Neural Networks for Predicting Algorithm Runtime Distributions <u>Katharina Eggensperger</u>, Marius Lindauer & Frank Hutter

Paper ID #2772

Eggensperger, Lindauer and Hutter

DistNet: Runtime Distribution Prediction #2772

IJCAI'2018

Algorithm portfolios yield state-of-the-art performance for SAT, ASP, Planning, ...

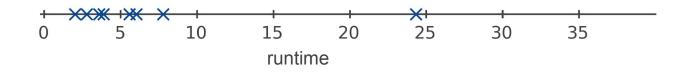
 \rightarrow to build these we can make use of runtime predictions

Other applications:

- Optimal restarts
- Algorithm selection
- Algorithm configurations

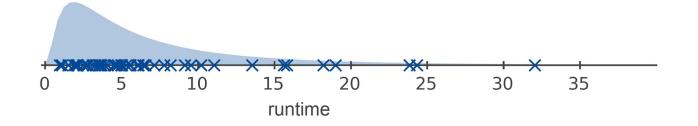
Describing the Runtime of an Algorithm?

solve(instance, seed):
do something
return solution, runtime



Describing the Runtime of an Algorithm?

solve(instance, seed):
do something
return solution, runtime

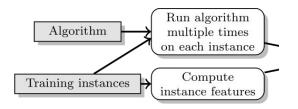


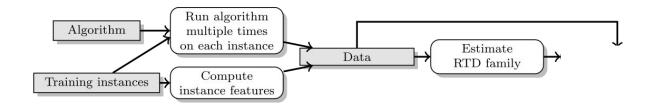
Contributions

Study how to **predict parametric RTDs**

2 Propose **DistNet**, a practical neural network for predicting RTDs

3 Evaluate DistNet and show that it can **learn from only a few samples per instance**

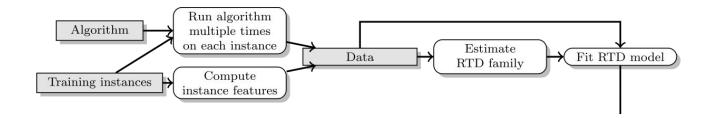




UNI FREIBURG

Eggensperger, Lindauer and Hutter

DistNet: Runtime Distribution Prediction #2772

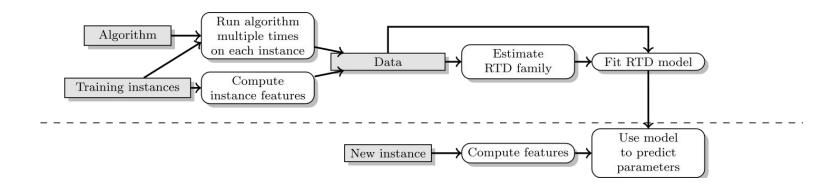


UNI FREIBURG

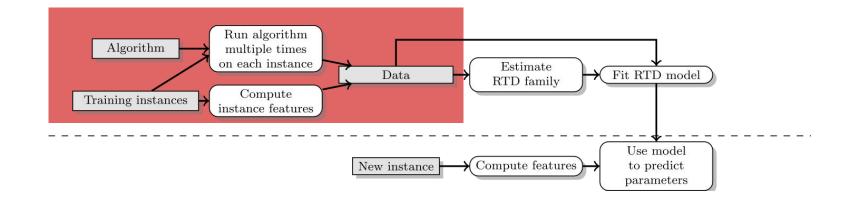
Eggensperger, Lindauer and Hutter

DistNet: Runtime Distribution Prediction #2772

IJCAI'2018



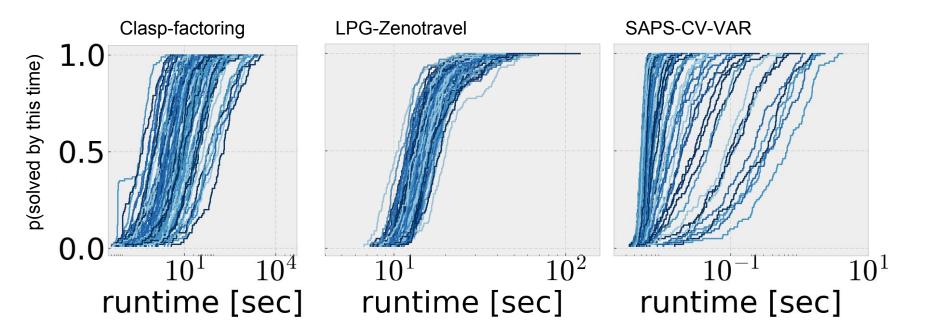
UNI FREIBURG

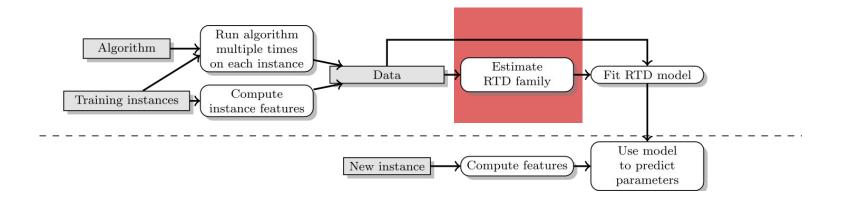


UNI FREIBURG

Eggensperger, Lindauer and Hutter

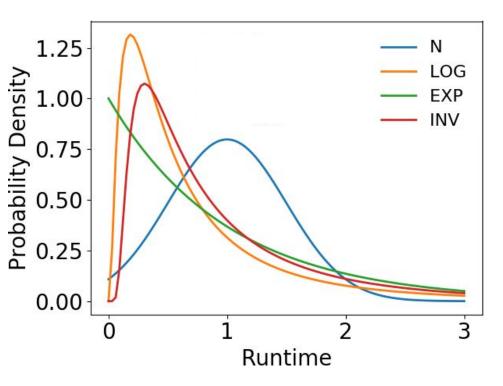
Empirical RTDs





UNI FREIBURG

Considered Parametric Distribution



Distribution	Param.
Normal (N)	μ, σ
Lognormal (LOG)	s, σ
Exponential (EXP)	eta
Inverse Normal (INV)	μ, λ

FREIBURG

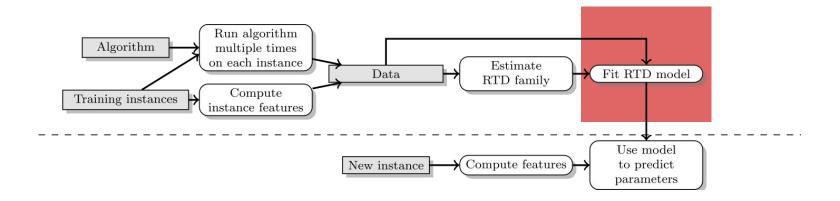
Quantifying the Quality of Runtime Distributions

$$\mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta} \mid \underline{t(\pi)_1, \dots, t(\pi)_k}) = \prod_{i=1}^k p_{\mathcal{D}}(t(\pi)_i \mid \boldsymbol{\theta})$$
(1) observed runtimes distribution parameter

Quantifying the Quality of Runtime Distributions

$$\mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta} \mid \underline{t(\pi)_{1}, \dots, t(\pi)_{k}}) = \prod_{i=1}^{k} p_{\mathcal{D}}(t(\pi)_{i} \mid \boldsymbol{\theta})$$
(1)
observed runtimes
distribution parameter
$$-\log \mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta} \mid t(\pi)_{1}, \dots, t(\pi)_{k}) = -\sum_{i=1}^{k} \log p_{\mathcal{D}}(t(\pi)_{i} \mid \boldsymbol{\theta})$$
(2)

i=1



UNI FREIBURG

Eggensperger, Lindauer and Hutter

DistNet: Runtime Distribution Prediction #2772

Option 1

For each training instance

 \rightarrow fit the parametric distribution's parameter on observed runtimes.

Then for all training instances, for each distribution parameter: **fit a model**

Option 1

For each training instance

 \rightarrow fit the parametric distribution's parameter on observed runtimes.

Then for all training instances, for each distribution parameter: **fit a model**

Problematic, because models

- can only be as good as each fitted distribution
- do not know about interaction between their outputs
- typically minimize loss in the parameter space

Option 2

For each training instance

 \rightarrow fit the parametric distribution's parameter on observed runtimes.

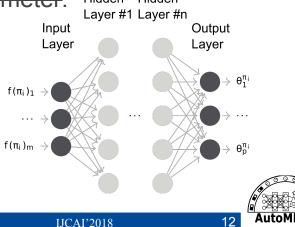
Then for all training instances, for each distribution parameter: fit a model with multiple outputs

Problematic, because model

- can only be as good as each fitted distribution
- does not know about interaction between their outputs
- typically minimizes loss in the parameter space

DistNet

- For each training instance
- \rightarrow fit the parametric distribution's parameter on observed runtimes.
- Then for all training instances, for each distribution parameter: fit a neural network using negative log-likelihood as a loss function



Results

Scenario	dist	iRF	mRF	DistNet
<i></i>	LOG	0.99	-0.29	-0.52
Saps-CV-VAR				

We compared

- DistNet
- independent Random Forests (iRF)
- multi-output Random Forests (mRF)

on 7 scenarios from SAT solving and AI planning.

Figure: Averaged negative log-likelihood. Smaller values are better.

Results

Scenario	dist	iRF	mRF	DistNet
C CU VAD	LOG	0.99	-0.29	-0.52
Saps-CV-VAR	INV	0.22	-0.09	-0.54

We compared

- DistNet
- independent Random Forests (iRF)
- multi-output Random Forests (mRF)

on 7 scenarios from SAT solving and AI planning.

Figure: Averaged negative log-likelihood. Smaller values are better.

Results

Scenario	dist	iRF	mRF	DistNet
Saps-CV-VAR	LOG	0.99	-0.29	-0.52
	INV	0.22	-0.09	-0.54
Clasp-factoring	INV	-0.04	-0.09	-0.16
	LOG	-0.14	-0.13	-0.14
		[]		
LPG-Zenotravel	LOG	-0.85	-0.84	-0.85
	INV	-0.72	-0.80	-0.84

Figure: Averaged negative log-likelihood. Smaller values are better.

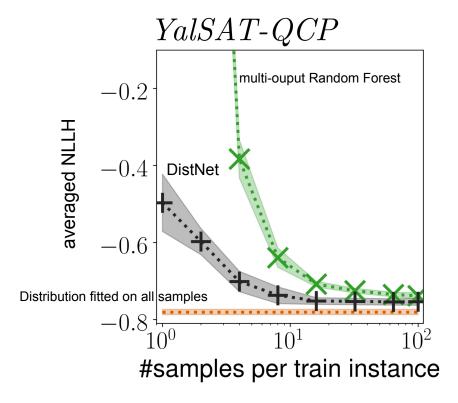
We compared

- DistNet
- independent Random Forests (iRF)
- multi-output Random Forests (mRF)

on 7 scenarios from SAT solving and AI planning.

- → Predicting parameters for RTDs is possible
- \rightarrow Joint predictions work better
- → DistNet provides more robust predictions which are often better than those of competitors

DistNet on a Low Number of Observations



We have proposed DistNet, which

- + jointly learns distribution parameters
- + directly optimizes the loss function of interest
- + performs well even if only few observations per instance are available

We have proposed DistNet, which

- + jointly learns distribution parameters
- + directly optimizes the loss function of interest
- + performs well even if only few observations per instance are available

Open Questions:

- How to automatically determine a well fitting distribution family?
- How to handle heterogeneous datasets?

We have proposed DistNet, which

- + **jointly learns** distribution parameters
- + directly optimizes the loss function of interest
- + performs well even if **only few observations per instance** are available

Open Questions:

- How to automatically determine a well fitting distribution family?
- How to handle heterogeneous datasets?

Code and data: https://www.automl.org/distnet/

