Towards Assessing the Impact of Bayesian Optimization's own Hyperparameters

Marius Lindauer, Matthias Feurer, <u>Katharina Eggensperger</u>, André Biedenkapp & Frank Hutter

1 Hyperparameter optimization is crucial to achieve peak performance!

Lindauer, Feurer, Eggensperger, Biedenkapp and Hutter Bayesian Optimization's Own Hyperparameters

DSO@JJCAI 2019

2

- 1 Hyperparameter optimization is crucial to achieve peak performance!
- 2 Bayesian optimization is a successful approach for that!

Quick Recap on Bayesian Optimization

FREIBURG

Related Work

Bayesian optimization can be improved with:

- Changing transformations of the target function²
- Changing its **initial design**^{2,4}
- Tuning the model on- and offline^{1,3}
- Changing the **acquisition function**^{4,5}

[1] G. Malkomes and R. Garnett. Automating Bayesian optimization with Bayesian optimization. NeurIPS 2018
[2] D. Jones et al. Efficient global optimization of expensive black box functions. JGO 1998
[3] J. Snoek et al. Scalable Bayesian optimization using deep neural networks. ICML 2015
[4] D. Brockhoff et al. The impact of initial designs on the performance of matsumoto on the noiseless BBOB-2015 testbed: A preliminary study. GECCO 2015
[4] V. Picheny et al. A benchmark of kriging-based infill criteria for noisy optimization. Structural and Multidisciplinary Optimization 2013
[5] M. Hoffman et al. Portfolio allocation for Bayesian optimization. UAI'11

Goal: Meta-Optimization

Similar to N. Dang, L. Pérez Cáceres, P. De Causmaecker, and T. Stützle. Configuring irace using surrogate configuration benchmarks. GECCO'17

5

Lindauer, Feurer, Eggensperger, Biedenkapp and Hutter Bayesian Optimization's Own Hyperparameters DSO@IJCAI 2019

1 How large is the impact of tuning Bayesian optimization's own hyperparameters?

1 How large is the impact of tuning Bayesian optimization's own hyperparameters?

2 How well does this transfer to similar target functions?

3 How well does this transfer to different target functions?

1 How large is the impact of tuning Bayesian optimization's own hyperparameters?

2 How well does this transfer to similar target functions?

3 How well does this transfer to different target functions?

4 Which hyperparameters are actually important?

1 How large is the impact of tuning Bayesian optimization's own hyperparameters?

2 How well does this transfer to similar target functions?

3 How well does this transfer to different target functions?

4 Which hyperparameters are actually important?

What do we need to tune BO's hyperparameters?

- 1 Search Space
- 2 Target functions
- 3 Meta-loss function to be optimized

4 Optimizer

1 Search Space

RF

+model hyperparameter +initial design +acquisition function +transformation

GP-ML

+model hyperparameter +initial design +acquisition function +transformation

GP-MAP

+model hyperparameter +initial design +acquisition function +transformation

2 Target functions

3 Meta-loss function to be optimized

4 Optimizer

8

1 Search Space

- 2 Target functions
- \rightarrow Meta-optimization is quite expensive
- \rightarrow Use artificial functions
- \rightarrow Surrogate benchmark problems
- 3 Meta-loss function to be optimized4 Optimizer

SVMs

- 10 datasets
- 3 continuous hyperparameters
- 1 categorical hyperparameter

NNs

- 6 datasets
- 6 continuous hyperparameters

Artificial functions

- 10 functions
- 2-6 continuous hyperparameter

1 Search Space

- 2 Target functions
- 3 Meta-loss function to be optimized
 - Measure good anytime performance
 - Compare across multiple functions
 - Hit optimum accurately

4 Optimizer

1 Search Space

- 2 Target functions
- 3 Meta-loss function to be optimized
 - Measure good anytime performance
 - Compare across multiple functions
 - Hit optimum accurately

Optimizer

$$\mathcal{L}(\lambda) = \mathbb{E}_{f \sim \mathcal{F}} \left[\frac{1}{T} \sum_{t=1}^{T} \min_{\hat{x} \in \mathbf{x}(\lambda)_{1:t}} \log \left(f(\hat{x}) - f(x^*) \right) \right]$$

Lindauer, Feurer, Eggensperger, Biedenkapp and Hutter Bayesian Optimization's Own Hyperparameters

- 1 Search Space
- 2 Target functions
- 3 Meta-loss function to be optimized
- 4 Optimizer
- \rightarrow Algorithm configuration

$$\lambda^* \in \operatorname*{arg\,min}_{\lambda \in \Lambda} \mathbb{E}_{\pi \sim \Pi} \left[c(\lambda, \pi) \right]$$

How Large is the Impact of Tuning

	DEF		DEF		DEF	
		RF		GP-ML		GP-MAP
artificial SVM	$\begin{vmatrix} -0.19 \\ -2.65 \end{vmatrix}$		$\begin{vmatrix} -2.35 \\ -2.90 \end{vmatrix}$		$\begin{vmatrix} -2.41 \\ -2.87 \end{vmatrix}$	
ParamNet	-2.12		-2.15		-2.25	

Average log-regret (lower is better).

How Large is the Impact of Tuning

	DEF	LOFO	DEF	LOFO	DEF	LOFO	
		F	RF	GI	P-ML	GP-	MAP
artificial	-0.19	-0.95	-2.35	-2.50	-2.41	-2.43	
SVM	-2.65	-2.73	-2.90	-3.11	-2.87	-2.87	
ParamNet	-2.12	-2.37	-2.15	-2.36	-2.25	-2.32	

Average log-regret (lower is better).

LOFO: Running the Meta-optimizer on all but one function from a family, rerun the best found configuration on the left out function

Important Hyperparameters

Ablation¹ showed:

 \rightarrow Only a **small set** of hyperparameters is important

 \rightarrow Which hyperparameters depend on the model

Figure: Most important hyperparameters according to ablation for **Bayesian optimization with Random Forests** on the artificial function family.

[1] C. Fawcett, H. H. Hoos. Analysing differences between algorithm configurations through ablation. J. Heuristics 2016

 \rightarrow Hyperparameter optimization for Bayesian optimization is important

Open questions and future work:

- How to handle this in practice?
- Measure similarity of target functions

