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Abstract

Despite great successes in many fields, machine learning typically requires substantial hu-
man resources to determine a good machine learning pipeline (including various types of
preprocessing, and the choice of classifiers and hyperparameters). AutoML aims to free hu-
man practitioners and researchers from these menial tasks. The current state-of-the-art in
AutoML has been evaluated in the AutoML challenge 2018. Here, we describe our winning
entry to this challenge, dubbed PoSH Auto-sklearn, which combines an automatically pre-
selected portfolio, ensemble building and Bayesian optimization with successive halving.
Finally, we share insights in the importance of different parts of our approach.

Keywords: automated machine learning, Bayesian optimization, successive halving, hy-
perparameter tuning, competitions, meta-learning

1. Introduction

It is widely acknowledged these days that finding a well-performing machine learning pipeline
(including pre-processing, machine learning algorithm selection and hyperparameter opti-
mization) is a tedious and error-prone task for humans. In the light of growing interest in
AutoML methods, both from industry and academia, the ChaLearn team organized several
challenges on the topic. The first AutoML challenge (Guyon et al., 2015, 2016) attracted
over 100 teams and aimed at evaluating AutoML systems in a fair and systematic way. The
results demonstrated that automated machine learning can solve this task quite efficiently
and often even performs better than human experts. The second AutoML challenge (Guyon
et al., 2018.) just finished, and with this paper we describe our winning entry to this chal-
lenge, PoSH Auto-sklearn. Our contributions are as follows:

• For the first time, we give details of our winning entry to the previous AutoML
challenge (a variant of Auto-sklearn (Feurer et al., 2015a)), which inspired our new
submission (Section 2).

• We describe our new submission, PoSH Auto-sklearn and share our insights that gave
rise to its design (Section 3).

c© 2018 M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer & F. Hutter.
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Ŷtest

Bayesian optimization

Figure 1: Our pipeline submitted to the ChaLearn Automatic Machine Learning Challenge
(2014-2016)

• Although the datasets of the competition are not yet publicly available, we share
insights in the importance of the different parts of our approach based on the feedback
we received from the competition platform (Section 4).

2. ChaLearn Automatic Machine Learning Challenge (2014-2016)

The first AutoML challenge consisted of five rounds of increasing difficulty. In this section,
we briefly describe the setting of this challenge and our submitted AutoML system (which
also formed the basis of our submission to the AutoML challenge 2018).

2.1. Competition format

The challenge focused on supervised learning with featurized data. The competition had
five rounds, each of them featuring five new, featurized datasets from unknown domains.
Each of its rounds consisted of an auto-phase and a tweakathon-phase. For the tweakathon-
phase, participants had to submit results (gathered by training a model offline without
resource limitation), while for the auto-phase participants had to submit code that was
run on new unknown datasets under strict time and memory constraints. In both types of
phases, participants were ranked on each dataset and the average rank across all datasets
was used as the final rank.

2.2. Our Approach: Auto-sklearn

The challenge sparked the development of a general purpose AutoML tool which we dubbed
Auto-sklearn (Feurer et al., 2015a) due to the underlying machine learning framework, scikit-
learn (Pedregosa et al., 2011) and following Auto-WEKA (Thornton et al., 2013). Our
approach automatically constructed machine learning pipelines suggested by the Bayesian
optimization method SMAC (Hutter et al., 2011), warm-started with meta-learning (Feurer
et al., 2015b) and combined with post-hoc ensemble building to achieve robust performance
(see Figure 1).

Starting with a simple tool in the first phases of the challenge, we quickly extended it
to keep up with the increasing difficulty in later phases. As the dataset size increased, our
warmstarting approach (Feurer et al., 2015b) became too slow. For this reason, we included
a manual strategy to produce predictions that are better than random as fast as possible:
Before starting Bayesian optimization, we ran a manually defined set of three diverse, simple
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pipelines on a subset of the data (one third of the data, up to a maximum of 10 000 data
points) for a short budget. If one of these failed, we further reduced the amount of data
twice, moving on if the configuration failed three times. Since the challenge featured large
datasets in the later stages, this strategy was vital to our success. We also believe that
our strict resource management, rigorous testing and robust error handling contributed to
a robust submission.

3. AutoML 2018 challenge

The second AutoML challenge ran from November 2017 until March 2018. In the following
we highlight the differences to the first challenge and describe our winning entry.

3.1. Competition format

Notable differences to the first challenge were (1) there was only a single auto-phase, (2)
the datasets provided were comparably homogeneous: dense, binary classification and nor-
malized area under the ROC curve as the target metric (however, they could have missing
values, categorical features and be imbalanced), and (3) datasets could be marked as being
recorded sequentially. Table 1 provides characteristics of the datasets provided for develop-
ment (left) and the datasets used for the final evaluation (right).

As in the previous challenge, the goal was to submit an AutoML-system to be executed
without human intervention on the Codalab platform. The resources available were 2 CPU
Cores with 16GB memory1 and 40GB SSD running Ubuntu OS under rigid time limits (see
column ‘time (sec)’ in Table 1).

Name #Sampl. #Feat. Seq. time (sec)

Gina 3 153 970 600
Ada 4 147 48 600
Arcene 10 000 100 600
Guillermo 20 000 4 296 1200
Rl 31 406 22 X 1200

Name #Sampl. #Feat. Seq. time (sec)

Riccardo 20 000 4 296 1200
Rm 28 278 89 X 1200
Pm 29 964 89 X 1200
Rh 31 498 76 X 1200
Ri 30 562 113 X 1200

Table 1: Properties of the datasets provided for developing the submission (left) and of the
datasets used for the final evaluation (right).

3.2. Our Approach: PoSH Auto-sklearn

Particularly in the light of the tighter time constraints, we revisited the previous version
of Auto-sklearn and made substantial changes which we describe in the following. Figure 2
illustrates our new AutoML pipeline, which includes the following elements.

1. While the website states the resources were 8GB, a private email of the organizers to the participants
states that the amount of memory was doubled for the final execution.
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Figure 2: Our pipeline submitted to the AutoML challenge 2018

Successive Halving. A key issue we identified during the last AutoML challenge was
that training expensive configurations on the complete training set, combined with a low
time budget, does not scale well to large datasets. At the same time, we noticed that our
(then manual) strategy to run predefined pipelines on subsets of the data already yielded
predictions good enough for ensemble building. For our new submission, we therefore made
use of the recent bandit strategy Successive Halving (SH, Jamieson and Talwalkar (2016))
and also adapted our configuration space to consider classifiers which can be leveraged by
SH’s budget allocation. SH allows to specify a minimum and maximum budget for each
configuration (e.g. in terms of number of training iterations or dataset size); it starts with
the minimum budget and iteratively increases the budget for the pipelines that perform
best with the current budget. A nice aspect of SH is its simplicity: it can be implemented
with only a few lines of code.

Bayesian Optimization with Successive Halving. Recently, SH and its extension Hy-
berband have been successfully applied to hyperparameter optimization problems (Jamieson
and Talwalkar, 2016; Li et al., 2017), demonstrating strong performance with small budgets.
Combining Hyberband with Bayesian optimization yields the state-of-the-art hyperparam-
eter optimization method BOHB (Bayesian Optimization HyperBand) (Falkner et al.,
2018). Since BOHB was shown to outperform both traditional Bayesian optimization with-
out budget considerations, as well as Hyberband and SH by itself, we decided to use it as
the optimization workhorse for our submission.2

Portfolio Building. While our submission to the last AutoML challenge used meta-
features to select a set of previously-seen datasets Dprev that were similar to the new
dataset to be tackled, and then started with configurations that were found to perform
well on Dprev (Feurer et al., 2015b), we decided to simplify this system. In particular, we
chose to start with the same static portfolio of candidate configurations for every dataset.
We constructed this portfolio as follows: we gathered 421 binary-classification datasets from
OpenML (Vanschoren et al., 2014). For each dataset we optimized our machine learning
pipeline with SMAC (Hutter et al., 2011) for up to 1000 function evaluations or 2 days,
whichever was reached first. Next, we evaluated these pipelines on all 421 datasets to obtain
a 421 × 421 matrix containing the test scores. We then used greedy submodular function

2. In practice, we did not use Hyberband , but only SH, as we did not expect to finish a full iteration
of Hyberband in the competition’s very tight budget and rather wanted to maximize the number of
evaluated configurations.
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minimization (Krause and Golovin, 2014) w.r.t. the normalized regret across all datasets in
this matrix to obtain a portfolio of machine learning pipelines (see also Appendix A.3 for
more details).

Configuration space. Our configuration space was a subspace of the Auto-sklearn con-
figuration space suitable to work with SH’s budgets: dataset preprocessing (feature scaling,
imputation of missing value, treatment of categorical values), but no feature preprocessing
(as we had no iterative option of this available), and one of four classifiers: support vec-
tor machine (SVM), random forest, linear classification (via stochastic gradient descent) or
XGBoost (Chen and Guestrin, 2016), leading to a total of 37 hyperparameters (for details,
see Appendix A.1). We used the number of iterations as the budget, except for the SVM,
for which we used dataset size as the budget. The exact budgets are given in Appendix A.2.

Ensemble building. Although ensemble building was an important component in Auto-
sklearn, we found that ensemble selection (Caruana et al., 2004) added too many bad models
to the final ensemble. Therefore, we introduced a new regularization technique similar to
library pruning (Caruana et al., 2006). Specifically, we compared the loss of each potential
candidate model to the loss of the single best model and if the relative difference between
these losses was larger than 3% we did not consider the model for the ensemble.

PoSH Auto-sklearn. We combined all of the above methods to form our challenge entry,
dubbed PoSH Auto-sklearn.3 This name is an abbreviation of Portfolio Successive Halving
combined with Auto-sklearn. Specifically, it runs one iteration of SH on our portfolio of
machine learning pipelines and then uses Bayesian optimization4 to obtain new configura-
tions for SH. We started ensemble selection in a separate process and continuously updated
our ensemble as new models were evaluated.5

Manual design decisions. To build ensembles and compare configurations, we used 2/3
of the available data for training and 1/3 for validation in SH and building the ensemble.
We shuffled datasets prior to splitting unless they were marked as sequential. Furthermore,
we designed our submission to yield robust results within a short time limit as follows: If a
dataset had more than 500 features, we used univariate feature selection on a subset of 1 000
data points to reduce the number of features to 500. Further manual design decisions (which
were not relevant for the competition in the end) and a description of our development
process are listed in Appendix A.4/A.5.

4. Results and Analysis of the AutoML Challenge 2018

Overall, the final datasets used in the challenge had different properties than we anticipated
based on the datasets provided for development (compare left and right side of Table 1).
Nevertheless, our robust approach was able to cope with them quite well: PoSH Auto-
sklearn placed first with an average rank of 2.8, with the second place having a rank of
3.8 and the third of 5.4. To provide an analysis of our submission, we use the logfiles

3. http://ml.informatik.uni-freiburg.de/downloads/automl_competition_2018.zip

4. BOHB requires at least as many function evaluations as hyperparameters before building a model; until
these are available it uses random configurations to obtain a global sample of the space.

5. We also considered models that were dropped by SH and were only trained on smaller budgets.
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Name #Configs (m) Ensemble size Val. Perf (p) Val. Perf Test Perf Rank

Riccardo 39 (0) 2(2/0/0)/ 2 0.9997 0.9997 0.2635 1
Rm 47 (3) 3(2/1/0)/ 4 0.7629 0.7757 0.6766 5
Pm 28 (0) 2(2/0/0)/ 2 0.8669 0.8669 0.5533 3
Rh 32 (0) 6(4/2/0)/23 0.3658 0.3702 0.2839 4
Ri 47 (7) 9(3/5/1)/28 0.3478 0.3806 0.3932 1

Table 2: Results on the competition datasets. #Configs is the number of evaluated distinct
configurations (with the number of configurations proposed by the model in BOHB
given in brackets). The column Ensemble Size gives the amount of ensemble mem-
bers out of the number of models considered for the ensemble. Values in brackets
are the number of ensemble members from the portfolio, from random search and
from the model. Val. Perf (p) is the validation performance of configurations in
the portfolio, Val. Perf is the final validation performance. Test Perf denotes
the score of our submission on the private, undisclosed test set which was used
to compute the ranks. All performances are the normalized area under the ROC
curve (Guyon et al., 2015).

provided by Codalab from which we could obtain the statistics shown in Table 2. We
plan to comprehensively analyze and compare our submission against Auto-sklearn in the
future, on the one hand on the competition datasets6 and on the other hand also when
trained based on the same meta-datasets. (Unfortunately, we cannot do a full comparison
of the current versions right now since we used all clean binary datasets we had available
to train PoSH Auto-sklearn.)

Although all datasets in the competition were rather large, for each of them we managed
to evaluate all 16 pipelines from our dataset-agnostic portfolio and to evaluate at least one
pipeline on the full budget (i.e. finish one iteration of successive halving). For three of
the datasets we even finished a second iteration of successive halving and for two we also
reached the necessary number of function evaluations to build a model for guiding the
search. Comparing columns 4 and 5, we find that there were still modest improvements
after the evaluation of the 16 portfolio members with SH for 3 out of 5 datasets. Comparing
columns 5 and 6, on almost all datasets we observed a large gap between validation and test
performance; the largest of these occurred for dataset Riccardo. Our ensembles were rather
small compared to the number of evaluated pipelines and consisted mainly of portfolio
members. Overall, the results indicate that the portfolio provided a robust and diverse
enough set of pipelines, so it was hard to find much better configurations in the remaining
time.

Interestingly, even though we filtered ensemble members much more aggressively com-
pared to our previous approaches (Feurer et al., 2015a), the number of candidate models
available for building ensembles on two datasets (Rh and Ri) were still rather large. This
indicates that many pipelines performed well on these datasets (at most 3% worse than the

6. According to the competition website, the 5 private datasets will be released.
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single best pipeline). We believe that this new regularization technique was very impor-
tant for our method, since unregularized ensemble selection would lead to overfitting with
a small number of candidate models (and due to the short time budgets small numbers of
candidate models were the norm in this competition).

Although we already reduced the space of considered ML algorithms substantially com-
pared to our previous Auto-sklearn (4 vs. 15 classifiers), we could have reduced this set
even further since, in the end, only XGBoost models ended up in the final ensembles for
the challenge.

5. Conclusion

We introduced PoSH Auto-sklearn, our winning entry to the second AutoML challenge.
Based on our final entry to the first AutoML competition, we described the modification
we introduced to cope with the shorter time budget and obtain a more principled approach.
In the future, we plan to study the impact of our manual design decisions with an ablation
study and develop techniques to automate these as well. Furthermore, we plan to perform
a comprehensive comparison against Auto-sklearn as described in Section 4.
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Appendix A. Details

A.1. Configuration Space

Name Values Default

Splitting criterion {gini, entropy} gini
Min #samples per split [2, 20] 2
Min #samples per leaf [1, 20] 1
Bootstrap {True, False} True

Max % of features 10[0,1] 0.5

Table 3: Configuration space of the random forest.

Name Values Default Log

C [2−5, 215] 1 X
gamma [2−15, 23] 0.1 X
shrinking True, False True

Table 4: Configuration space of the support vector machine.

Name Values Default Log

Loss
{hinge, log, modified huber,

log
squared hinge, perceptron}

Penalty {l1, l2, elastic net} l2
α [1, 20] 1
l1 ratio [1e−9, 1e−1] 0.15 X
tolerance [1e−5, 1e−1] 1e−4 X
epsilon [1e−5, 1e−1] 1e−4 X
learning rate schedule {optimal, invscaling, constant} invscaling
eta0 [1e−7, 1e−1] 1e−2 X
powert [1e−5, 1] 0.5
average False, True False

Table 5: Configuration space of the linear classifier trained by stochastic gradient descent.
l1 ratio is only active for the elastic net penalty, epsilon only for the modified
huber loss function, and powert only for the invscaling learning rate schedule.
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Name Values Default Log

Max depth [1, 10] 3
Learning rate [0.01, 1] 0.1 X
Booster GBTree, DART GBTree
Subsample [0.01, 1.0] 1.0
Min child weight [1e−10, 20] 1

Sample type uniform, weighted uniform
Normalization type tree, forest tree
Dropout rate [1e− 10, 1− 1e− 10] 0.5

Table 6: Configuration space of Extreme Gradient Boosting (Chen and Guestrin, 2016).
Hyperparameters in the lower half are only active if the Dropout Additive Re-
gression Trees (DART)-Booster (Vinayak and Gilad-Bachrach, 2015) is chosen.

Name Values Default Log

Imputation strategy {mean, median, most frequent} mean
One Hot Encoding (OHE) {On, Off} On
OHE use minimum fraction {On, Off} On
OHE mimimum fraction [0.0001, 0.5] 0.01 X

Rescaling strategy
{Standardize, None, MinMax,

StandardizeNormalize, Quantile Transformer,
Percentile MinMax}

# Quantiles [10, 2000] 1000
Quantile distribution {uniform, normal} uniform
Lower percentile [0.001, 0.3] 0.25
Upper percentile [0.7, 0.999] 0.75

Table 7: Configuration space of the preprocessing steps.

A.2. Budgets for Successive Halving:

Budgets:

• SVM: percentage of data

• Random Forest: 128 · percentage

• SGD: 512 · percentage (+ early stopping)

• XGBoost: 512 · percentage (no early stopping)

To make sure that no single configuration can make our submission fail by running
too long, or running until the end and not giving other configurations time, we allocated
a time budget to each run which was proportional to the total number of iterations or
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dataset subset budget of successive halving. To practically enforce the limits we used the
Pynisher (Falkner, 2015 – 2016), which we also used in Auto-sklearn (Feurer et al., 2015a).
First, we computed the total budget required for successive halving in relation to the max
budget. Given an individual budget, we calculated what percentage of the total budget we
could allocate. The final time budget allocated is this percentage of the total time budget
for a dataset. To keep our code simple we did not reload configurations from disk but
re-trained them from scratch. This is at most twice as slow.

A.3. Portfolio

We used a portfolio of size 16 which we obtained by greedily adding machine learning
pipelines that performed well across our datasets. Specifically, our portfolio consisted of
seven XGBoost, two Random Forest, one linear regression and five SVM configurations plus
one manually selected linear regression configuration as a backup solution.

A.4. Additional Measures for Robustness

We implemented the following fallbacks and preprocessing steps in PoSH Auto-sklearn which
were not relevant for the competition in the end:

• We first saved a dummy predictions consisting of predictions of the majority class to
disk. In case something would crashes afterwards, constantly predicting the majority
class gives a score of at least 0.0, while not producing a single predictions is punished
with a score of -1.0.

• If the dataset had less than 1000 data points, we reverted to cross-validation instead
of successive halving.

• For datasets with more than 45.000 data points, we capped the number of training
points at 30.000 to retain decent computational complexity. 45.000 was used as a
threshold as we used 2

3 of the data for training only (30.000 data points).

• We prepared a backup solution using Extremely Randomized Trees (Geurts et al.,
2006) for the case that no configuration from our portfolio completed in the first
iteration (smallest budget) of successive halving.

A.5. Development Process

We developed our submission using Python3 on top of Auto-sklearn using a custom version
of XGBoost (Chen and Guestrin, 2016) which enabled iterative training. We automated
several steps of the development process to efficiently evaluate design decisions. First, we
had a bash-script that automatically collects all dependencies and creates a submission
ready to be uploaded. Second, we used the provided Docker image to reconstruct challenge
conditions and test our submission for robustness and bugs.
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