
Uncertainty Estimates for Optical Flow with Multi-Hypotheses Networks

Eddy Ilg*, Özgün Çiçek*, Silvio Galesso*, Aaron Klein, Osama Makansi, Frank Hutter, Thomas Brox
University of Freiburg, Germany

{ilg,cicek,galessos,kleinaa,makansio,fh,brox}@cs.uni-freiburg.de

Abstract
Recent work has shown that optical flow estimation

can be formulated as an end-to-end supervised learning
problem, which yields estimates with a superior accuracy-
runtime tradeoff compared to alternative methodology. In
this paper, we make the network estimate its local uncer-
tainty about the correctness of its prediction, which is vital
information when building decisions on top of the estimated
optical flow. For the first time we compare several strate-
gies and techniques to estimate uncertainty in a large-scale
computer vision task like optical flow estimation. Moreover,
we introduce a new network architecture that enforces com-
plementary hypotheses and provides uncertainty estimates
efficiently within a single forward pass without the need for
sampling or ensembles. We demonstrate high-quality un-
certainty estimates that clearly improve over previous con-
fidence measures on optical flow and allow for interactive
frame rates.

1. Introduction

The past research in computer vision has shown that
deep networks typically outperform handcrafted approaches
in terms of accuracy and speed. Optical flow estimation, as
one example, can be formulated as a feed-forward convo-
lutional network (FlowNet) [6, 11]. FlowNet yields high
accuracy flow at interactive frame rates, which is relevant
for many applications in the automotive domain or for ac-
tivity understanding. A valid critique of such a learning-
based approach is its black-box nature: since all parts of
the motion estimation are learned from data, there is no
strict understanding on how the problem is solved by the
network. Although FlowNet 2.0 [11] was shown to general-
ize well across various datasets, there is no guarantee that it
will also work in different scenarios that contain unknown
challenges. In real-world scenarios, such as giving control
commands to an autonomously driving car, an erroneous
decision can be fatal; thus it is not possible to deploy such a
system without information about how reliable the underly-

∗Equal contribution

Figure 1: Example from KITTI2015. Top: First image
and ground-truth flow (pedestrians are excluded from the
ground-truth). Bottom: Estimated uncertainty (visualized
as heatmap) and estimated optical flow. The estimated con-
fidence states that motion estimation in the shadow area is
unreliable, contrary to the motion of the car, which is esti-
mated with higher certainty. Most reliable are the estimates
for the static background.

ing estimates are. The least one should expect from the net-
work is an estimate of its own uncertainty that would allow
the network to highlight hard cases, where it cannot reliably
estimate the optical flow or where it must decide upon mul-
tiple probable hypotheses; see Figure 1. However, besides
few exceptions [14, 24], deep networks in computer vision
only yield their single preferred prediction rather than the
parameters of a distribution.

The first contribution of this paper is an answer to the
open question which of the many approaches for uncer-
tainty estimation, most of which have been applied only to
small problems so far, are most efficient for high-resolution
encoder-decoder regression networks. We provide a com-
prehensive study of empirical ensembles, predictive models
and predictive ensembles. While the first one is straight-
forward and purely empirical, the second one yields the
parameters of a distribution, and the third approximates
Bayesian neural networks (BNNs). We implemented these
approaches for FlowNet using the common MC dropout [7],
and the less common Bootstrapped Ensembles [18] and
snapshot ensembles [10]. We find that in general all these

1

ar
X

iv
:1

80
2.

07
09

5v
1

 [
cs

.C
V

]
 2

0
Fe

b
20

18

approaches yield very good uncertainty estimates, where
the best performance was achieved with uncertainty esti-
mates derived from Bootstrapped Ensembles of predictive
networks.

While such ensembles are a good way to obtain uncer-
tainty estimates, they must run multiple networks to cre-
ate sufficiently many samples. This drawback increases the
computational load and memory footprint at training and
test time linearly with the number of samples, such that
these approaches are not applicable in real-time.

As a second contribution, we present a multi-headed net-
work architecture that yields multiple hypotheses in a sin-
gle network without the need of sampling. We use a loss
that only penalizes the best hypothesis, which pushes the
network to make multiple different predictions in case of
doubt. We train a second network to optimally combine the
hypotheses and to estimate the final uncertainty. This net-
work yields the same good uncertainty estimates as Boot-
strapped Ensembles, but allows for interactive frame rates.

2. Related Work
Confidence measures for optical flow. While there is

a large number of optical flow estimation methods, only
few of them provide uncertainty estimates. Post-hoc meth-
ods apply post-processing to already estimated flow fields.
Kondermann et al. [15] used a learned linear subspace of
typical displacement neighborhoods to test the reliability of
a model. In their follow-up work [16], they proposed a hy-
pothesis testing method based on probabilistic motion mod-
els learned from ground-truth data. Aodha et al. [20] trained
a binary classifier to predict whether the endpoint error of
each pixel is bigger or smaller than a certain threshold and
used the predicted classifier’s probability as an uncertainty
measure. All post-hoc methods ignore information given by
the model structure.

Model-inherent methods, in contrast, produce their un-
certainty estimates using the internal estimation model, i.e.,
energy minimization models. Bruhn and Weickert [3] used
the inverse of the energy functional as a measure of the devi-
ation from the model assumptions. Kybic and Nieuwenhuis
[17] performed bootstrap sampling on the data term of an
energy-based method in order to obtain meaningful statis-
tics of the flow prediction. The most recent work by Wan-
nenwetsch et al. [27] derived a probabilistic approximation
of the posterior of the flow field from the energy functional
and computed flow mean and covariance via Bayesian op-
timization. Ummenhofer et al. [26] present a depth estima-
tion CNN that internally uses a predictor for the deviation
of the estimated optical flow from the ground-truth. This
yields a confidence map for the intermediate optical flow
that is used internally within the network. However, this ap-
proach treats flow and confidence separately and there was
no evaluation for the reliability of the confidence measure.

Uncertainty estimation with CNNs. Bayesian neu-
ral networks (BNNs) have been shown to obtain well-
calibrated uncertainty estimates while maintaining the prop-
erties of standard neural networks [23, 21]. Early work [23]
mostly used Markov Chain Monte Carlo (MCMC) methods
to sample networks from the distribution of the weights,
where some, for instance Hamiltonian Monte Carlo, can
make use of the gradient information provided by the back-
propagation algorithm. More recent methods generalize tra-
ditional gradient based MCMC methods to the stochastic
mini-batch setting, where only noisy estimates of the true
gradient are available [5, 28]. However, even these re-
cent MCMC methods do not scale well to high-dimensional
spaces, and since contemporary encoder-decoder networks
like FlowNet have millions of weights, they do not apply in
this setting.

Instead of sampling, variational inference methods try
to approximate the distribution of the weights by a more
tractable distribution [8, 2]. Even though they usually scale
much better with the number of datapoints and the number
of weights than their MCMC counterparts, they have been
applied only to much smaller networks [9, 2] than in the
present paper.

Gal and Ghahramani [7] sampled the weights by using
dropout after each layer and estimated the epistemic uncer-
tainty of neural networks. In a follow-up work by Kendall
and Gal [14], this idea was applied to vision tasks, and the
aleatoric uncertainty (which explains the noise in the ob-
servations) and the epistemic uncertainty (which explains
model uncertainty) were studied in a joint framework. We
show in this paper, that the dropout strategy used in all pre-
vious computer vision applications [14, 24] is not the best
one, and other strategies yield better results.

In contrast to Bayesian approaches, such as MCMC sam-
pling, bootstrapping is a frequentist method that is easy to
implement and scales nicely to high-dimensional spaces,
since it only requires point estimates of the weights. The
idea is to train M neural networks independently on M dif-
ferent bootstrapped subsets of the training data and to treat
them as independent samples from the weight distribution.
While bootstrapping does not ensure diversity of the mod-
els and in the worst case could lead to M identical models,
Lakshminarayanan et al. [18] argued that ensemble model
averaging can be seen as dropout averaging. They trained
individual networks with random initialization and random
data shuffling, where each network predicts a mean and a
variance. During test time, they combined the individual
model predictions to account for the epistemic uncertainty
of the network. We also consider so-called snapshot ensem-
bles [10] in our experiments. These are obtained rather effi-
ciently via Stochastic Gradient Descent with warm Restarts
(SGDR) [19].

FlowNetC Est.

(a) FlowNetC Emp

FlowNetC Est.

FlowNetC Est.

FlowNetC Est.

.

.

.

SGDR

Dropout

Bootstrapping

(b) Emp Ensembles

FlowNetC
Pred. Mean

Pred. Var

(c) FlowNetC Pred

FlowNetC

FlowNetC

FlowNetC

.

.

.

Pred. Mean

Pred. Var

Pred. Mean

Pred. Var

Pred. Mean

Pred. Var

SGDR

Dropout

Bootstrapping

(d) Pred Ensembles

FlowNetH MergeNet
Pred. Mean

Pred. Var

Pred. Mean

Pred. Var

Pred. Mean

Pred. Var

Pred. Mean

Pred. Var

.

.

.

(e) FlowNetH-Pred-Merged

Figure 2: Overview of the networks and ensembles considered in this paper. (a) FlowNetC trained with EPE loss. (b) Same
network, where an ensemble is built using dropout, bootstrapping or SGDR. (c) FlowNetC trained with log-likelihood loss
to predict mean and variance. (d) Same network, where an ensemble is built using dropout, bootstrapping or SGDR. (e)
FlowNetH trained to predict multiple hypotheses with variances, which are merged to a single distributional output.

3. Uncertainty Estimation with Deep Networks
In this section we formally describe the concept of un-

certainty estimation for CNNs and explain how to apply
it to flow estimation. Assume we have a dataset D =
{(x0, ygt

0), . . . , (xN , ygtN))}, which is generated by sampling
from a joint distribution p(x, y). In CNNs, it is assumed that
there is a unique mapping from x to y by a function fw(x),
which is parametrized by weights w that are optimized ac-
cording to a given loss function on D.

For optical flow, we denote the trained network as a map-
ping from the input images x = (I1, I2) to the output optical
flow y = (u, v) as y = fw(I1, I2), where u, v are the x- and
y-components of the optical flow. We base our flow estima-
tion model on the deterministic FlowNet by Dosovitskiy et
al. [6] and train a variant of FlowNetC on the FlyingChairs
dataset to minimize the per-pixel endpoint error:

EPE =
√

(u− ugt)2 + (v − vgt)2 , (1)

where the pixel location is omitted for brevity. This net-
work, as depicted in Figure 2a, is fully deterministic and
yields only the network’s preferred output y = fw(x). De-
pending on the loss function, this typically corresponds to
the mean of the distribution p(y|x,D). In this paper, we in-
vestigate three approaches to model uncertainty. They are
based on the empirical mean and variance of the distribu-
tion, a parametric model of the distribution, and a combi-
nation of both approaches. The variance σ2 in all these ap-
proaches serves as an estimate of the uncertainty.

3.1. Empirical Uncertainty Estimation

A very simple approach to get uncertainty estimates is
to train M different models independently, such that the
mean and the variance of the distribution p(y|x,D) can be

approximated with the empirical mean and variance of the
individual model’s predictions. Let fwi

(x) denote model
i of an ensemble of M models with outputs uwi

and vwi
.

We can compute the empirical mean and variance for the
u-component by:

µu =
1

M

M∑
i=1

uwi(x) (2)

σ2
u =

1

M

M∑
i=1

(uwi(x)− µu)2 (3)

and accordingly for the v-component of the optical flow.
Such an ensemble of M networks, as depicted in Figure 2b,
can be built in multiple ways. The most common way is via
Monte Carlo Dropout [7]. Using dropout also at test time,
it is possible to randomly sample from network weights M
times to build an ensemble. Alternatively, ensembles of in-
dividual networks can be trained with random weight ini-
tialization, data shuffling, and bootstrapping as proposed
by Lakshminarayanan et al. [18]. A more efficient way of
building an ensemble is to use M pre-converged snapshots
of a single network trained with the SGDR [19] learning
scheme, as proposed by Huang et al. [10]. We investigate
these three ways of building ensembles for flow estimation
and refer to them as Dropout, Bootstrapped Ensembles and
SGDR Ensembles, respectively.

3.2. Predictive Uncertainty Estimation

Alternatively, we can train a network to output the
parameters θ of a parametric model of the distribution
p(y|x,D). In the literature, Gaussian distributions (where
θ parameterizes the distribution’s mean and the variance)
are most common, but any type of parametric distribution is

possible. Such networks can be optimized by maximizing
their log-likelihood:

log p(D | w) =
1

N

N∑
i=1

log p(yi | θ(xi,w)) (4)

w.r.t. w. The predictive distribution for an input x is then
defined as:

p(y | x,w) ≡ p(y | θ(x,w)). (5)

Figure 3a shows the distribution over errors of FlowNet on
the Sintel clean training dataset [4] when trained using the
endpoint error. It reveals that a Laplace distribution fits the
underlying error distribution with its long tails better than a
Gaussian distribution. Thus, we model the predictive distri-
bution by a Laplacian. The univariate Laplace distribution
has two parameters a and b and is defined as:

L(u|a, b) =
1

2b
e−
|u−a|

b . (6)

Figure 3b shows that the joint distribution for u and v is axis
aligned. This justifies the approximation of the bivariate
Laplace distribution by two independent univariate Lapla-
cians for the u and v components of the optical flow vector.
The approximation yields:

L(u, v|au, av, bu, bv) ≈ L(u|au, bu) · L(v|av, bv). (7)

We obtain a probabilistic version of FlowNet with outputs
au, av , bu, bv by minimizing the negative log-likelihood of
Eq. 7 on the dataset D. As an uncertainty estimate we use
the variance of the predictive distribution, which in this case
is σ2 = 2b2. This case corresponds to a single FlowNetC
predicting flow and uncertainty as illustrated in Figure 2c.

3.3. Bayesian Uncertainty Estimation

From a Bayesian perspective, to obtain an estimate of
model uncertainty, rather than choosing a point estimate for
w, we would marginalize over all possible values:

p(y | x,D) =

∫
p(y | x,w)p(w | D)dw (8)

=

∫
p(y | θ(x,w))p(w | D)dw. (9)

This integral cannot be computed in closed form, but by
sampling M networks wi ∼ p(w|D) from the posterior dis-
tribution and using a Monte-Carlo approximation, we can
approximate its mean and variance as:

p(y | x,D) ≈
M∑
i=1

p(y | θ(x,wi)). (10)

−1.0 −0.5 0.0 0.5 1.0
upred − ugt

0.00

0.01

0.02

0.03

0.04

D
e
n
si
ty

Fitted Gaussian

Fitted Laplacian

Measured

(a) (b)

Figure 3: Distribution over errors of the optical flow esti-
mated with FlowNetC on the Sintel train clean dataset. (a)
Distribution for the x-component of the error (u−ugt). The
error distribution has long tails and is better approximated
by a Laplace than by a Gaussian. (b) Scatter plot of the
error distribution. The error is axis aligned.

Regardless of which parametric distribution is chosen, the
distributions predicted by each individual network with
weights wi have a mean µi and a variance σ2

i . The mean and
variance of the mixture distribution in Eq. 10 can then be
computed by the law of total variance for the u-component
(as well as for the v component) as:

µu =
1

M

M∑
i=1

µu,i (11)

σ2
u =

1

M

M∑
i=1

(
(µu,i − µu)2 + σ2

u,i

)
. (12)

This again can be implemented as ensembles obtained by
predictive variants of dropout, bootstrapping or SGDR,
where the ideas from Section 3.1 and Section 3.2 are com-
bined as shown in Figure 2d.

4. Predicting Multiple Hypothesis within a Sin-
gle Network

The methods presented in the Sections 3.1 and 3.3 re-
quire multiple forward passes to obtain multiple samples
with the drawback of a much increased computational cost
at runtime. In this section, we propose a loss function to
make multiple predictions within a single network. We call
these predictions hypotheses. For the predicted hypotheses,
we encourage multimodality by the design of the loss func-
tion. This makes the predictions more diverse and leads
to capturing more different solutions, but does not allow
for merging by simply computing the mean as for the en-
sembles presented in the last section. Therefore, we also
propose a second network that merges the hypotheses to a
single prediction and variance, as depicted in Figure 2e.

Sched EPE
FlowNetC [11] 600k 3.77
FlowNetC [11] 1.2m 3.58
FlowNetC ours 600k 3.40

Table 1: Comparison between the original FlowNetC [11]
and implementation in this paper with slightly improved set-
tings on Sintel train clean.

Since ground-truth is available only for the single true
solution, the question arises of how to train a network to
predict multiple hypotheses and how to ensure that each
hypothesis has meaningful information content. Let the
loss between a predicted flow vector y(i, j) and its ground-
truth ygt(i, j) at pixel i, j be defined by the negative log-
likelihood (Section 3.2) and let the predicted hypotheses be
denoted as (µ1,σ1), . . . , (µM ,σM), consisting of a two-
channel mean µi and two-channel variance σi each. We
propose the following loss function:

Lhyp =
∑
i,j

l(µbest idx(i,j)(i, j)) + ∆(i, j) , (13)

where best idx(i, j) selects the best hypothesis per pixel
according to the endpoint error of its predicted mean to the
ground-truth:

best idx(i, j) = argmin
k

[
EPE(µk(i, j),ygt(i, j))

]
,

(14)
and ∆ = ∆u + ∆v enforces similar solutions to lie within
the same hypothesis k via one-sided differences, e.g. for the
u component:

∆u(i, j) =
∑

k,i>1,j

|µk,u(i, j)− µk,u(i− 1, j)|+

∑
k,i,j>1

|µk,u(i, j)− µk,u(i, j − 1)|
(15)

To minimize this loss function, the network must predict
the ground-truth in at least one of the hypotheses. In loca-
tions where multiple likely solutions exist and the network
cannot decide for one of them, the network will predict sev-
eral different likely solutions to increase the chance that the
true solution is among these predictions. Consequently, the
network will favor making diverse guesses to increase its
chances and the loss triggers dissimilar hypotheses in cases
of uncertainty.

5. Experiments
Conventions. When a single network is trained against

the endpoint error, we refer to this single network and the re-
sulting ensemble as empirical (abbreviated as Emp; Figures

2a and 2b), while when the single network is trained against
the negative log-likelihood, we refer to the single network
and the ensemble as predictive (Pred; Figures 2c and 2d).
When multiple samples or solutions are merged with a net-
work, we add Merged to the name. E.g. FlowNetH-Pred-
Merged refers to a FlowNetH that predicts multiple hy-
potheses and merges them with a network, using the loss
for a predictive distribution for both, hypotheses and merg-
ing, respectively (Figure 2e).

5.1. Training Settings

Our networks are based on the FlowNetC architecture
from Dosovitsky et al. [6] and the settings from Ilg et
al. [11]. We find that using Batch Normalization [12] and
a continuously dropping cosine learning rate schedule [19]
yield shorter training times and improve the results (see Ta-
ble 1). We train on FlyingChairs [6] and start with a learning
rate of 2e− 4. For all networks, we fix a training budget of
600k iterations per network, with an exception for SGDR,
where we also evaluate performing some pre-cycles. For
SGDR Ensembles, we perform restarts every 75k iterations.
We fix the Tmult to 1, so that each annealing takes the same
number of iterations. We experiment with different variants
of building ensembles using snapshots at the end of each
annealing. We always take the latest M snapshots when
building an ensemble. For dropout experiments, we use a
dropout ratio of 0.2 as proposed by Kendall et al. [14]. For
Bootstrapped Ensembles, we train M FlowNetC in paral-
lel with bootstrapping, such that each network sees differ-
ent 67% of the training data. For the final version of our
method, we perform an additional finetuning of 250k itera-
tions on FlyingThings3D [22] per network, starting with a
learning rate of 2e− 5 also decaying with cosine annealing.
We use the Caffe [13] framework for network training and
evaluate all runtimes on an Nvidia GTX 1080Ti.

5.2. Evaluation Metrics and Settings

Sparsification Plots. To assess the quality of the uncer-
tainty measures, we use so-called sparsification plots, which
are commonly used for this purpose [20, 27, 16, 17]. Such
plots reveal on how much the estimated uncertainty coin-
cides with the true errors. If the estimated variance is a
good representation of the model uncertainty, and the pixels
with the highest variance are removed gradually, the error
should monotonically decrease. Such a plot of our method
is shown in Figure 4. The best possible ranking of uncer-
tainties is ranking by the true error to the ground-truth. We
refer to this curve as Oracle Sparsification. Figure 4 reveals
that our uncertainty estimate is very close to this oracle.

Sparsification Error. For each model the oracle is dif-
ferent, hence an evaluation using a single sparsification plot
is not possible. To this end, we introduce a new measure,
which we name Sparsification Error. It is defined as the dif-

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Removed Pixels

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra
g
e
 E
P
E
 (
N
o
rm

a
liz

e
d
)

FlowNetH-Pred-Merged

FlowNetH Oracle

Figure 4: Sparsification plot of FlowNetH-Pred-Merged for
the Sintel train clean dataset. The plot shows the average
endpoint error (AEPE) for each fraction of pixels having
the highest uncertainties removed. The oracle sparsification
shows the lower bound by removing each fraction of pixels
ranked by the ground-truth endpoint error. Removing 20
percent of the pixels results in halving the average endpoint
error.

ference between the sparsification and its oracle. Since this
measure is independent of the oracle, a fair comparison of
different methods is possible. In Figure 5a, we show spar-
sification errors for all methods we present in this paper. To
quantify the sparsification error with a single number, we
use the Area Under the Sparsification Error curve (AUSE).

Oracle EPE. For each ensemble, we also compute the
hypothetical endpoint error by considering the pixel-wise
best selection from the samples or hypotheses (decided by
the ground-truth). We report this error together with the em-
pirical variances among samples and hypotheses in Table 2.

Number of samples. In general, networks for optical
flow estimation are large and sampling effort should be min-
imized. From a set of experiments with FlowNetH, we
found that the Oracle EPE monotonically decreases and lev-
els out for M > 8. Therefore, we use M = 8 as the setting
for FlowNetH and as a default setting for the other methods
(to limit size and runtime). Figure 5b shows how changing
this parameter affects the performance for Dropout, Boot-
strapped Ensembles and SGDR Ensembles. For SGDR
there is additionally a pre-cycle parameter: snapshots in the
beginning have usually not yet converged enough and the
number of pre-cycles is the number of snapshots we discard
before building the ensemble. In the supplemental material
we show that the later the snapshots are taken, the better
the results are in terms of EPE. We use 8 pre-cycles in the
following experiments.

5.3. Comparison among Uncertainties from CNNs

Figures 5a, 5b and Table 2 show results for all models
evaluated in this paper.

Empirical Uncertainty Estimation. From the figures
we observe that uncertainty estimation with empirical en-
sembles is possible, but worse than the other methods pre-

sented in this paper. However, in comparison to predictive
counterparts, emprical ensembles tend to yield better EPEs,
as will be discussed in the following.

Predictive Uncertainty Estimation. When training
against a predictive loss function, the solution is expected
to become more robust to outliers, since the network has
the possibility to explain these outliers with the uncertainty.
This is known as loss attenuation [14]. While the EPE loss
tries to enforce correct solutions also for outliers, the log-
likelihood loss attenuates them. The estimated uncertainty
is much better with predictive models than with the em-
pirical ones. Even a single FlowNetC with predictive un-
certainty yields much better uncertainty estimates than any
empirical ensemble in terms of AUSE. This shows that it is
advantageous to let a network estimate its own uncertainty.

Predictive Ensembles. Comparing ensembles of predic-
tive networks to the single network from the last paragraph
shows that a single network is actually very close to the pre-
dictive ensembles and that the benefit of an ensemble is not
large. We attribute this also to loss attenuation: different
ensemble members appear to attenuate outliers in a simi-
lar manner and induce less diversity, as can be seen by the
variance among the members of the ensemble.

When comparing empirical to predictive ensembles we
can draw the following conclusions: a.) empirical estima-
tion provides more diversity within the ensemble (variance
column in Table 2), b.) empirical estimation provides lower
EPEs and Oracle EPEs, c.) all empirical setups provide
worse uncertainty estimates than predictive setups.

Ensemble Types. From Figure 5b and Table 2 we see
that the commonly used dropout [7, 14] technique performs
worst in terms of EPE and AUSE, although the differences
between the ensemble types are not very large. SGDR
Ensembles provide better uncertainties, yet the variance
among the samples is the smallest. This is likely to come
from the fact that with SGDR later ensemble members are
derived from previous snapshots. Furthermore, because of
the 8 pre-cycles, SGDR experiments have the largest num-
ber of iterations, which could be an explanation to why they
provide the best EPE in comparison to other ensembles.
Bootstrapped Ensembles provide the highest sample vari-
ance and the lowest AUSE in the predictive case. In con-
clusion, SGDR could be recommended for emperical and
bootstrapping for predictive ensembles.

Ensemble Sizes. Figure 5b shows that in the empirical
case, a larger ensemble size in general leads to better uncer-
tainties. Surprisingly, for predictive ensembles it seems that
larger ensemble sizes harm uncertainty qualities (with an
exception to SGDR). This also motivates the introduction
of the proposed merging network investigated in the next
paragraph.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Removed Pixels

0.0

0.1

0.2

0.3

0.4

S
p
a
rs
if
ic
a
ti
o
n
 E
rr
o
r

Dropout-Emp

Dropout-Pred

BootstrappedEns.-Emp

BootstrappedEns.-Pred

BootstrappedEns.-Pred-Merged

SGDR-Emp

SGDR-Pred

FlowNetC-Pred

FlowNetH-Pred-Merged

(a)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
AUSE

3.0

3.2

3.4

3.6

3.8

4.0

4.2

E
P
E

Dropout-Emp, M = 2

Dropout-Emp, M = 4

Dropout-Emp, M = 8

Dropout-Emp, M = 16

Dropout-Emp, M = 32

Dropout-Pred, M = 2

Dropout-Pred, M = 4

Dropout-Pred, M = 8

Dropout-Pred, M = 16

Dropout-Pred, M = 32

BootstrappedEns.-Emp, M = 2

BootstrappedEns.-Emp, M = 4

BootstrappedEns.-Emp, M = 8

BootstrappedEns.-Pred, M = 2

BootstrappedEns.-Pred, M = 4

BootstrappedEns.-Pred, M = 8

BootstrappedEns.-Pred-Merged, M = 8

SGDR-Emp, M = 2

SGDR-Emp, M = 4

SGDR-Emp, M = 8

SGDR-Emp, M = 16

SGDR-Pred, M = 2

SGDR-Pred, M = 4

SGDR-Pred, M = 8

SGDR-Pred, M = 16

FlowNetH-Pred-Merged, M = 8

FlowNetC-Pred, M = 1

(b)

Figure 5: (a) Sparsification error plots on the Sintel train clean dataset. The sparsification error is the proposed measure
for evaluating the uncertainty estimations independent of different oracles of different methods. The size of the ensemble is
fixed to M = 8. FlowNetH-Pred-Merged and BootstrappedEnsemble-Pred-Merged are the best among all. (b) Scatter plot
of AEPE vs. AUSE for different proposed ensemble types and sizes.

empirical (Emp) predictive (Pred)
EPE AUSE Oracle EPE Var. EPE AUSE Oracle EPE Var. Runtime

FlowNetC 3.40 - - - 3.62 0.133 - - 38ms
Dropout 3.67 0.212 2.56 5.05 3.99 0.158 2.96 3.80 320ms
SGDREnsemble 3.25 0.191 2.56 3.50 3.40 0.134 2.87 1.52 304ms
BootstrappedEnsemble 3.41 0.209 2.17 9.52 3.46 0.127 2.49 6.15 304ms
BootstrappedEnsemble-Merged 3.20 0.102 2.49 6.15 332ms
FlowNetH-Merged 3.50 - 1.73 83.32 3.36 0.095 1.89 52.85 60ms

Table 2: Comparison of flow and uncertainty predictions of all proposed methods withM = 8 on the Sintel train clean dataset.
Oracle-EPE is the EPE of the pixel-wise best selection from the samples or hypotheses determined by the ground-truth. Var.
is the average empirical variance over the 8 different samples or hypotheses. Predictive versions (Pred) generally outperform
empirical versions (Emp) and including a merging network increases performance. FlowNetH-Pred-Merged performs best
for predicting uncertainties and has a comparatively low runtime.

Uncertainty Estimation with Merging Networks and
FlowNetH. As can be seen from Figure 5b, among the en-
sembles, the BootstrappedEnsemble-Pred with M = 2 is
the best in terms of AUSE and the SGDREnsemble-Pred
with M = 2 is the best in terms of EPE. Introducing
FlowNetH-Pred-Merged provides a good trade-off, but is in
general not far away from both. However, from Table 2 we
see that FlowNetH has a much higher sample variance and
the lowest oracle EPE. This indicates that it internally has
very diverse and potentially useful hypotheses that could be
exploited more in the future. For some visual examples, we
refer the reader to Tables 3 and 4 of the supplemental ma-
terial. For a fair comparison, we also investigate putting a
merging network on top of the BootstrappedEnsemble-Pred

with M = 8. This provides the best EPE, but in terms
of AUSE it is still slightly worse than FlowNetH-Pred-
Merged; see Table 2. Although the final results are simi-
lar, the base networks consume eight times more memory
and runtime. Only FlowNetC and FlowNetH-Pred-Merged
allow a deployment at interactive framerates.

5.4. Comparison to Energy-Based Uncertainty Es-
timation

In this section, we compare our FlowNetH-Pred-Merged
to ProbFlow [27], which uses an energy minimization ap-
proach and is the currently most accurate method for esti-
mating the uncertainty of optical flow. In Figure 7, we show
the sparsification plot together with the sparsification error

Figure 6: Two examples for qualitative comparison between FlowNetH-Pred-Merged and ProbFlow [27]. The first row shows
the image pair followed by its ground-truth flow field for two different scenes from the Sintel clean dataset. The second row
shows FlowNetH-Pred-Merged results: entropy from a Laplace distribution with ground-truth error instead of scale parameter
(we refer to this as Oracle Entropy to represent the optimal uncertainty as explained in the supplemental material), predicted
entropy and predicted flow. Similar to the second row, the third row shows the results for ProbFlow. Although both methods
fail at estimating the motion of the bird on the left scene and the motion of the leg in the right scene, our method is better at
predicting the uncertainties in these regions.

Sintel KITTI runtimeEPE AUSE EPE AUSE
ProbFlow [27] 1.87 0.162 8.74 0.554 38.1s†

FlowNetH 2.69 0.096 8.35 0.110 60ms
FlowNetH-ft - - 3.73 0.099 60ms

Table 3: Comparison to the state-of-the-art method for
flow uncertainties: ProbFlow [27] and our FlowNetH-Pred-
Merged. We evaluate on the Sintel train clean dataset and
our KITTI 12+15 validation split. For this table, FlowNetH-
Pred-Merged was finetuned on the FlyingThings3D [22]
dataset for 250k iterations and in the last row also subse-
quently on our KITTI 12+15 training split. One can ob-
serve that our method outperforms ProbFlow in AUSE by
a large margin and for KITTI also in EPE. †runtime taken
from [27].

plot for Sintel. We see that ProbFlow has a better oracle but
a high sparsification error, while FlowNetH-Pred-Merged
has a worse oracle, but is better at estimating the uncertainty
of its underlying model.

This is also confirmed by the results from Table 3, which
show that FlowNetH consistently outperforms ProbFlow in
terms of AUSE. For the KITTI dataset, both EPE and AUSE
are better with FlowNetH. Recent work by Ilg et al. [11]
showed that using network stacks can further improve the
performance of FlowNet. A similar approach could be used
to improve the results of FlowNetH in terms of EPE.

Figure 6 shows a qualitative comparison. More results
on challenging real-world data are shown in the supplemen-
tal video which can also be found on https://youtu.
be/UvGY_A-kcrg.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra
g
e
 E
P
E
 (
N
o
rm

a
liz
e
d
)

ProbFlow

Oracle

FlowNetH-Pred-Merged-FT

Oracle

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Removed Pixels

0.00

0.05

0.10

0.15

0.20

0.25

S
p
a
rs
if
ic
a
ti
o
n
 E
rr
o
r ProbFlow, AUSE = 0.162

FlowNetH-Pred-Merged-FT, AUSE = 0.097

Figure 7: Sparsification (up) and sparsification error (down)
plots for ProbFlow and FlowNetH-Pred-Merged-FT on the
Sintel clean dataset (FT denotes a version finetuned on Fly-
ingThings3D). KITTI versions are similar and provided in
the supplemental material.

6. Conclusion
We presented and evaluated several methods to estimate

the uncertainty of deep regression networks for optical flow
estimation. We found that SGDR and Bootstrapped Ensem-
bles perform better than the commonly used dropout tech-
nique. Furthermore, we found that a single network can
estimate its own uncertainty surprisingly well and that this
estimate outperforms any empirical ensemble. We believe
that these results will apply to many other computer vision
tasks, too. Moreover, we presented a multi-hypotheses net-
work that shows very good performance and is faster than
sampling-based approaches and ensembles. The fact that

https://youtu.be/UvGY_A-kcrg
https://youtu.be/UvGY_A-kcrg

networks can estimate their own uncertainty reliably and
in real-time is of high practical relevance. Humans tend
to trust an engineered method much more than a trained
network, of which nobody knows exactly how it solves the
task. However, if networks say when they are confident and
when they are not, we can trust them a bit more than we do
today.

Acknowledgements

We gratefully acknowledge funding by the German Re-
search Foundation (SPP 1527 grants BR 3815/8-1 and HU
1900/3-1, CRC-1140 KIDGEM Z02) and by the Horizon
2020 program of the EU via the ERC Starting Grant 716721
and the project Trimbot2020.

References
[1] C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense corre-

spondence fields for highly accurate large displacement op-
tical flow estimation. In IEEE Int. Conference on Computer
Vision (ICCV), 2015. 3

[2] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wier-
stra. Weight uncertainty in neural network. In Proceedings
of the 32nd International Conference on Machine Learning
(ICML’15), pages 1613–1622. 2

[3] A. Bruhn and J. Weickert. A Confidence Measure for Varia-
tional Optic flow Methods, pages 283–298. Springer Nether-
lands, Dordrecht, 2006. 2, 1

[4] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation.
In European Conference on Computer Vision (ECCV), 2012.
4, 1

[5] T. Chen, E. Fox, and C. Guestrin. Stochastic gradient Hamil-
tonian Monte Carlo. In Proceedings of the 31th International
Conference on Machine Learning, (ICML’14), 2014. 2

[6] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş,
V. Golkov, P. v.d. Smagt, D. Cremers, and T. Brox. Flownet:
Learning optical flow with convolutional networks. In IEEE
Int. Conference on Computer Vision (ICCV), 2015. 1, 3, 5

[7] Y. Gal and Z. Ghahramani. Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep learning. In
Int. Conference on Machine Learning (ICML), 2016. 1, 2, 3,
6

[8] A. Graves. Practical variational inference for neural net-
works. In In Advances in Neural Information Processing
Systems (NIPS) 2011, page 23482356, 2011. 2

[9] J. Hernández-Lobato and R. Adams. Probabilistic backprop-
agation for scalable learning of Bayesian neural networks.
In Proceedings of the 32nd International Conference on Ma-
chine Learning (ICML’15), 2015. 2

[10] G. Huang, Y. Li, and G. Pleiss. Snapshot ensembles: Train
1, get M for free. In Int. Conference on Learning Represen-
tations (ICLR), 2017. 1, 2, 3

[11] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2017. 1, 5, 8

[12] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In F. Bach and D. Blei, editors, Proceedings of the 32nd In-
ternational Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 448–456,
Lille, France, 07–09 Jul 2015. PMLR. 5

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proc. ACMMM,
pages 675–678, 2014. 5

[14] A. Kendall and Y. Gal. What Uncertainties Do We Need in
Bayesian Deep Learning for Computer Vision? In Int. Con-
ference on Neural Information Processing Systems (NIPS),
2017. 1, 2, 5, 6

[15] C. Kondermann, D. Kondermann, B. Jähne, C. S. Garbe,
C. Schnörr, and B. Jähne. An adaptive confidence measure
for optical flows based on linear subspace projections. 2007.
2

[16] C. Kondermann, R. Mester, and C. Garbe. A Statistical Con-
fidence Measure for Optical Flows, pages 290–301. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008. 2, 5, 1

[17] J. Kybic and C. Nieuwenhuis. Bootstrap optical flow confi-
dence and uncertainty measure. Computer Vision and Image
Understanding, 115(10):1449 – 1462, 2011. 2, 5, 1

[18] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple
and scalable predictive uncertainty estimation using deep en-
sembles. In NIPS workshop, 2016. 1, 2, 3

[19] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient de-
scent with warm restarts. In Int. Conference on Learning
Representations (ICLR), 2017. 2, 3, 5

[20] O. Mac Aodha, A. Humayun, M. Pollefeys, and G. J. Bros-
tow. Learning a confidence measure for optical flow. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(To Appear), 2012. 2, 5, 1

[21] D. J. C. MacKay. A practical bayesian framework for back-
propagation networks. Neural Computation, 4(3):448–472,
May 1992. 2

[22] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers,
A. Dosovitskiy, and T. Brox. A large dataset to train convolu-
tional networks for disparity, optical flow, and scene flow es-
timation. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4040–4048, June 2016.
5, 8

[23] R. Neal. Bayesian learning for neural networks. PhD thesis,
University of Toronto, 1996. 2

[24] D. Novotny, D. Larlus, and A. Vedaldi. Learning 3D object
categories by looking around them, 2017. 1, 2

[25] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.
EpicFlow: Edge-Preserving Interpolation of Correspon-
dences for Optical Flow. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015. 3

[26] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg,
A. Dosovitskiy, and T. Brox. Demon: Depth and motion
network for learning monocular stereo. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.
2

[27] A. S. Wannenwetsch, M. Keuper, and S. Roth. Probflow:
Joint optical flow and uncertainty estimation. In IEEE Int.
Conference on Computer Vision (ICCV), Oct 2017. 2, 5, 7,
8, 1, 3

[28] M. Welling and Y. Teh. Bayesian learning via stochastic gra-
dient Langevin dynamics. In Proceedings of the 28th Inter-
national Conference on Machine Learning (ICML’11), 2011.
2

Supplementary Material for
”Uncertainty Estimates for Optical Flow with Multi-Hypotheses Networks”

1. Video

Please see the supplementary video for qualitative results
on a number of diverse real-world video sequences and a
comparison to ProbFlow [27]. The video is also available
on https://youtu.be/UvGY_A-kcrg.

2. Color Coding

For optical flow visualization we use the color coding
of Butler et al. [4]. The color coding scheme is illustrated
in Figure 1. Hue represents the direction of the displace-
ment vector, while the intensity of the color represents its
magnitude. White color corresponds to no motion. Because
the range of motions is very different in different image se-
quences, we scale the flow fields before visualization: in-
dependently for each image pair shown in figures, and in-
dependently for each video fragment in the supplementary
video. Scaling is always the same for all methods being
compared.

For uncertainty visualizations we show the predicted en-
tropy, which we compute as:

H = log(2bxe) + log(2bye) , (1)

where bx and by are estimated scale parameters from our
Laplace distribution model in x and y dimensions and e is
Euler’s number. To assess the quality of our uncertainty es-
timations, we compare our estimated entropies against the
limiting cases, where bx and by correspond to exactly the es-
timation errors |upred−ugt| and |vpred−vgt|. We visualize
this as the Oracle Entropy in all cases where ground-truth
is present. For ProbFlow [27], the underlying distribution
is Gaussian and therefore we use the entropy of a Gaussian
distribution:

H = 0.5 ∗ log(2eσ2
xπ) + 0.5 ∗ log(2eσ2

yπ) , (2)

and set σx and σy to |upred − ugt| and |vpred − vgt|, re-
spectively. To compare to this oracle entropy we normal-
ize to the same range, but when comparing our method to
ProbFlow, we allow to normalize to different ranges to show
the most interesting aspects of the entropy.

(a)

(b)

Figure 1: (a) Flow field color coding used in this paper. The
displacement of every pixel in this illustration is the vector
from the center of the square to this pixel. The central pixel
does not move. The value is scaled differently for different
images to best visualize the most interesting range. (b) The
color coding used for displaying the entropy maps, from the
lowest value (blue), to the hightst (red).

3. Sparsification Plots

Sparsification is a way to assess the quality of uncer-
tainty estimates for optical flow. Already popular in liter-
ature [3, 16, 17, 20], it works by progressively discarding
percentages of the pixels the model is most uncertain about
and verifying whether this corresponds to a proportional de-
crease in the remaining endpoint error. To make the results
of different experiments comparable, the errors are normal-
ized to 1.

Image-wise sparsification. The method, including the
normalization, is typically applied to images individually
and the sparsification plots of all images are then averaged.
In the main paper we also follow this procedure. However,
this approach weights images where the uncertainty estima-
tion is easy equally to images where the uncertainty estima-
tion is hard. Also, due to the normalization, pixels with very
large enpoint error from one image can be treated equally to
pixels with very small endpoint error from another image.

https://youtu.be/UvGY_A-kcrg

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Removed Pixels

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

S
p
a
rs
if
ic
a
ti
o
n
 E
rr
o
r

Dropout-Emp

Dropout-Pred

BootstrappedEns.-Emp

BootstrappedEns.-Pred

BootstrappedEns.-Pred-Merged

SGDR-Emp

SGDR-Pred

FlowNetC-Pred

FlowNetH-Pred-Merged

(a)

0.05 0.10 0.15 0.20
AUSE

3.2

3.4

3.6

3.8

4.0

E
P
E

Dropout-Emp, M = 2

Dropout-Emp, M = 4

Dropout-Emp, M = 8

Dropout-Emp, M = 16

Dropout-Pred, M = 2

Dropout-Pred, M = 4

Dropout-Pred, M = 8

Dropout-Pred, M = 16

BootstrappedEns.-Emp, M = 2

BootstrappedEns.-Emp, M = 4

BootstrappedEns.-Emp, M = 8

BootstrappedEns.-Pred, M = 2

BootstrappedEns.-Pred, M = 4

BootstrappedEns.-Pred, M = 8

BootstrappedEns.-Pred-Merged, M = 8

SGDR-Emp, M = 2

SGDR-Emp, M = 4

SGDR-Emp, M = 8

SGDR-Emp, M = 16

SGDR-Pred, M = 2

SGDR-Pred, M = 4

SGDR-Pred, M = 8

SGDR-Pred, M = 16

FlowNetH-Pred-Merged, M = 8

FlowNetC-Pred, M = 1

(b)

Figure 2: NOTE: In this version we normalize to the dataset instead of single images. (a) Sparsification error plots
on Sintel train clean dataset. Number of ensemble members are fixed to M = 8 and offset for SGDR to 8. We observe
that in this case FlowNetH-Pred-Merged and the BootstrappedEnsemble-Pred-Merged perform slightly worse for very high
uncertainties, while still showing the best performance for remaining uncertainties. (b) Scatter plot of EPE vs. AUSE for
different proposed ensemble types and sizes. For SGDR, we take the last M available snapshots. The behavior of the different
models is not drastically different from the one visible in the per-image sparsification scatter plots in Figure 6a from the main
paper, with some notable exceptions: the BootstrappedEnsemble-Pred in this case show a more coherent behavior, as do the
Dropout-Pred ensembles. The best performing model in terms of AUSE is FlowNetH-Pred-Merged.

Dataset-wise sparsification. Alternatively, one can per-
form the sparsification on a whole dataset. In this variant,
the sparsification is performed first (by ranking across the
whole dataset) and normalization is performed last. With
this approach, the effect of the outliers is better visible in
the sparsification curves, which show larger slopes with re-
spect to the previous method.

In Figures 2a, and 2 we present the figures from the
main paper again with the dataset-wise sparsification. In
Figure 2a we observe that the BootstrappedEnsemble-
Pred-Merged and FlowNetH-Pred-Merged perform slightly
worse than other ensembles for very high uncertainties,
when sparsified on the whole dataset. However, in Figure 2,
the behaviour seems more regular than comparing to Fig-
ure 5b from the paper and for most ensembles we see a more
linear relationship to the ensemble size. As also observed in
the main paper, the AUSE benefit for predictive ensembles
is even smaller here.

4. Effect of Offset for SGDR Ensembles
For SGDR ensembles not only the ensemble size M , but

also the models discarded from earlier cycles matter (pre-
cycles). Therefore, we have further experimented with pre-
cycles counts from 0 to 8 (with a constant ensemble size of
M = 8). The scatter plots of EPE vs. AUSE can be seen in
Figure 3. Figure 3a shows the plot where image-wise nor-

malization is used for sparsification, while Figure 3b shows
the plot for dataset-wise normalization. From both plots we
can see that the later the models are taken, the lower the EPE
gets without a significant change in the AUSE measure.
When compared to other ensemble types, in SGDR ensem-
bles later models are always derived from earlier models
and the later ones are trained for more iterations in total.
This might be the reason why they show a lower EPE. How-
ever, it also means they can converge more and we actually
observe the lowest variance among the models, which can
be seen from Table 2 in the main paper.

5. Evaluation on KITTI and Comparison to
ProbFlow

We perform the final evaluation of FlowNetH also on
the KITTI datasets. We therefore mix KITTI2012 and
KITTI2015 and split into 75%/25% training and test data.
In Figure 4 and Table 3 from the main paper, we show the
performance of our method compared to ProbFlow [27]. As
can be seen from Table 3 in the main paper, fine-tuning sig-
nificantly reduces the endpoint error, as well as AUSE for
FlowNetH-Pred-Merged. This concludes that the quality
of the uncertainty estimation of FlowNetH-Pred-Merged is
outperforming ProbFlow independent of the flow accuracy.
For the computation of the KITTI outputs with ProbFlow,

0.12 0.14 0.16 0.18 0.20 0.22
AUSE

3.2

3.4

3.6

3.8

4.0
E
P
E

SGDR-Emp, M = 8, pre-cycles = 0

SGDR-Emp, M = 8, pre-cycles = 2

SGDR-Emp, M = 8, pre-cycles = 4

SGDR-Emp, M = 8, pre-cycles = 6

SGDR-Emp, M = 8, pre-cycles = 8

SGDR-Pred, M = 8, pre-cycles = 0

SGDR-Pred, M = 8, pre-cycles = 2

SGDR-Pred, M = 8, pre-cycles = 4

SGDR-Pred, M = 8, pre-cycles = 6

SGDR-Pred, M = 8, pre-cycles = 8

(a)

0.03 0.04 0.05 0.06 0.07 0.08
AUSE

3.2

3.4

3.6

3.8

4.0

E
P
E

SGDR-Emp, M = 8, pre-cycles = 0

SGDR-Emp, M = 8, pre-cycles = 2

SGDR-Emp, M = 8, pre-cycles = 4

SGDR-Emp, M = 8, pre-cycles = 6

SGDR-Emp, M = 8, pre-cycles = 8

SGDR-Pred, M = 8, pre-cycles = 0

SGDR-Pred, M = 8, pre-cycles = 2

SGDR-Pred, M = 8, pre-cycles = 4

SGDR-Pred, M = 8, pre-cycles = 6

SGDR-Pred, M = 8, pre-cycles = 8

(b)

Figure 3: Scatter plot of EPE vs. AUSE showing the effect of different pre-cycle counts for SGDR ensembles with ensemble
size M = 8. Plot (a) shows the result for the image-wise sparsification. Plot (b) shows dataset-wise sparsification results,
both as explained in Section 3. It can be seen that a larger number of pre-cycles always positively affects the EPE without
penalizing the AUSE score.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra
g
e
 E
P
E
 (
N
o
rm

a
liz
e
d
) ProbFlow

Oracle

FlowNetH-Pred-Merged-FT

Oracle

FlowNetH-Pred-Merged-KITTI

Oracle

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Removed Pixels

0.0

0.2

0.4

0.6

0.8

1.0

S
p
a
rs
if
ic
a
ti
o
n
 E
rr
o
r

ProbFlow, AUSE = 0.554

FlowNetH-Pred-Merged-FT, AUSE = 0.110

FlowNetH-Pred-Merged-KITTI, AUSE = 0.099

Figure 4: Sparsification and sparsification error plots for
ProbFlow [27], FlowNetH-FT (fine-tuned on the FlyingTh-
ings3D dataset) and FlowNetH-KITTI (fine-tuned on our
joint KITTI2012 and 2015 training dataset). One can
observe that fine-tuning does not change the sparsifica-
tion error, while endpoint errors reduce significantly (see
Table 3 of the main paper) and that FlowNetH outper-
forms ProbFlow. Note that although the average EPE for
ProbFlow is higher, due to the effect of normalization the
oracle sparsification curve relative to said algorithm appears
to be the lowest.

the official software package was used, i.e. flow initializa-
tions were obtained from FlowFields [1] matches and inter-
polated with EpicFlow [25]. For FlowFields we found the
best working parameters combination to be r = 5, r2 = 4,
ε = 5, however, the search was conducted around the values
suggested in the original paper and a full scale parameter
optimization was not performed.

6. Qualitative Evaluation
We provide qualitative results on real world datasets,

Sintel train clean, KITTI2012 and KITTI2015 for
FlowNetH-Pred-Merged and ProbFlow in Figure 5, Fig-
ure 6 and Figure 7.

At last, we show the outputs for all ensemble members
for a simple and a difficult case in Tables 1,2 and Tables 3,4.
We note that comparing to the other ensembles, hypothesis
from FlowNetH generate the most diverse results.

Figure 5: Examples from real world data. Examples are arranged in a coarse 4x2 grid, where in each we follow the conven-
tion: first column: original image pair, second column: flow predicted by FlowNetH-Pred-Merged and flow predicted by
ProbFlow, third column: predicted entropy by FlowNetH-Pred-Merged and predicted entropy by ProbFlow. For the full
videos of the real world dataset and further comments please see the video on https://youtu.be/UvGY_A-kcrg.

https://youtu.be/UvGY_A-kcrg

Figure 6: Four examples from the Sintel train clean dataset for qualitative comparison between FlowNetH-Pred-Merged and
ProbFlow. For each example: first row shows the original image sequence followed by its ground truth flow field. Second
row shows FlowNetH-Pred-Merged results: oracle entropy (representing the optimal uncertainty), predicted entropy and
predicted flow. Similar to the second row, the third row shows the results for ProbFlow. While our method is predicting
uncertainties on large areas, ProbFlow shows uncertainties mainly only on the motion or image edges and sometimes shows
overconfidence in the regions where its prediction is wrong. This is visible e.g. in the lower left example for the upper left
corner, where the estimation is wrong, but the uncertainty is low.

Figure 7: Examples from KITTI2012 and KITTI2015 datasets for qualitative comparison between FlowNetH-Pred-Merged
and ProbFlow. For each example: first row shows the original image sequence followed by its ground truth flow field
(bilinearly interpolated from sparse ground truth). Second row shows FlowNetH-Pred-Merged results: oracle entropy (rep-
resenting the optimal uncertainty), predicted entropy and predicted flow. Similar to second row, third row shows the results
for ProbFlow. Remark: In the sky the groundtruth provided in the datasets are invalid due to data acquisition.

Data:

FlowNetC Emp:

FlowNetH Base:

Dropout Emp:

SGDR Emp:

Bootstrapped Ensemble Emp:

Table 1: In this table we show the outputs of empirical experiments with all presented methods for an easy Sintel example
as well as the averaged flows and computed entropies. Because the example is easy, the networks are certain and not much
variety is visible in the outputs.

Data:

FlowNetC Pred:

Dropout Pred:

SGDR Pred:

BootstrappedEnsemble Pred:

FlowNetH Pred-Merged:

Table 2: In this table we show the outputs of predictive experiments with all presented methods for an easy Sintel example as
well as the averaged flows and computed entropies. For Bootstrapped Ensemble Pred and FlowNetH Pred Merged we show
also the estimated flow and estimated entropy as the output of the merging network on top.

Data:

FlowNetC Emp:

FlowNetH Base:

Dropout Emp:

SGDR Emp:

Bootstrapped Ensemble Emp:

Table 3: In this table we show the outputs of empirical experiments with all presented methods for a hard Sintel example
as well as the averaged flows and computed entropies. Some variety of each method is visible, while FlowNetH provides a
different kind of output with much more variety.

Data:

FlowNetC Pred:

Dropout Pred:

SGDR Pred:

BootstrappedEnsemble Pred:

FlowNetH Pred-Merged:

Table 4: In this table we show the outputs of predictive experiments with all presented methods for a hard Sintel example, as
well as the averaged flows and computed entropies. For Bootstrapped Ensemble Pred and FlowNetH Pred Merged we show
also the estimated flow and estimated entropy as the output of the merging network on top. The hypothesis estimated by
FlowNetH Pred Merged is the most diverse one. In the second hypothesis, the motion predicted is very small and could be
corresponding to the background.

