Neural Networks for Predicting Algorithm Runtime Distributions

Katharina Eggensperger University of Freiburg eggenspk@cs.uni-freiburg,de Marius Lindauer University of Freiburg lindauer@cs.uni-freiburg.de

1.0

Frank Hutter University of Freiburg fh@cs.uni-freiburg.de

Problem

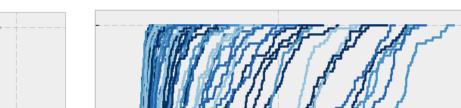
Algorithms often rely on random choices and decisions, hence their runtime can be described by a runtime distribution (RTD). In this work we study how to predict parametric RTDs for unseen instances:

Runtime Distributions

Clasp-factoring

Saps-CV-VAR

YalSAT-QCP



Given

- A randomized algorithm A
- A set of instances $\Pi_{train} = \{\pi_1, \dots, \pi_n\}$
- For each instance $\pi \in \Pi_{train}$:
 - *m* instance features $f(\pi) = [f(\pi)_1, \dots, f(\pi)_m]$
 - runtime observations $t(\pi) = \langle t(\pi)_1, \dots, t(\pi)_k \rangle$ obtained by executing A on π with k different seeds,

the goal is to learn a model that can predict A's RTD well for unseen instances π_{n+1} with given features $f(\pi_{n+1})$

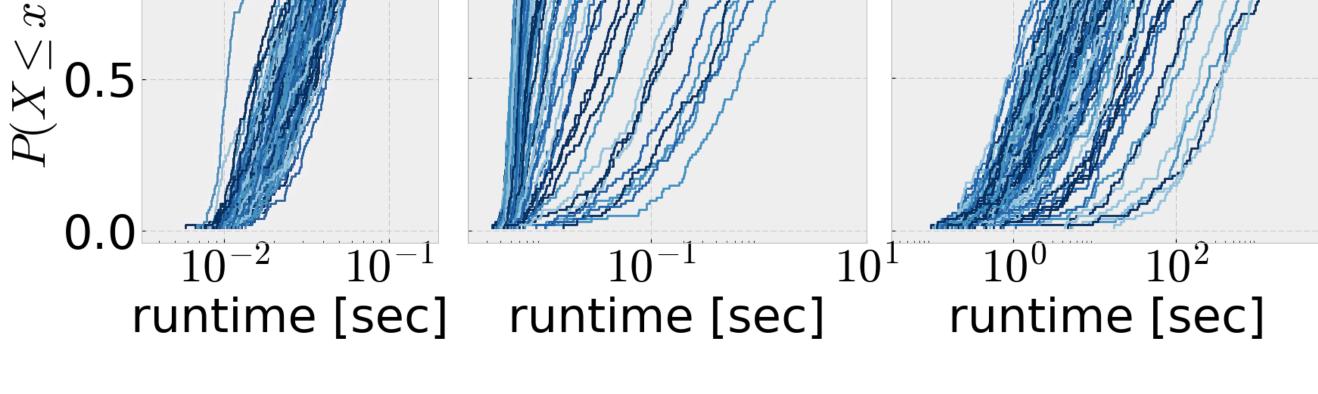
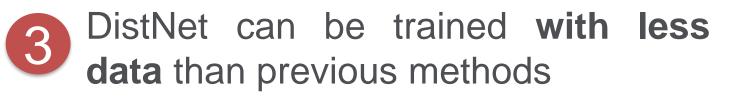


Figure: Empirical CDFs. We ran each algorithm 100 times with a different seed. Each line corresponds to one instance.

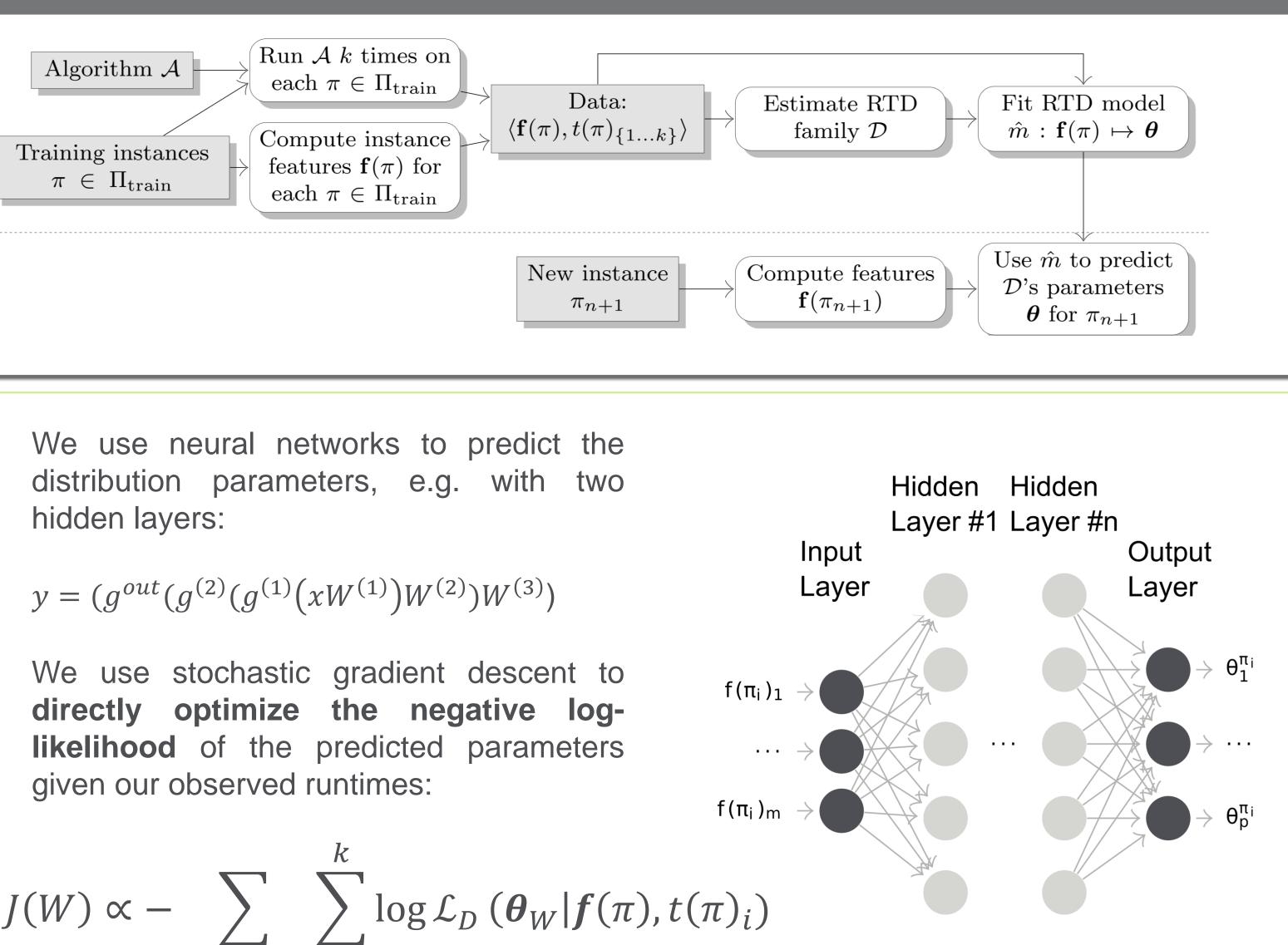
In a Nutshell

different ways of We compare predicting RTDs

We propose **DistNet**, which can be trained using the loss function of jointly predicts interest and parameters of RTDs

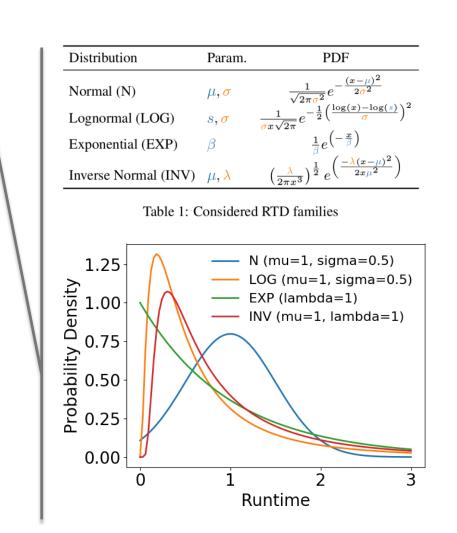


For each instance π , fit the parametric distribution's parameters $\boldsymbol{\theta}(\pi) = (\theta_1, \dots, \theta_p)$ on observed runtimes to get training data $\langle \boldsymbol{f}(\pi), \boldsymbol{\theta}(\pi) \rangle_{\pi \in \Pi_{train}}$



Scenario	#instances	#features	cutoff [sec]
Clasp-factoring ²	2000	102	5000
Saps-CV-VAR ²	10011	46	60
$Spear-QCP^2$	8076	91	5000
YalSAT-QCP ²	11747	91	5000
Spear-SWGCP ²	11182	76	5000
YalSAT-SWGCP ²	11182	76	5000
LPG-Zenotravel ³	3999	165	300

Table 2: Characteristics of the used data sets



Option 1

Train *p* individual regression models

Train a multi-output **Option 2** model with *p* outputs

But, these variants measure loss in the space of distribution parameters and not wrt. the loss function of interest: the negative log-likelihood.

$$J(W) \propto -\sum_{\pi \in \Pi_{train}} \sum_{i=1}^{k} \log \mathcal{L}_D \left(\boldsymbol{\theta}_W | \boldsymbol{f}(\pi), t(\pi)\right)$$

to use

Preprocessing:

- Remove all close to constant features
- Impute missing values by the median
- Scale observed runtimes by dividing by the maximal observed runtime across all instances

Architecture/Hyperparameters:

tanh activation, 2 hidden layer with 16 neurons each, L2 regularization of $1e^{-4}$, batch normalization, gradient clipping, SGD for training, learning rate exponentially decaying from $1e^{-3}$ to $1e^{-5}$, batch size of 16.

Results

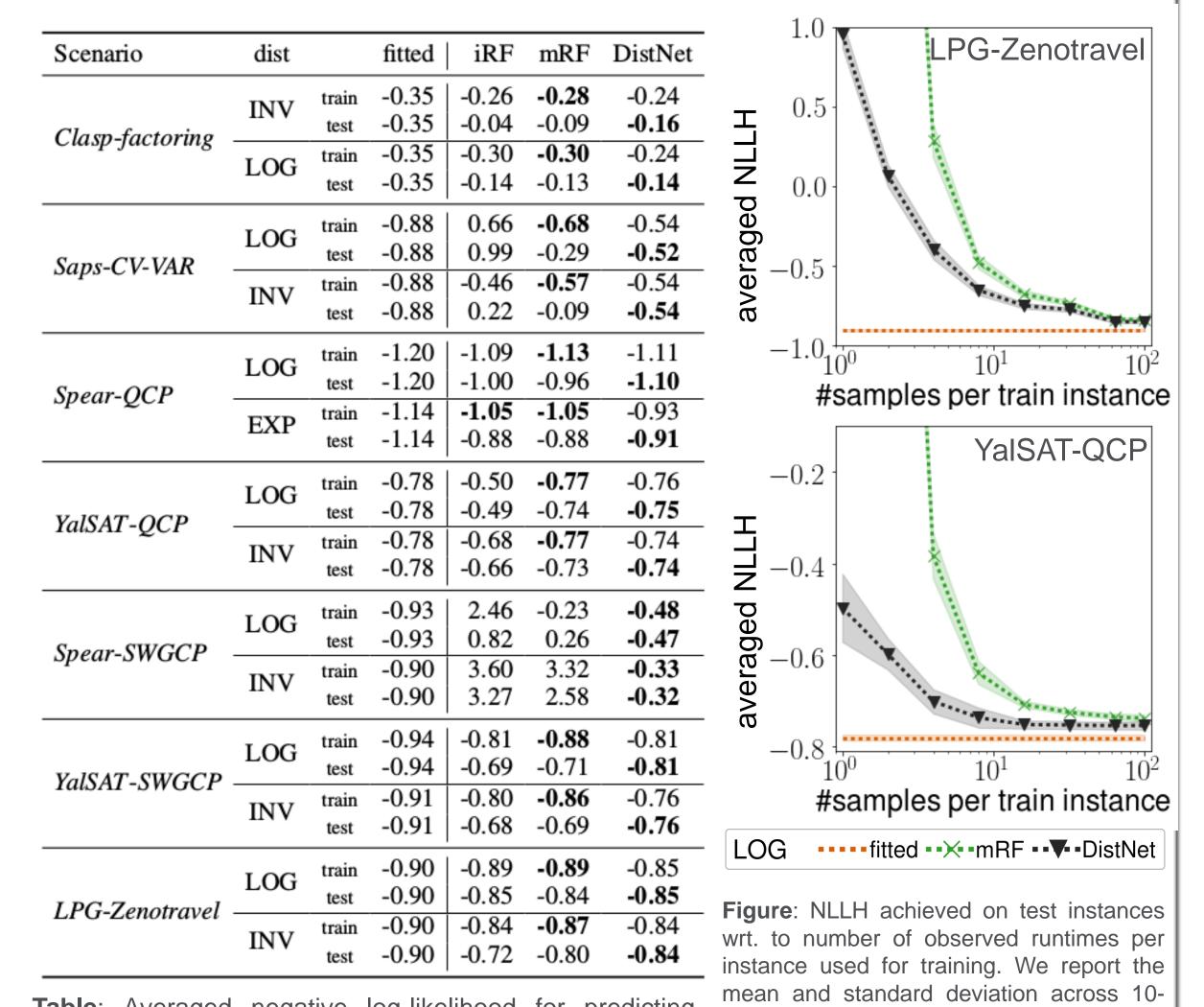
Π

xisting

Approaches

Approach

Our



Advantages and Limitations

- DistNet jointly learns distribution parameters and directly optimizes the loss function of interest
- DistNet can learn from only a few samples per instance
- We assume **homogeneous instance sets**
 - We need to **know beforehand** which distribution family

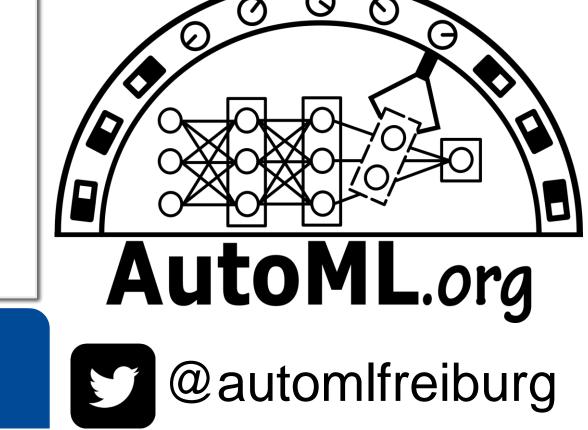
folds each of which averagre across 10

repetitions.

Table: Averaged negative log-likelihood for predicting RTDs for unseen instances.

Open Questions & Future Work

- Use a mixture of models to handle less homogeneous instance sets
- Consider an algorithm's configuration as an additional input
- Study non-parametric models



Data and Code Publicly Available:

www.automl.org/distnet