
Arber Zela Aaron Klein Stefan Falkner Frank Hutter

University of Freiburg

{zelaa, kleinaa, sfalkner, fh}@cs.uni-freiburg.de

BOHB

Towards Automated Deep Learning: Efficient Joint

Neural Architecture and Hyperparameter Search

In a Nutshell

• Optimizing hyperparameters and neural network architectures separately

may be suboptimal due to interactions between them

 We optimize a joint 17-dimensional architecture and hyperparameter

space and achieve competitive results for just 3 hours of training

• Performance after short and long training budgets only correlates weakly

 But correlation with intermediate budgets is much higher

 We use BOHB (Bayesian Optimization Hyperband) [Falkner et al.

2018] to incrementally increase budgets during optimization

Related Work

Many recent works on neural architecture search, but all of them use

two-step optimization (first architecture, then hyperparameters). E.g.:

• Reinforcement Learning [Zoph et al. 2018]: Train a controller RNN with PPO to

sample string encoding of the architecture

• Neuro-evolution [Liu et al. 2018a]: mutate population of models and add to the

population the best offsprings (w.r.t. validation error)

• Sequential model-based optimization [Liu et al. 2017]:

learn surrogate model and sample more efficient architectures

• Gradient-based [Liu et al. 2018b]: parameterize network architecture by creating

mixed operations and optimize using gradient descent

Original Bayesian optimization NAS papers already used joint optimization:

• Bayesian optimization [Bergstra et al. 2013, Domhan et al. 2015, Mendoza et al.

2016]: achieved state-of-the-art on several datasets using tree-based models

Search Space
Baseline: Multiple-branch ResNet.

Regularization:

- Shake-Shake (if > 2 branches)

- ShakeDrop (if 2 branches)

- CutOut

- MixUp

Results Analysis

Experiments

• Limited budgets (training time): 400s, 1200s, 1h and 3h

• 256 evaluations on the full budget of 3h (32 GPU days)

• Exploration-exploitation trade-off:

• explored sufficiently

• covered good regions of the space

• Better results than manually constructed architectures that are part of

the search space when trained for 3h

• Optimizing jointly architecture and hyperparameters beneficial

Model Param (M) Test Error

ResNet-18 11.2 3.34 ± 0.11

Shake-Shake

26 2x32d
2.9 3.91 ± 0.09

Shake-Shake

26 2x64d
11.7 3.38 ± 0.07

Shake-Shake

26 2x96d
26.2 4.42 ± 0.06

Ours 27.6 3.18 ± 0.16

1200s 1h 3h

0.87 0.31 0.05 400s

0.88 0.64 1200s

0.86 1h

• Spearman rank correlation between budgets performances

 Conclusion: short runs ranking ⇏ long runs ranking

Top row: 400s budget Bottom row: 1h budget Gray dashed line/cross: best performance

• fANOVA – quantifies global importance of all parameters

 Conclusion: strong interaction between architectural choices,

hyperparameters and the training time

Configurations

Evaluations

BO HB

Evaluations Budget

• Multi-armed bandit strategy

• Repeatedly calls SuccessiveHalving

• Allocates more resources to the best performing

configurations on lower budgets (by default best third)

• BOHB samples from a learned probabilistic model instead of randomly

• It uses a multivariate KDE to better model interactions between parameters

• Use probabilistic model 𝑝(𝑓|𝐷) to model function 𝒇
based on data points in 𝐷

• Exploration – Exploitation trade-off by means of

acquisition function 𝑎 ∶ 𝒳 → ℝ
• Iterate:

1. Select 𝑥𝑛𝑒𝑤 = arg𝑚𝑎𝑥𝑥∈𝒳 𝑎(𝑥)
2. Evaluate 𝑦𝑛𝑒𝑤 = 𝑓(𝑥𝑛𝑒𝑤) + 𝜖

3. 𝐷 ← 𝐷 ∪ (𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤)
• Tree Parzen Estimator (TPE) models densities

over the input space by means of kernel density

estimators (KDE), instead of modeling 𝑓

• Architectural Hyperparameters:

• 𝐹𝑖𝑙𝑡𝑒𝑟𝑠0: Number of filters for the first convolution

• 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘𝑠𝑗: Number of residual blocks for main block j

• 𝑅𝑒𝑠𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠𝑗: Number of residual branches for each

residual block in main block j

• 𝑊𝑖𝑑𝑒𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑗: Determines the number of filters after

main block j

• Other Hyperparameters:

• 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒, 𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒, 𝐿2 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛,

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚, 𝐶𝑢𝑡𝑂𝑢𝑡 𝐿𝑒𝑛𝑔𝑡ℎ, 𝑀𝑖𝑥𝑈𝑝 α,

𝑆ℎ𝑎𝑘𝑒𝐷𝑟𝑜𝑝 𝑑𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒

