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Abstract

While existing work on neural architecture search (NAS) tunes hyperparameters in a sep-
arate post-processing step, we demonstrate that architectural choices and other hyperpa-
rameter settings interact in a way that can render this separation suboptimal. Likewise,
we demonstrate that the common practice of using very few epochs during the main NAS
and much larger numbers of epochs during a post-processing step is inefficient due to little
correlation in the relative rankings for these two training regimes. To combat both of these
problems, we propose to use a recent combination of Bayesian optimization and Hyperband
for efficient joint neural architecture and hyperparameter search.

Keywords: Neural Architecture Search, Hyperparameter Optimization, Bayesian Opti-
mization, Object Recognition

1. Introduction

Before the rise of deep learning and its success in end-to-end feature learning, manual feature
engineering was arguably one of the most important steps in the machine learning workflow,
but also very time-consuming and tedious. With an abundance of choices in designing the
architecture of deep neural networks, manual feature engineering has nowadays to a certain
degree been replaced by manual tuning of architectures. Recent work on neural architecture
search (NAS) (Baker et al., 2017; Pham et al., 2018; Zoph and Le, 2017; Real et al., 2017;
Zoph et al., 2017; Real et al., 2018; Liu et al., 2017; Cai et al., 2018; Elsken et al., 2018)
automates this choice of network architecture. On some benchmarks, these NAS methods
have indeed led to new state-of-the-art performance (Zoph and Le, 2017; Real et al., 2018),
although only at extreme computational costs on the order of 800 GPUs for two weeks.

Many prominent NAS methods (Zoph and Le, 2017; Real et al., 2017; Zoph et al., 2017;
Real et al., 2018) follow a two step process, which we argue is inefficient. During their main
architecture search phase, they evaluate architectures with a fixed set of hyperparameters
and a relatively small number of epochs (e.g., 20), and only after the search has finished,
they optimize hyperparameters for the end result and evaluate it with a large number of
epochs (e.g., 600). This process is suboptimal for various reasons:

• The resulting approach is not an anytime approach and does not satisfy the require-
ment of an automated machine learning (AutoML) system (Feurer et al., 2015) to
make predictions after a given time budget.
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• The sudden jump from a small budget of 20 to a large budget of 600 epochs leads
to little correlation between the relative ranks on the small and the large budgets,
potentially rendering most of the expensive optimization at the small budget void.

To combat these problems, we propose to use an approach for joint neural architecture and
hyperparameter search that is anytime and gradually increases the computational budget
for the best fraction of networks at lower compute budgets in order to yield a far more com-
putationally efficient optimization procedure. Specifically, our contributions are as follows:

• We show how to use a recent combination (Falkner et al., 2018) of Bayesian optimiza-
tion (Shahriari et al., 2016) and Hyperband (Li et al., 2017) to perform efficient joint
neural architecture and hyperparameter search.

• We demostrate the weak correlation between performance after short and long training
budgets, which potentially affects both architecture and hyperparameter choices when
optimized with these two budgets, and show how to avoid this effect by incrementally
increasing the budget during the optimization process.

• We show that for a limited training runtime of 3 hours we can achieve competitive
performance on CIFAR-10 if we optimize the hyperparameters and architecture jointly.

2. Related Work

Melis et al. (2018) showed that a well-tuned LSTM (Hochreiter and Schmidhuber, 1997)
with the right training pipeline was able to outperform a recurrent cell found by neural
architecture search (Zoph and Le, 2017) on the Penn Treebank dataset. This underlines
the effect hyperparameters can play in practice.

One of the most successful methods to optimize the hyperparameters of deep neural net-
works is Bayesian optimization (Snoek et al.; Hutter et al., b; Bergstra et al., a). Since each
function evaluation requires to train and evaluate a deep neural network, more advanced
Bayesian optimization methods try to speed up the optimization process by exploiting
available fidelities of the objective function, such as learning curves (Domhan et al.; Klein
et al., 2017b; Falkner et al., 2018) or dataset subsets (Klein et al., 2017a). While most
Bayesian optimization methods only focus on a few continuous hyperparameters, Bergstra
et al. (b) and Mendoza et al. (2016) optimized architecture and hyperparameters jointly
and achieved, at this time, state-of-the-art performance for shallow convolutional neural
networks and feed forward neural networks, respectively.

There are many related methods for neural architecture search, for example based
on reinforcement learning (Zoph and Le, 2017; Zoph et al., 2017) and evolutionary algo-
rithms (Real et al., 2017; Liu et al., 2017; Real et al., 2018). All of these methods focus only
on the neural architecture, keeping hyperparameter fixed during the search (and optimizing
them in a post-hoc step).

3. Efficient Joint Hyperparameter Optimization and Architecture Search

In this section we discuss how to cast neural architecture search as a hyperparameter op-
timization problem and tackle it together with the standard hyperparameter optimization
problem. We also discuss a method for efficiently searching in this joint space.
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3.1. Neural Architecture Search as Hyperparameter Optimization

While the NAS literature casts the architecture search problem as very different from hy-
perparameter optimization, we argue that most NAS search spaces can be written as hy-
perparameter optimization search spaces (using the standard concepts of categorical and
conditional hyperparameters). Indeed, this fact also enables the use of standard evolution-
ary algorithms in the literature Real et al. (2017, 2018).

As an example, take the parameterization of a convolutional Normal Cell introduced by
Zoph et al. (2017). Each cell receives as inputs two previous hidden states (the feature maps
of two cells in previous layers, or the input image directly), and outputs a new hidden state.
The Normal Cell is composed of B (by default, B = 5) blocks and the k− th block consists
of 5 categorical choices: select a first hidden state (out of the cell’s 2 inputs and the output
hidden states of blocks 1, . . . , k − 1); select a second hidden state (out of the same domain
as the first choice); select an operation (out of 13 operations including several types of
convolutions, pooling operations and the identity; see Zoph et al. (2017) for the full list) to
apply to the first hidden state; select an operation to apply to the second hidden state (out
of the same 13 operations); and select a method (element-wise addition or concatenation)
to combine the outputs of these operations to create a new hidden state (which is added
to the existing set of hidden states). In the end, all the unused output hidden states from
the cell’s B blocks are concatenated together to form the final cell output (there are no free
choices in this step). Therefore, in total, this search space is fully specified by 5B categorical
hyperparameters.

Casting NAS as a hyperparameter optimization problem with categorical hyperparam-
eters immediately suggests the possibility of joint architecture and hyperparameter search
by just extending the hyperparameter space for the NAS part by the standard hyperpa-
rameters to be tuned. Likewise, it would be possible to sample hyperparameters in an RL
approach or optimize them via genetic algorithms alongside the neural architecture.

3.2. Bayesian Optimization Hyperband

To efficiently optimize in the joint space of architectures and hyperparameters, we use
BOHB (Falkner et al., 2018), a recent combination of Bayesian optimization (Shahriari
et al., 2016) and Hyperband (Li et al., 2017). Due to space constraints, we refer the reader
to Falkner et al. (2018) and Li et al. (2017) for full details on these methods and only
provide the basics here.

Like Hyperband, BOHB uses evaluations on different budgets to accelerate the opti-
mization by exploiting knowledge gained on cheap, lowfidelity observations. It dynamically
allocates more resources to promising configurations by repeatedly invoking the Successive
Halving (Jamieson and Talwalkar, 2016) subroutine. Successive Halving evaluates a large
number of configurations using a small minimum budget bmin and continues to evaluate the
best η−1 (by default best-performing third) of these with the next budget η · bmin. This is
repeated until reaching a maximum budget bmax. As an example, consider a budget based
on the number of epochs a neural network is trained for; bmin could, e.g., be 10, and bmax

270.
Like Bayesian optimization, BOHB uses a probabilistic model to sample promising con-

figurations rather than selecting these uniformly at random as done in Hyperband. BOHB
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uses multivariate Kernel Density Estimators (KDEs) over the input configuration space to
better model interactions between parameters and returns a new sample with the highest
expected improvement (EI).

3.3. Joint Architecture and Hyperparameter Search Space

We picked a multiple-branch ResNet architecture as the basis for our search space (see
Gastaldi (2017)). The first layer is a 3x3 convolution followed by 3 main blocks, a 8x8
average pooling and a fully connected layer in the end for discriminating between classes.
We parametrized the number of filters Filters0 for the first convolution and the number of
residual blocks ResBlocksj , branches ResBranchesj and filters (determined by a widening
factor WidenFactorj) within each main block j. However, we kept a fixed structure (ReLU-
Conv3x3-BN-ReLU-Conv3x3-BN-Mul) for each residual branch. Each sampled architecture
configuration Neti, is thus defined by these 10 architectural choices as:

Neti = stack3j=1{MainBlockj},

MainBlockj = stack
ResBlocksj
k=1 {ResBlockk},

ResBlockk = add
ResBranchesj
l=1 {ResBranchl},

F iltersj = round(WidenFactorj · Filtersj−1),

(1)

where stackNi=1{motifi} applies motifs sequentially and addNi=1{motifi} adds their outputs
element-wise. For example, if F1(·) and F2(·) denote transformations applied to input x
by ResBlock1 and ResBlock2 respectivelly, stack{ResBlock1, ResBlock2} yields F2(F1(x))
as output. In the case of ResBranch1 and ResBranch2, add{ResBranch1, ResBranch2}
would result in x+F1(x) +F2(x). One could combine these different operations and motifs
recursively in order to search for more complex architectures as the system evolves, but
we restrict ourselves to this 10-dimensional architecture space due to a limited compute
budget. We leave for future work the design of a more generic search space which does not
limit the network information into a fixed length vector.

We optimized this network using the regularization methods of CutOut (DeVries and
Taylor, 2017), MixUp (Hongyi Zhang, 2018), Shake-Shake (Gastaldi, 2017), and Shake-
Drop (Yamada et al., 2018)1, as well as the optimization algorithm of stochastic gradient
descent with restarts (SGDR; Loshchilov and Hutter (2017)). As hyperparameters, we
tuned initial learning rate, batch size, momentum, L2 regularization, CutOut length, and
the α parameter for MixUp, as well as the death rate for ShakeDrop (Yamada et al., 2018).
Table 3 in Appendix A summarizes these 10 architectural choices and 7 hyperparameters
and provides the specific ranges we used.

4. Experiments

We now empirically study the results of applying BOHB to our joint architecture and
hyperparameter search on CIFAR-10. Furthermore, we investigate the characteristics of

1. For residual blocks containing b > 1 residual branches, Shake-Shake scales the feature maps from branch
i by a random factor ai, such that

∑b
i ai = 1. Only in the case of b = 1 we apply ShakeDrop instead.
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our search space accross different budgets, including the importance of architectural choices
and hyperparameters on performance.

4.1. NAS Under Training Time Constraints

In our experiments, due to limited computational resources, and in order to explore a
training-time-constrained NAS paradigm, we do not allow individual training times as large
as those required to obtain the state-of-the-art performance, but limited the training time2

to a maximum of three hours for each sampled configuration (the minimal budget we con-
sider is 400 seconds). We used the default settings of BOHB, which results in budgets
that differ by a multiplicative factor of η = 3; with a maximum budget of 3h, this yielded
budgets of 400s, 1200s, 1h and 3h.

4.2. Results

Figure 1: Validation error of all configurations eval-
uated on the different budgets during the whole op-
timization procedure. The best performing configu-
ration (incumbent) as a function of time is visualized
by the black line.

We ran BOHB for an equivalent of 256
evaluations on the full budget of 3h (i.e.,
a total of 32 GPU days) and show the re-
sults in Figure 1. This provides the best
performance found as a function of time,
as well as the performance of all trained
networks, which shows that our search
did not only cover the good regions of the
space, but also explored sufficiently. Sur-
prisingly, the final performance reached
within this 3h budget was as low as 3.18%
test error; as Table 2 shows, this is lower
than what can be obtained with several
different standard architectures that were
also part of BOHB’s search space, trained for 3h using the same optimization pipeline and
hyperparameters. Training details for the other architectures can be found in Appendix B.
This demonstrates the benefit of optimizing both architecture and hyperparameters.

From Table 2, we also note that, amongst the three different sizes of multi-branch
residual architecture regularized with Shake-Shake, within the 3h time budget the medium-
sized architecture (26 2x64d) performed best, not the largest one (26 2x96d). This is in
stark contrast to comparisons with a large budget of 1800 epochs, for which the largest
architecture performs much better (Gastaldi, 2017; DeVries and Taylor, 2017). We believe
this effect is due to the strong stochasticity introduced by Shake-Shake regularization, which
prevents obtaining very good results quickly. Indeed, in a follow-up experiment with a WRN
architecture (Zagoruyko and Komodakis, 2016) outside of BOHB’s design space, which was
incompatible with Shake-Shake regularization, we obtained even slightly better results for
a time budget of 3h (but worse results for large budgets). This demonstrates an interaction
effect between the efficacy of the regularization method used and the available time budget.

2. We only measured the actual time spend in forward and backward passes during training and exclude
any preprocessing and validation overhead.
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Table 1: Spearman rank correla-
tion coefficients of the validation er-
rors between different budgets. The
correlation is high between every
budget and the next larger one, but
degrades quickly beyond that.

1200s 1h 3h

400s 0.87 0.31 0.05
1200s 0.88 0.64
1h 0.86

Table 2: Comparison of test performance between
manually-constructed architectures and the network config-
uration found by BOHB when trained for a 3 hour budget.
All networks used the same optimization pipeline and hy-
perparameters.

Network Params Test error (%)

ResNet-18 11.2M 3.34 ± 0.11

Shake-Shake 26 2x32d 2.9M 3.91 ± 0.09

Shake-Shake 26 2x64d 11.7M 3.38 ± 0.07

Shake-Shake 26 2x96d 26.2M 4.22 ± 0.06

Ours 27.6M 3.18± 0.16

4.3. Analysis

We now analyse the characteristics of our search space on the different budgets. By design,
BOHB optimizes the validation performance for each budget starting with the smallest one
and moving to the next larger one as soon as enough evaluations have finished successfully.
Consequently, the error rates for 400s have been extensively optimized, with coverage of the
search space gradually decreasing for larger budgets.

First, we studied the rank correlation of the final validation error of all configurations
that were trained on any particular pair of budgets.3 The results, summarized in Table 1,
clearly show that the relative performance of two configurations generalizes to somewhat
longer training times (e.g., correlations of roughly 0.87 for 3-fold increases of training time),
but that it quickly degrades with larger differences in budget and almost vanishes when
jumping directly from 400s to 3h. This means in particular that the ranking of the top
configurations cannot be deduced from the ranking of much shorter runs only, which is a
common practice in the current neural architecture search literature.

We now study the characteristics of the search space using functional analysis of vari-
ance (fANOVA; Hutter et al. (a)). This method allows us to quantify the importance of
architecture choices and hyperparameters based on the whole search space by marginaliz-
ing performances over all possible values that other hyperparameters could take based on
a model fit on the observations. The importance of a single choice, or a combination of
any number of choices, is quantified by the percentage of the performance variation that
is explained by only this choice/these choices. To improve the quality of the analysis, we
focus on the results after 400s up to the 1h budget, since enough evaluations have finished
on these allowing us to draw meaningful conclusions for these budgets.

We can observe different behavior for the various choices: The learning rate remains im-
portant throughout all budgets and its value in the best found configuration only changes
slightly. On the other hand, some architectural parameters that affect the number of net-
work parameters, e.g., the number of residual blocks within a block, can be heavily influ-
enced by a constrained budget; this is, e.g., demonstrated in the plots in the middle of
Fig. 2. For the 400s training budget, the networks with less residuals blocks in the first
block perform better on average and the importance of this choice is quite high. With
more training time, this choice becomes rather unimportant, and good configurations can
be found with almost any value. For the CutOut length and the number of residual blocks

3. We want to emphasize that most of the evaluations BOHB performed with a 3h budget are for configura-
tions that perform well on smaller budgets, and thus our samples are skewed towards good configurations.
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Figure 2: Parameter importance plots for three hyperparameters for training 400s (top row) and
1h (bottom row). The importance indicates the fraction of the variance explained by the individual
choice(s). The value of the best found configuration on this budget is indicated by the dashed line/
gray x. While the learning rate remains the same throughout the budgets, other choices are heavily
influenced by the constrained training time. For example, the characteristics for the number of
residual blocks (middle) and the interaction between the number of residual blocks and the CutOut
lengths (right), as well as their importance, change with the budget.

in the first block we find an interesting pattern (see plots on the right of Fig. 2). While the
good range for the CutOut length on the 400s budget is quite large (as long as the number
of residual blocks is small enough), the picture changes for the larger budget. There, the
CutOut length becomes more restricted, and the number of blocks becomes less relevant.

Overall, from this analysis, we conclude that there is a close interaction between good
architectural choices and hyperparameters on the one hand, and the runtime budget on the
other hand. The common practice of optimizing just on the smallest budget and evaluating
on the largest budget would be very wasteful in this case.

5. Conclusions

We showed that it is desirable and feasible to optimize neural architectures and hyperpa-
rameters jointly. We also demonstrated the potentially strong effects that short training
exerts on both architectural choices and hyperparameters, resulting in a poor correlation
between the performance after short and long training periods, and showed how to sidestep
this effect with incremental budget increases in the optimization process as implemented
by the recent BOHB approach.
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Appendix A. Joint Archicture and Hyperparameter Search Space

Table 3 summarizes the 10 architectural choices and 7 hyperparameters we used, along with
specific ranges and values of the best performing found configuration on the 3h budget.

Table 3: The configuration space for joint architecture and hyperparameter optimization. Each
numbered Residual Block, Residual Branches and Widen Factor correspond to each of the 3 main
blocks of the architecture. The last column represents the configuration which performs the best
after optimizing the search space with BOHB.

Hyperparameter Range Log-transform Value

Initial Learning Rate [0.001, 1.0] yes 0.648188
Batch Size [32, 128] yes 89

L2 regularization [0.00001, 0.001] yes 0.000339
Momentum [0.001, 0.99] no 0.099601
MixUp α [0.0, 1.0] no 0.492042

CutOut length [0, 20] no 3
ShakeDrop death rate [0.0, 1.0] no 0.038439

ResBlocks1 [1, 16] yes 3
ResBlocks2 [1, 16] yes 4
ResBlocks3 [1, 16] yes 2
ResBranches1 [1, 5] no 1
ResBranches2 [1, 5] no 1
ResBranches3 [1, 5] no 4

Filters0 [8, 32] yes 16
WidenFactor1 [0.5, 8.0] yes 6.241141
WidenFactor2 [0.5, 8.0] yes 1.388867
WidenFactor3 [0.5, 8.0] yes 3.344766

Appendix B. Training details

We use the PreAct ResNet-18 (He et al., 2016) and WideResNet-28-10 (Zagoruyko and
Komodakis, 2016) architectures with Shake-Shake regularization (S-S-I; see Gastaldi (2017)
for details). All networks were trained on one Nvidia GTX 1080Ti GPU. The parameters
of each model are initialized as described by He et al. (2016) and trained using SGD with
an initial learning rate of 0.1 and with Nesterov’s momentum of 0.9. All the models in 2 are
trained for 3h with the initial learning rate annealed using a cosine function with T0 = 720s,
Tmult = 2 (Loshchilov and Hutter, 2017). Furthermore, we also apply L2 regularization with
a factor of 10−4 and 5 · 10−4 to 3-branch and 2-branch networks, respectively.

During optimization, we split the CIFAR-10 (Krizhevsky, 2009) datasets into a 45k
data points for training, 5k for validation and a 10k for testing and we normalized the
features by the per-channel mean and standard deviation. For the training set we used
standard data augmentation scheme used for CIFAR-10 (He et al., 2016), i.e. we first
padded each image by 4 pixels, cropped a random 32x32 patch and flipped 50% horizontally.
Furthermore, we applied CutOut (DeVries and Taylor, 2017) with a mask length of 16 and
MixUp (Hongyi Zhang, 2018) with an α value of 0.2.
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