
Supplementary material for:
BO-HB: Robust and Efficient Hyperparameter Optimization at Scale

Stefan Falkner 1 Aaron Klein 1 Frank Hutter 1

A. Available Software
To promote reproducible science and enable other re-
searchers to use our method, we provide an open-source
implementation of BOHB and Hyperband. It is available
under https://github.com/automl/HpBandSter. The bench-
marks and our scripts used to produce the data shown in the
paper can be found in the icml_2018 branch.

B. Comparison to other Combinations of
Bayesian optimization and Hyperband

Here we discuss the differences between our method and
the related approaches of Bertrand et al. (2017) and Wang
et al. (2018) in more detail. We note that these works are
independent and concurrent; our work extends our prelim-
inary short workshop papers at NIPS 2017 (Falkner et al.,
2017) and ICLR 2018 (Falkner et al., 2018).

While the general idea of combining Hyperband and
Bayesian optimization by Bertrand et al. (2017) is the same
as in our work, they use a Gaussian process for modeling
the performance. The budget is modeled like any other di-
mension of the search space, without any special treatment.
Based on our experience with Fabolas (Klein et al., 2017),
we expect that the squared exponential kernel might not
extrapolate well, which would hinder performance. Also,
the small evaluation provided by Bertrand et al. (2017) does
not allow strong conclusions about the performance of their
method.

Wang et al. (2018) also independently combined TPE and
Hyperband, but in a slightly different way than we did. In
their method, TPE is used as a subroutine in every itera-
tion of Hyperband. In particular, a new model is built from
scratch at the beginning of every SuccessiveHalving run
(Algorithm 3, line 8 in Wang et al. (2018)). This means
that in later iterations of the algorithm, the model does not

1Department of Computer Science, University of Freiburg,
Freiburg, Germany. Correspondence to: Stefan Falkner
<sfalkner@informatik.uni-freiburg.de>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

benefit from any of the evaluations in previous iterations.
In contrast, BOHB collects all evaluations on all budgets
and uses the largest budget with enough evaluations (admit-
tedly a heuristic, but we would argue a reasonable one) as
a base for future evaluations. This way, BOHB aggregates
more knowledge into its models for the different budgets
as the optimization progresses. We believe this to be a cru-
cial part of the strong performance of our method. Empiri-
cally, Wang et al. (2018) did not achieve the consistent and
large speedups across a wide range of applications BOHB
achieved in our experiments.

C. Successive Halving
SuccessiveHalving is a simple heuristic to allocate more
resources to promising candidates. For completeness, we
provide pseudo code for it in Algorithm 1. It is initialized
with a set of configurations, a minimum and maximum
budget, and a scaling parameter η. In the first stage all
configurations are evaluated on the smallest budget (line
3). The losses are then sorted and only the best 1/η con-
figurations are kept in the set C (line 4). For the following
stage, the budget is increased by a factor of η (line 5). This
is repeated until the maximum budget for a single configura-
tion is reached (line 2). Within Hyperband, the budgets are
chosen such that all SuccessiveHalving executions require a
similar total budget.

Algorithm 1: Pseudocode for SuccessiveHalving
used by Hyperband as a subroutine.

input : initial budget b0, maximum budget bmax,
set of n configurations
C = {c1, c2, . . . cn}

1 b = b0
2 while b ≤ bmax do
3 L = {f̃(c, b) : c ∈ C}
4 C = topk(C,L, b|C|/η)c
5 b = η · b

https://github.com/automl/HpBandSter

Supplementary material for: BO-HB: Robust and Efficient Hyperparameter Optimization at Scale

101 102 103 104 105 106
10−3

10−2

10−1

10−2

wall clock time [s]

re
gr

et
adult

RS

TPE

GP-BO

HB

HB-LCNet

BOHB

101 102 103 104 105 106
10−3

10−2

10−1

100

10−2

100

wall clock time [s]

re
gr

et

higgs

RS

TPE

GP-BO

HB

HB-LCNet

BOHB

100 101 102 103 104 105
10−3

10−2

10−1

100

10−2

100

wall clock time [s]

re
gr

et

letter

RS

TPE

GP-BO

HB

HB-LCNet

BOHB

100 101 102 103 104 105 106

10−3

10−1

10−4

10−2

100

wall clock time [s]

re
gr

et

mnist

RS

TPE

GP-BO

HB

HB-LCNet

BOHB

100 101 102 103 104 105
10−3

10−2

10−1

100

10−2

100

wall clock time [s]

re
gr

et

optdigits

RS

TPE

GP-BO

HB

HB-LCNet

BOHB

102 103 104 105 106 107

10−3

10−1

10−4

10−2

100

wall clock time [s]

re
gr

et

poker

RS

TPE

GP-BO

HB

HB-LCNet

BOHB

Figure 1. Mean performance on the surrogates for all six datasets. As uncertainties, we show the standard error of the mean based on 512
runs (except for GP-BO, which has only 50 runs).

D. Details on the Kernel Density Estimator
We used the MultivariateKDE from the statsmodels package
(Seabold & Perktold, 2010), which constructs a factorized
kernel, with a one-dimensional kernel for each dimension.
Note that using this product of 1-d kernels differs from the
original TPE, which uses a pdf that is the product of 1-d
pdfs. For the continuous parameters a Gaussian kernel is
used, whereas the Aitchison-Aitken kernel is the default
for categorical parameters. We used Scott’s rule for ef-
ficient bandwidth estimation, as preliminary experiments
with maximum-likelihood based bandwidth selection did
not yield better performance but caused a significant over-
head.

E. Performance of all methods on all
surrogates

Figure 1 shows the performance of all methods we evaluated
on all our surrogate benchmarks. Random search is clearly
the worst optimizer across all datasets when the budget is
large enough for GP-BO and TPE to leverage their model.
Hyperband and the two methods based on it (HB-LCNet)
and BOHB improve much more quickly due to the smaller
budgets used. On all surrogate benchmarks, BOHB starts
to outperform HB after the first couple of iterations (some-
times even earlier, e.g., on dataset letter). The same dataset
also shows that traditional BO methods can still have an
advantage for very large budgets, since in these late stages
of the optimization process the low fidelity evaluations of
BOHB can cause a constant overhead without any gain.

Supplementary material for: BO-HB: Robust and Efficient Hyperparameter Optimization at Scale

101 102 103 104 105 106
10−3

10−2

10−1

10−2

wall clock time [s]

re
gr

et
adult

n = 1

n = 2

n = 4

n = 8

n = 16

n = 32

101 102 103 104 105 106
10−3

10−2

10−1

100

10−2

100

wall clock time [s]

re
gr

et

higgs

n = 1

n = 2

n = 4

n = 8

n = 16

n = 32

100 101 102 103 104 105
10−3

10−2

10−1

100

10−2

100

wall clock time [s]

re
gr

et

letter

n = 1

n = 2

n = 4

n = 8

n = 16

n = 32

101 102 103 104 105 106

10−3

10−1

10−4

10−2

100

wall clock time [s]

re
gr

et

mnist

n = 1

n = 2

n = 4

n = 8

n = 16

n = 32

100 101 102 103 104 105
10−3

10−2

10−1

100

10−2

100

wall clock time [s]

re
gr

et

optdigits

n = 1

n = 2

n = 4

n = 8

n = 16

n = 32

102 103 104 105 106

10−3

10−1

10−4

10−2

100

wall clock time [s]

re
gr

et

poker

n = 1

n = 16

n = 32

Figure 2. Mean performance on the surrogates for all six datasets with different numbers of workers n. As uncertainties, we show the
standard error of the mean based on 128 runs. Because we simulated them in real time to capture the true behavior, poker is too expensive
to evaluate with less than 16 workers within a day.

F. Performance of parallel runs
Figure 2 shows the performance of BOHB when run in
parallel on all our surrogate benchmarks. The speed-ups
are quite consistent, and almost linear for a small number
of workers (2-8). For more workers, more random config-
urations are evaluated in parallel before the first model is
built, which degrades performance. But even for 32 work-
ers, linear speedups are possible (see, e.g., dataset letter, for
reaching a regret of 2× 10−3).

We note that in order to carry out this evaluation of par-
allel performance, we actually simulated the parallel opti-
mization by making each worker wait for the given budget
before returning the corresponding performance value of
our surrogate benchmark. (The case of one worker is an

exception, where we can simply reconstruct the trajectory
because all configurations are evaluated serially.) By using
this approach in connection with threads, each evaluation
of a parallel algorithm still only used 1 CPU, but the run
actually ran in real time. For this reason, we decided to not
evaluate all possible numbers of workers for dataset poker,
for which each run with less than 16 workers would have
taken more than a day, and we do not expect any different
behavior compared to the other datasets.

G. Evaluating the hyperparameters of BOHB
In this section, we evaluate the importance of the individual
hyperparameters of BOHB, namely the number of samples
used to optimize the acquisition function (Figure 3), the

Supplementary material for: BO-HB: Robust and Efficient Hyperparameter Optimization at Scale

Figure 3. Performance on the surrogates for all six datasets for different number of samples

fraction of purely random configuration ρ (Figure 4), the
scaling parameter η (Figure 5), and the bandwidth factor
used to encourage exploration (Figure 6).

Additionally, we want to discuss the importance of η, bmin

and bmax already present in HB. The parameter η controls
how aggressively SH cuts down the budget and the num-
ber of configurations evaluated. Like HB (Li et al., 2017),
BOHB is also quite insensitive to this choice in a reasonable
range. For our experiments, we use the same default value
(η = 3) for HB and BOHB.

More important for the optimization are bmin and bmax,
which are problem specific and inputs to both HB and
BOHB. While the maximum budget is often naturally de-
fined, or is constrained by compute resources, the situation
for the minimum budget is often different. To get substan-
tial speedups, an evaluation with a budget of bmin should

contain some information about the quality of a configura-
tion with larger budgets; for example, when subsampling
the data, the smallest subset should not be one datum, but
rather enough points to fit a meaningful model. This re-
quires knowledge about the benchmark and the algorithm
being optimized.

H. Counting Ones
We now show results for the counting ones function for
different dimensions. Figure 7 shows the mean performance
of all applicable methods in d = 8, 16, 32 and 64 dimensions
for a budget of 8192 full function evaluations.

We draw the following conclusions from the results:

1. Despite its simple definition, this problem is quite chal-
lenging for the methods we applied to it. RS and HB

Supplementary material for: BO-HB: Robust and Efficient Hyperparameter Optimization at Scale

Figure 4. Performance on the surrogates for all six datasets for different random fractions

both suffer from the fact that drawing configurations
at random performs quite poorly in this space. The
model-based approaches SMAC and TPE performed
substantially better, especially with large budgets. They
required a larger number of samples before converging
to the true optimum than BOHB. However, we would
like to mention that SMAC and TPE treated the prob-
lem as a blackbox optimization problem; the results for
SMAC could likely be improved by treating individual
samples as “instances” and using SMAC’s intensifi-
cation mechanism to reject poor configurations based
on few samples and evaluate promising configurations
with more samples.

2. BOHB struggles in the very high dimensional case. We
attribute this to the fact that the noise is substantially
higher in this case, such that larger budgets are required
to build a good model. Therefore, given a large enough

budget, BOHB’s evaluations on small budgets lead to
a constant overhead over only using the more reliable
evaluations on larger budgets. Since the optimization
problem is perfectly separable (there are no interac-
tion effects between any dimensions), we also expect
TPE’s univariate KDE to perform better than BOHB’s
multivariate one.

I. Surrogates
I.1. Constructing the Surrogates

To build a surrogate, we sampled 10 000 random configu-
rations for each dataset, trained them for 50 epochs, and
recorded their classification error after each epoch, along
with their total training time. We fitted two independent ran-
dom forests that predict these two quantities as a function of
the hyperparameter configuration used. This enabled us to

Supplementary material for: BO-HB: Robust and Efficient Hyperparameter Optimization at Scale

Figure 5. Performance on the surrogates for all six datasets for different values of η.

predict the classification error as a function of time with suf-
ficient accuracy. As almost all networks converged within
the 50 epochs, we extend the curves by the last obtained
value if the budget would allow for more epochs.

The surrogates enable cheap benchmarking, allowing us to
run each algorithm 256 times. Since evaluating a configura-
tion with the random forest is inexpensive, we used a global
optimizer (differential evolution) to find the true optimum.
We allowed the optimizer 10 000 iterations which should be
sufficient to find the true optimum.

Besides these positive aspects of benchmarking with sur-
rogates, there are also some drawbacks that we want to
mention explicitly:

(a) There is no guarantee that the surrogate actually re-
flects the important properties of the true benchmark.

(b) The presented results show the optimized classification
error on the validation set used during training. There
is no test performance that could indicate overfitting.

(c) Training with stochastic gradient descent is an inher-
ently noisy process, i.e. two evaluations of the same
configuration can result in different performances. This
is not at all reflected by our surrogates, making them a
potentially easier to optimize than the true benchmark
they are based on.

(d) By fixing the budgets (see below) and having determin-
istic surrogates, the global minima might be the result
of some small fluctuations in the classification error
in the surrogates’ training data. That means that the
surrogate’s minimizer might not be the true minimizer
of the real benchmark.

Supplementary material for: BO-HB: Robust and Efficient Hyperparameter Optimization at Scale

Figure 6. Performance on the surrogates for all six datasets for different bandwidth factors.

None of these downsides necessarily have substantial im-
plications for comparing different optimizers; they simply
show that the surrogate benchmarks are not perfect models
for the real benchmark they mimic. Nevertheless, we be-
lieve that, especially for development of novel algorithms,
the positive aspects outweigh the negative ones.

I.2. Determining the budgets

To choose the largest budget for training, we looked at
the best configuration as predicted by the surrogate and its
training time. We chose the closest power of 3 (because
we also used η = 3 for HB and BOHB) to achieve that
performance. We chose the smallest budget for HB such
that most configurations had finished at least one epoch.
Table 2 lists the budgets used for all datasets.

Table 1. The hyperparameters and architecture choices for the fully
connected networks.

Hyperparameter Range Log-transform

batch size [23, 28] yes
dropout rate [0, 0.5] no

initial learning rate [10−6, 10−2] yes
exponential decay factor [−0.185, 0] no

hidden layers {1, 2, 3, 4, 5} no
units per layer [24, 28] yes

J. Bayesian Neural Networks
We optimized the hyperparameters described in Table 3
for a Bayesian neural network trained with SGHMC on
two UCI regression datasets: Boston Housing and Protein
Structure. The budget for this benchmark was the number

Supplementary material for: BO-HB: Robust and Efficient Hyperparameter Optimization at Scale

Figure 7. Mean performance of BOHB, HB, TPE, SMAC and RS on the mixed domain counting ones function with different dimensions.
As uncertainties, we show the standard error of the mean based on 512 runs.

Table 2. The budgets used by HB and BOHB; random search and
TPE only used the last budget

Dataset Budgets in seconds for HB and BOHB
Adult 9, 27, 81, 243
Higgs 9, 27, 81, 243
Letter 3, 9, 27, 81
Poker 81, 243, 729, 2187

of steps for the MCMC sampler. We set the minimum
budget to 500 steps and the maximum budget to 10000
steps. After sampling 100 parameter vectors, we computed
the log-likelihood on the validation dataset by averaging
the predictive mean and variances of the individual models.
The performance of all methods for both datasets is shown
in Figure 8.

K. Reinforcement Learning
Table 4 shows the hyperparameters we optimized for the
PPO Cartpole task.

Table 3. The hyperparameters for the Bayesian neural network
task.

Hyperparameter Range Log-transform
units layer 1 [24, 29] yes
units layer 2 [24, 29] yes

step length [10−6, 10−1] yes
burn in [0, .8] no

momentum decay [0, 1] no

Table 4. The hyperparameters for the PPO Cartpole task.
Hyperparameter Range Log-transform
units layer 1 [23, 27] yes
units layer 2 [23, 27] yes

batch size [23, 28] yes
learning rate [10−7, 10−1] yes

discount [0, 1] no
likelihood ratio clipping [0, 1] no
entropy regularization [0, 1] no

References
Bertrand, H., Ardon, R., Perrot, M., and Bloch, I. Hyper-

parameter optimization of deep neural networks: Com-
bining hyperband with Bayesian model selection. Pro-

Supplementary material for: BO-HB: Robust and Efficient Hyperparameter Optimization at Scale

104 105 106

4

6

8

3

5

7

9

MCMC steps

ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d
Boston Housing

RS

TPE

HB

BOHB

104 105 106

4

6

8

3

5

7

9

MCMC steps

ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d

Protein

RS

TPE

HB

BOHB

Figure 8. Mean performance of TPE, RS, HB and BOHB for optimizing the 5 hyperparameters of a Bayesian neural network on two
different UCI datasets. As uncertainties, we show the stardard error of the mean based on 50 runs.

ceedings of Conférence sur l’Apprentissage Automatique
(CAP 2017), 2017.

Falkner, S., Klein, A., and Hutter, F. Combining hyper-
band and Bayesian optimization. In NIPS 2017 Bayesian
Optimization Workshop, December 2017.

Falkner, S., Klein, A., and Hutter, F. Practical hyperpa-
rameter optimization for deep learning. In ICLR 2018
Workshop Track, 2018.

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter,
F. Fast Bayesian optimization of machine learning hy-
perparameters on large datasets. In Proceedings of the
Seventeenth International Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2017.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A.,
and Talwalkar, A. Hyperband: Bandit-based configu-
ration evaluation for hyperparameter optimization. In
Proceedings of the International Conference on Learn-
ing Representations (ICLR’17), 2017. Published online:
iclr.cc.

Seabold, S. and Perktold, J. Statsmodels: Econometric and
statistical modeling with python. In 9th Python in Science
Conference, 2010.

Wang, J., Xu, J., and Wang, X. Combination of hyperband
and bayesian optimization for hyperparameter optimiza-
tion in deep learning. arXiv preprint arxiv:1801.01596,
01 2018.

iclr.cc

