3 of Algorithm 1 by a model-based sampling, where the
model is build by the configurations evaluated so far. The
strong final performance of BOHB arises from the model-
based guided search, which effectively focuses more atten-
tion to regions in space where good configurations lie.

7. Hyperparameter importance
In order to assess the importance of hyperparameters

over the whole search space we analyze our BOHB re-
sults using functional analysis of variance (fANOVA; [34]).
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Figure S4: Hyperband inner and outer loops. Hyperband
runs SuccessiveHalving on its inner loop with a initial bud-
get and number of starting configurations determined on its
outer loop such that the total budget in every Successive-
Halving run is the same.

This method allows us to quantify how much of the per-
formance variance in the configuration space is explained
by single hyperparameters, by marginalizing performances
over all possible values that other hyperparameters could
have taken. These estimates stem from a random forest
model fit on all configurations evaluated on specific budgets
during the BOHB optimization procedure.

For the hyperparameter optimization conducted on the
FlyingThings3D dataset we observe from Figure S5 that the
learning rate remains much more important than the weight
decay across the first two budgets (16k and 50k iterations).
For the highest budget of 150k iterations, the importance
of the weight decay hyperparameter becomes larger, how-
ever it is still dominated by the learning rate. Notice the
optimal value that BOHB determines for each hyperparam-
eter in our space (gray dashed line in Figure S5). Inter-
estingly, for smaller budgets (i.e. less training iterations)
AutoDispNet-C models trained with a small learning rate
and high weight decay value (this has a small importance
though) perform better on average. As the budget increases
the a higher learning rate and a smaller weight decay value
are preferred.

We observe similar results when optimizing the learn-
ing rate and weight decay for AutoDispNet-C on the KITTI
dataset. From the plots in Figure S6 we can see that the
learning rate has a higher contribution to the total perfor-
mance variance throughout all budgets compared to weight
decay. However, the optimal values for these two hyper-
parameters, as determined by BOHB, remain unchanged
across these budgets.
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Figure S5: fANOVA plots for all the budgets we run BOHB on the FlyingThings3D dataset. The solid blue line represents
the estimated mean EPE (+/- 1std shown by red shaded areas) as a function of hyperparameters as modelled by the random
forest we fit to the observations. The importance on top of each plot indicates the fraction of the total variance explained by
the individual choice, while the dashed gray line the optimal value as determined by BOHB.
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Figure S6: fANOVA plots for all the budgets we run BOHB on the KITTI dataset. The solid blue line represents the estimated
mean EPE (+/- 1std shown by red shaded areas) as a function of hyperparameters as modelled by the random forest we fit to
the observations. The importance on top of each plot indicates the fraction of the total variance explained by the individual
choice, while the dashed gray line the optimal value as determined by BOHB.


