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Abstract—We present a toolchain for computational research consisting of
Sacred and two supporting tools. Sacred is an open source Python framework
which aims to provide basic infrastructure for running computational experiments
independent of the methods and libraries used. Instead, it focuses on solving
universal everyday problems, such as managing configurations, reproducing
results, and bookkeeping. Moreover, it provides an extensible basis for other
tools, two of which we present here: Labwatch helps with tuning hyperparameters,
and Sacredboard provides a web-dashboard for organizing and analyzing runs
and results.

Index Terms—reproducible research, Python, machine learning, database,
hyperparameter optimization

Introduction

A major part of machine learning research typically involves
a significant number of computational experiments run with
many different hyperparameter settings. This process holds many
practical challenges, such as bookkeeping and maintaining repro-
ducibility. To make matters worse, experiments often run on diverse
and heterogeneous environments, ranging from laptops to cloud
computing nodes. Due to deadline pressure and the inherently
unpredictable nature of research, there is usually little incentive
for researchers to build robust infrastructures. As a result, research
code often evolves quickly and compromises essential aspects like
bookkeeping and reproducibility.

Many tools exist for tackling different aspects of this process,
including databases, version control systems, command-line inter-
face generators, tools for automated hyperparameter optimization,
spreadsheets, and so on. Few, however, integrate these aspects into
a unified system, so each tool has to be learned and used separately,
each incurring its overhead. Since there is no common basis to
build a workflow, the tools people create will be tied to their
particular setup. This impedes sharing and collaboration on tools
for major problems like optimizing hyperparameters, summarizing
and analyzing results, rerunning experiments, distributing runs,
etc..
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Sacred aims to fill this gap by providing central infrastructure
for running computational experiments. We hope that it will help
researchers and foster the development of a rich collaborative
ecosystem of shared tools. In the following, we briefly introduce
Sacred and two supporting tools: Labwatch integrates a convenient
unified interface to several automated hyperparameter optimizers,
such as random search, RoBO, and SMAC. Sacredboard offers a
web-based interface to view runs and organize results.

Sacred

Sacred1 is an open source Python framework that bundles solutions
for some of the most frequent challenges of computational research.
It does not enforce any particular workflow and is independent of
the choice of machine learning libraries. Designed to remain useful
even under deadline pressure, Sacred aims to offer maximum
convenience while minimizing boilerplate code. By combining
these features into a unified but flexible workflow, Sacred enables
its users to focus on research, and still capture all the relevant
information for each run. Its standardized configuration process
allows smooth integration with other tools, such as Labwatch for
hyperparameter optimization. Through storage of run information
in a central database, comprehensive query and sorting functionality
for bookkeeping becomes available. This further enables down-
stream analysis and allows other tools, such as Sacredboard, to
provide a powerful user interface for organizing results.

Overview

The core abstraction of Sacred is the Experiment class that
needs to be instantiated for each computational experiment. It
serves as the central hub for defining configuration, functions,
and for accessing the other features. To adopt Sacred, all that is
required is to instantiate an Experiment and to decorate the
main function to serves as entry-point. A minimal example could
look like this:
from sacred import Experiment
ex = Experiment()

@ex.automain
def main():

... # <= experiment code here
return 42

This experiment is ready to be run and would return a result
of 42. It already features an automatically generated command
line interface, collects relevant information about dependencies

1. https://github.com/IDSIA/Sacred
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and the host system, and can do bookkeeping. The experiment is
extendable in several ways to define (hyper-) parameters that can
later be externally changed.

The experiment can be run through its command-line interface,
or directly from Python by calling ex.run(). Both modes offer
the same ways for passing options, setting parameters, and adding
observers. Once this experiment is started, Sacred will 1) interpret
the options, 2) evaluate the parameter configuration, 3) gather
information about dependencies and host, and 4) construct and call
a Run object that is responsible for executing the main function.
In the previous minimal example the output would look like this:

WARNING - my_example - No observers have been added
INFO - my_example - Running command 'main'
INFO - my_example - Started
INFO - my_example - Result: 42
INFO - my_example - Completed after 0:00:00

For each run, relevant information such as parameters, package
dependencies, host information, source code, and results are
automatically captured. The Run also captures the stdout, custom
information, and fires events at regular intervals that can be
monitored for bookkeeping, by optional observers. Several built-in
observers are available for databases, disk storage, or sending out
notifications.

Configuration

An important goal of Sacred is to make it convenient to define,
update and use hyperparameters, which we will call the configura-
tion of the experiment. The main way to set up the configuration is
through functions decorated with @ex.config:

@ex.config
def cfg():

nr_hidden_units = 512
optimizer = 'sgd'
learning_rate = 0.1
log_dir = 'log/NN{}'.format(nr_hidden_units)

When running an experiment, Sacred executes these functions and
adds their local variables to the configuration. This syntactically
convenient way of defining parameters leverages the full expres-
siveness of Python, including complex expressions, function calls,
and interdependent variables. Alternatively, plain dictionaries or
external configuration files can also be used.

To make parameters readily available throughout the code,
Sacred employs the technique of dependency injection: any function
decorated by @ex.capture can directly accept any configuration
entry as a parameter. Whenever such a function is called, Sacred
will automatically pass those parameters by name from the
configuration. This allows for the flexible and convenient use
of the hyperparameters throughout the experiment code:

@ex.capture
def set_up_optimizer(loss, optimizer, learning_rate):

OptClass = {
'sgd': tf.train.GradientDescentOptimizer,
'adam': tf.train.AdamOptimizer}[optimizer]

opt = OptClass(learning_rate=learning_rate)
return opt.minimize(loss)

When calling the setup_optimizer function, both the
optimizer and the learning_rate arguments are optional.
If omitted, they will be filled in automatically from the configu-
ration. These injected values can be mixed freely with standard
parameters, and injection follows the priority: 1) explicitly passed
arguments 2) configuration values 3) default values.

The main benefit of config parameters is that they can be
controlled externally when running an experiment. This can happen
both from the command line
>> python my_experiment.py with optimizer='adam'
... learning_rate=0.001

or from Python calls:
from my_experiment import ex
ex.run(config_updates={'nr_hidden_units': 64})

Sacred treats these values as fixed while executing the config
functions. In this way, they influence dependent values as you
would expect. Thus in our example log_dir would be set to
"log/NN64" .

Groups of config values that should be saved or set together
can be collected in so-called named configurations. These are
defined analogously to configurations using a function decorated
by @ex.named_config (or dictionaries/config files):
@ex.named_config
def adam():

optimizer = 'adam'
learning_rate = 0.001

Named configs can be added both from the command line and from
Python, after which they are treated as a set of updates:
>> python my_experiment.py with adam

Reproducibility

An important goal of Sacred is to collect all necessary information
to make computational experiments reproducible while remaining
lightweight enough to be used for each run, even during develop-
ment. In this respect it differs from environment capturing tools
such as ReproZip [CRSF16], CDE [Guo12], PTU [PMF13] and
CARE [JVD14]. These tools ensure reproducibility by tracking
and storing all data files and libraries used during a run at the
system level. Sacred in contrast uses heuristics to capture the
source code and for determining versions of used packages, collects
limited but customizable information about the host system, and
offers support for manually adding relevant data files. It explicitly
excludes system libraries that are not python packages, data files
that are not specifically added by the user, and hardware other than
the CPU and GPU. This trade-off allows Sacred to run efficiently
regarding computational overhead and required storage capacity
at the expense of reproducibility on systems that differ too much
from the original host. The focus is on the ability of the researcher
to reproduce their results. For distributing the code, we advise the
use of one of the above-mentioned environment capturing tools.

The source code of an experiment is arguably the most
important piece of information for reproducing any result. Un-
fortunately, research code often has to be rapidly adapted under
deadline pressure. A typical pattern in practice is, therefore,
to quickly change something and start a run, without properly
committing the changes into a VCS system. To deal with such
an unstructured implementation workflow, Sacred doesn’t rely on
any VCS system (In contrast to Sumatra [Dav12]) and instead
automatically detects and stores the source files alongside the run
information2. Source files are gathered by inspecting all imported
modules and keeping those defined within the (sub-)directories
of the main script. This heuristic works well for flat use-cases
that consist only of a few sources but fails to detect files that
are imported deeper in the dependency tree. For cases of more
complex source code structure Sacred also supports a stricter
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Git-based workflow and can automatically collect the current
commit and state of the repository for each run. The optional
--enforce-clean flag forces the repository to be clean (not
contain any uncommitted changes) before the experiment can be
started. Relevant dependencies can also always be added manually
by calling ex.add_source_file(FILENAME).

Similarly, Sacred collects information about the package depen-
dencies, by inspecting the imported modules. For all modules that
are do not correspond to local source files or builtins, it uses several
heuristics to determine the version number. First, it checks the
__version__ property and variations thereof. If that fails it uses
the (much slower) Python package resource API to This detection
will catch all dependencies imported from the main file of the
experiment but will miss dependencies deeper down the dependency
graph and any dynamic imports that happen only during runtime.
Here again, further dependencies can be added manually using
ex.add_package_dependency(NAME, VERSION)

Sacred also collects information about the host system including
the hostname, type and version of the operating system, Python
version, and the CPU. Optionally, it supports information about
GPU, environment variables, and can be easily extended to collect
custom information.

Randomness

Randomization is an important part of many machine learning al-
gorithms, but it inherently conflicts with the goal of reproducibility.
The solution, of course, is to use pseudo-random number generators
(PRNG) that take a seed and generate seemingly random numbers
in a deterministic fashion. However, setting the seed to a fixed value
as part of the code makes all the runs deterministic, which can be
an undesired effect. Sacred solves this problem by generating a new
seed that is stored as part of the configuration for each run. It can
be accessed from the code in the same way as every other config
entry. Furthermore, Sacred automatically seeds the global PRNGs
of the random and numpy modules when starting an experiment,
thus making most sources of randomization reproducible without
any intervention from the user.

Bookkeeping

Sacred accomplishes bookkeeping through the observer pattern
[GHJV94]: The experiment publishes all the collected information
in the form of events, to which observers can subscribe. Observers
can be added dynamically from the command line or directly in
code:
from sacred.observers import MongoObserver
ex.observers.append(MongoObserver.create("DBNAME"))

Events are fired when a run is started, every 10 seconds during a run
(heartbeat), and once it stops (either successfully or by failing). The
information is thus already available during runtime, and partial
data is captured even in the case of failures. The most important
events are:

Started Event
Fired when running an experiment, just before the main
method is executed. Contains configuration values,
start time, package dependencies, host information,
and some meta information.

Heartbeat Event

2. It does, however, avoid duplicating files that remain unchanged to reduce
storage requirements.

Fired continuously every 10 seconds while the exper-
iment is running. Contains the beat time, captured
stdout/stderr, custom information, and preliminary
result.

Completed Event
Fired once the experiment completes successfully.
Contains the stop time and the result.

Failed Event
Fired if the experiment aborts due to an exception.
Contains the stop time and the stack trace.

Sacred ships with observers that store all the information from
these events in a MongoDB, SQL database, or locally on disk.
Furthermore, there are two observers that can send notifications
about runs via Telegram [DD17] or Slack [Sla17], respectively.
Moreover, the observer interface is generic and supports easy
addition of custom observers.

The recommended observer is the MongoObserver, which
writes to a MongoDB [Mon17]. MongoDB is a noSQL database,
or more precisely a Document Database: it allows the storage of
arbitrary JSON documents without the need for a schema as in a
SQL database. These database entries can be queried based on their
content and structure. This flexibility makes it a good fit for Sacred
because it permits arbitrary configuration of each experiment that
can still be queried and filtered later on. This feature, in particular,
has been very useful in performing large-scale studies such as the
one in previous work [GSK+15]. A slightly shortened example
database entry corresponding to our minimal example from above
could look like this:

{"_id": 1,
"captured_out": "[...]",
"status": "COMPLETED",
"start_time": "2017-05-30T20:34:38.855Z",
"experiment": {

"mainfile": "minimal.py",
"sources": [["minimal.py", "ObjectId([...])"]],
"repositories": [],
"name": "minimal",
"dependencies": ["numpy==1.11.0",

"sacred==0.7.0"],
"base_dir": "/home/greff/examples"},

"result": 42,
"info": {},
"meta": {"command": "main",

"options": ["..."]},
"format": "MongoObserver-0.7.0",
"resources": [],
"host": {"os": "Linux-3.16.0-4-amd64-x86_64",

"cpu": "Intel(R) Core(TM) i5-4460 CPU",
"hostname": "zephyr",
"ENV": {},
"python_version": "3.4.2"},

"heartbeat": "2017-05-30T20:34:38.902Z",
"config": {"seed": 620395134},
"command": "main",
"artifacts": [],
"stop_time": "2017-05-30T20:34:38.901Z"
}

Labwatch

Finding the correct hyperparameter for machine learning algo-
rithms can sometimes make the difference between state-of-the-art
performance and performance that is as bad as random guessing.
It is often done by trial and error despite a growing number of
tools that can automate the optimization of hyperparameters. Their
adoption is hampered by the fact that each optimizer requires
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the user to adapt their code to a certain interface. Labwatch3

simplifies this process by integrating an interface to a variety of
hyperparameter optimizers into Sacred. This allows for easy access
to hyperparameter optimization in daily research.

LabAssistant

At the heart of Labwatch is the so-called LabAssistant, which con-
nects the Sacred experiment with a hyperparameter configuration
search space (in short: searchspace) and a hyperparameter opti-
mizer through a MongoDB database. For bookkeeping, it leverages
the database storage of evaluated hyperparameter configurations,
which allows parallel distributed optimization and also enables
the use of post hoc tools for assessing hyperparameter importance
(e.g. fANOVA [HHLBa]). When using Labwatch, the required
boilerplate code becomes:
from sacred import Experiment
from labwatch.assistant import LabAssistant
from labwatch.optimizers import RandomSearch

ex = Experiment()
a = LabAssistant(experiment=ex,

database_name="labwatch",
optimizer=RandomSearch)

Search Spaces

In general, Labwatch distinguishes between categorical hyper-
parameters that can have only discrete choices and numerical
hyperparameters that can have either integer or float values. For
each hyperparameter, the search space defines a prior distribution
(e.g. uniform or Gaussian) as well as its type, scale (e.g. log scale,
linear scale) and default value.

Search spaces follow the same interface as Sacred’s named
configurations:
@ex.config
def cfg():

batch_size = 128
learning_rate = 0.001

@a.searchspace
def search_space():

learning_rate = UniformFloat(lower=10e-3,
upper=10e-2,
default=10e-2,
log_scale=True)

batch_size = UniformNumber(lower=32,
upper=64,
default=32,
type=int,
log_scale=True)

This search_space can likewise be specified when executing
the Experiment through the command line:
>> python my_experiment.py with search_space

Labwatch then triggers the optimizer to suggest a new configuration
based on all configurations that are stored in the database and have
been drawn from the same search space.

Multiple Search Spaces

Labwatch also supports multiple search spaces, which is convenient
if one wants to switch between optimizing different sets of
hyperparameters. Assume that we only want to optimize the
learning rate and keep the batch size fixed, we can create a second
smaller search space:

3. https://github.com/automl/labwatch

@a.searchspace
def small_search_space():

learning_rate = UniformFloat(lower=10e-3,
upper=10e-2,
default=10e-2,
log_scale=True)

This can be run in the same way as before by just swapping out
the name of the searchspace:
>> python my_experiment.py with small_search_space

The optimizer will now only suggest a value for the learning
rate and leaves all other hyperparameters, such as the batch size,
untouched.

Hyperparameter Optimizers

Labwatch offers a simple and flexible interface to a variety of
state-of-the-art hyperparameter optimization methods, including:

• Random search is probably the simplest hyperparameter
optimization method [BB12]. It just samples hyperparame-
ter configurations randomly from the corresponding prior
distributions. It can be used in discrete as well as continuous
search spaces and can easily be run in parallel.

• Bayesian optimization fits a probabilistic model to capture
the current belief of the objective function [SSW+16],
[SLA]. To select a new configuration, it uses a utility
function that only depends on the probabilistic model to
trade off exploration and exploitation. There are different
ways to model the objective function:
Probably the most common way is to use a Gaussian pro-
cess to model the objective function, which tendn to work
well in low (<10) dimensional continuous search spaces
but do not natively work with categorical hyperparameters.
Furthermore, due to their cubic complexity, they do not
scale well with the number of function evaluations. We
used RoBO4 as an implementation, which is based on the
George GP library [AFG+14].
SMAC is also a Bayesian optimization method, but uses
random forest instead of Gaussian processes to model the
objective function [HHLBb]. Random forest natively allow
to work in high dimensional mixed continuous and discrete
input spaces but seem to work less efficient compared
to Gaussian processes in low-dimensional continuous
searchspaces [EFH+13].
More recently, Bayesian neural networks have been used for
Bayesian optimization [SRS+15], [SKFH16]. Compared to
Gaussian processes, they scale very well in the number of
function evaluation as well as in the number of dimensions.
Here we use the Bohamiann approach [SKFH16], which
is also implemented in the RoBO framework.

For each of these optimizers, Labwatch provides an adapter
that integrates them into a common interface:
class Optimizer(object):

def suggest_configuration(self):
# Run the optimizer and
# return a single configuration
return config

def update(self, configs, costs, runs):
# Update the internal

4. https://github.com/automl/RoBO

https://github.com/automl/labwatch
https://github.com/automl/RoBO
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Fig. 1: Sacredboard user interface

# state of the optimizer
pass

This allows researchers to easily integrate their own hyperparameter
optimization method into Labwatch. They only need to implement
an adapter that provides the suggest_configuration()
method which returns a single configuration to Sacred, and the
update() method, which gets all evaluated configuration and
costs, and updates the internal state of the optimizer.

Sacredboard

Sacredboard provides a convenient way for browsing runs of
experiments stored in a Sacred MongoDB database. It consists
of a lightweight flask-based web server that can be run on any
machine with access to the database. The hosted web-interface
shows a table view of both running and finished experiments, which
are automatically updated. Sacredboard shows the current state and
results, and offers a detail view that includes configuration, host
information, and standard output of each run. At the moment, it
relies exclusively on the MongoDB backend of Sacred, but in the
future, we hope to support other options for bookkeeping as well.

Filtering

Experiments can be filtered by status to, for example, quickly
remove failed experiments from the overview. Sacredboard also
supports filtering by config values, in which case the user specifies
a property name and a condition. By default, the name refers to a
variable from the experiment configuration, but by prepending
a dot (.), it can refer to arbitrary stored properties of the
experiment. Possible conditions include numerical comparisons
(=, 6=,<,>,≥,≤) as well as regular expressions. Querying ele-
ments of dictionaries or arrays can be done using the dot notation
(e.g. .info.my_dict.my_key). A few useful properties to
filter on include: the standard output (.captured_out), exper-
iment name (.experiment.name), the info dictionary con-
tent (.info.custom_key), hostname (.host.hostname)
and the value returned from the experiment’s main function
(.result). These filters can be freely combined.

The Details View

Clicking on any of the displayed runs expands the row to a details-
view that shows the hyperparameters used, information about the
machine, the environment where the experiment was run, and the

Fig. 2: Sacredboard detail view

standard output produced by the experiment. The view is organised
as a collapsible table, allowing dictionaries and arrays to be easily
browsed.

Connecting to TensorBoard

Sacredboard offers an experimental integration with Tensor-
Board — the web-dashboard for the popular TensorFlow li-
brary [Goo]. Provided that the experiment was annotated with
@sacred.stflow.LogFileWriter(ex) as in our example
below and a TensorFlow log has been created during the run, it is
possible to launch TensorBoard directly from the Run detail view.

Plotting Metrics

Sacredboard can visualize metrics such as accuracy or loss if
they are tracked using Sacreds metrics interface. Metrics can be
tracked through the Run object, which is accessible by adding the
special _run variable to a captured function. This object provides
a log_scalar method than can be called with an arbitrary
metric name, its value, and (optionally) the corresponding iteration
number:
_run.log_scalar("test.accuracy", 35.25, step=50)

The values for each metric are aggregated into a list of step index
and values, where the last step number is autoincremented if
the step parameter is omitted. Sacredboard will display metrics
collected in this form as plots in the details view.

Example

In this section, we combine everything for the machine-learning-
equivalent of a hello world program: MNIST classification. Here we
use the current development version of Sacred and the Tensorflow
and Keras libraries.

Header

First, we import the required packages and functions. Then an
Experiment and a LabAssistant are instantiated:
import tensorflow as tf
from tensorflow import placeholder
from tensorflow.examples.tutorials.mnist import \

input_data

from keras import backend as K
from keras.layers import Dense
from keras.objectives import categorical_crossentropy
from keras.metrics import categorical_accuracy

import sacred
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import labwatch
from labwatch.optimizers import RandomSearch

ex = sacred.Experiment()
la = labwatch.LabAssistant(ex, optimizer=RandomSearch)

Configuration and Searchspace

Now we can define the configuration of the experiment. Note that
we specify six parameters and that the log_dir depends on the
hidden_units:
@ex.config
def cfg():

hidden_units = 512
batch_size = 32
nr_epochs = 100
optimizer = 'sgd'
learning_rate = 0.1
log_dir = 'log/NN{}'.format(hidden_units)

We also make use of a named_config to group together the
adam optimizer with a reduced learning rate. In this way, we can
start the experiment by specifying with adam and have both
parameters changed.
@ex.named_config
def adam():

optimizer = 'adam'
learning_rate = 0.001

Finally, we define a searchspace over learning_rate and
hidden_units, naturally treated in log-space. Now we can
run our experiment using with search_space and have these
two parameters set to suggestions by our hyperparameter optimizer
(here RandomSearch).
@la.searchspace
def search_space():

learning_rate = UniformFloat(0.001, 1.0,
log_scale=True)

hidden_units = UniformInt(32, 512,
log_scale=True)

Captured Functions

Sacreds config injection allows us to use the configuration pa-
rameters in any captured function. So here we use this feature to
define two helper functions that set up our neural network model
and our optimizer. Note that the set_up_optimizer function
also takes the loss, which is not part of the configuration and has
therefore to be passed normally:
@ex.capture
def build_model(hidden_units):

img = placeholder(tf.float32, shape=(None, 784))
label = placeholder(tf.float32, shape=(None, 10))

h = Dense(hidden_units, activation='relu')(img)
preds = Dense(10, activation='softmax')(h)

loss = tf.reduce_mean(
categorical_crossentropy(label, preds))

accuracy = tf.reduce_mean(
categorical_accuracy(label, preds))

return img, label, loss, accuracy

@ex.capture
def set_up_optimizer(loss, optimizer, learning_rate):

OptClass = {
'sgd': tf.train.GradientDescentOptimizer,
'adam': tf.train.AdamOptimizer}[optimizer]

opt = OptClass(learning_rate=learning_rate)
return opt.minimize(loss)

Main Method

Finally, the main method combines everything and serves
as the entry point for execution. We’ve decorated it with
@sacred.stflow.LogFileWriter(ex) to automatically
capture the log directory used for the FileWriter in the
appropriate format for Sacredboard. The main method is also
automatically a captured function, and takes three of the config-
uration values as parameters. It also accepts a special parameters
_run which grants access to the current Run object. Note that
we call the other captured functions without passing any of the
configuration values, since they will be filled in automatically.
@ex.automain
@sacred.stflow.LogFileWriter(ex)
def main(batch_size, nr_epochs, log_dir, _run):

# initialize tensorflow and load data
sess = tf.Session()
K.set_session(sess)
mnist = input_data.read_data_sets('MNIST_data',

one_hot=True)

# call captured functions for model and optimizer
img, label, loss, acc = build_model()
train_step = set_up_optimizer(loss)

# set up FileWriter for later use of Tensorboard
summary_writer = tf.summary.FileWriter(log_dir)
summary_writer.add_graph(tf.get_default_graph())

# initialize variables and main loop
sess.run(tf.global_variables_initializer())
for epoch in range(nr_epochs):

batch = mnist.train.next_batch(batch_size)
_, l, a = sess.run([train_step, loss, acc],

feed_dict={label: batch[1],
img: batch[0]})

# add loss and accuracy as metrics
_run.log_scalar("train.cross_entropy", l)
_run.log_scalar("train.accuracy", a, epoch)

# return test accuracy as final result
return sess.run(acc, feed_dict={

img: mnist.test.images,
label: mnist.test.labels})

Related Work

We are aware of only a few projects that have a focus similarly
broad as Sacred, the closest one being Sumatra [Dav12]. Both
projects are very similar in that they collect and store information
about sources, dependencies, configurations, and host information.
Their main difference is that Sumatra comes as a command line
tool for running experiments "from the outside", while Sacred
was designed as a Python package to be used from within the
experiment script. So while Sacred is limited to Python scripts,
Sumatra can track any executable as long as its command line
interface matches a certain structure. This, on the other hand, allows
sacred to provide many conveniences like the flexible configuration
system with configuration injection, automatic seeding of random
number generators, support for live updated custom information,
and integration with 3rd party libraries like Tensorflow. It also
means that Sacred scripts are self-sufficient, while Sumatra relies
on a separate outside project-configuration stored in a hidden
.smt directory. Another subtle but important difference is that
Sumatra relies mainly on SQL for storing run information, while
Sacred favors MongoDB. The use of this schema-free database
enables querying Sacred runs based on dynamic structure such as
configuration entries (even nested ones) and custom information.
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Workflow management systems such as Taverna [WHF+13],
Kepler [ABJ+04], Vistrails [BCC+05], and Galaxy [GRH+05] can
also capture provenance information and ensure reproducibility.
They let the user define a workflow based on standardized
components, often through a graphical user interface without any
direct programming. Implementing a custom component is usually
difficult, which restricts their usefulness to the supported ones
and thus to their intended domain. The line between workflow
management and free-form programming blurs with tools like
Reskit [IP17] and FBLearner Flow [Dun16]. Sacred, however,
is targeted at general machine learning audience, and therefore
works with arbitrary python instead of some set of standardized
components.

Experiment databases [VBPH12], [SWGCM14], [emp17] rep-
resent a related bodey of work by making an effort to unify the
process and storage of machine learning problems and experiments
by expressing them in a common language. By standardizing
that language, they improve comparability and communicability
of the results. The most well-known example might be the
OpenML project [VvRBT14]. This standardization has benefits,
but also imposes certain restrictions on the conducted experiments.
Therefore, to keep Sacred as general as possible, we chose not
to build it ontop of an experiment database. That being said, we
believe there is a lot of value in adding (optional) interfaces to
experiment databases to Sacred.

There are several tools such as noWorkflow [PBMF15],
ProvenanceCurious [HAW13], and others [BGS08] to extract fine-
grained provenance information from python scripts. Whereas
Sacred treats the executed code mostly as a black box, these tools
use inspection and tracing techniques to extract function call graphs
and data flow. This information is then often stored in the form of
the Open Provenance Model in a relational database and enables
in-depth analysis of the performed computations.

Some other projects, including FGLab [Aru17], the proprietary
Aetros [Aet17], and Neptune [dee17], focus on providing a
dashboard. Jobman [Job12] is a Python library for scheduling lots
of machine learning experiments which also helps in organizing
hyperparameter searches and bookkeeping. Several projects exist
with a focus on capturing the entire environment of an experiment
to ensure its reproducibility. They include tools such as ReproZip
[CRSF16], CDE [Guo12], PTU [PMF13], CARE [JVD14]. They
trace dependencies on an operating system level and help in
packaging everything that is needed to rerun an experiment exactly.

Conclusion

Sacred is an open source Python framework which aims to
provide infrastructure for computational experiments with minimal
boilerplate code and maximum convenience. This paper presented
its key features and demonstrated how they interact to tackle
some of the basic problems of computational experimentation, like
managing parameters, bookkeeping, and reproducibility. We hope
that through convenience and modularity, Sacred will help to build
a rich ecosystem of tools. Two such supporting tools are Labwatch
and Sacredboard. Labwatch interfaces the powerful configuration
system of sacred with several hyperparameter optimization libraries,
thus significantly simplifying the tuning of configurations. Sacred-
board, on the other hand, provides a web-based interface to view
recorded runs, facilitating a live overview of all the experiments.

Future Work

Sacred has been useful for many researchers already, but there are
still many possible improvements on our roadmap. This includes
support for more complex experimental setups, like having separate
training and evaluation scripts as is common with large Tensorflow
models. Similarly, it would be interesting to offer support and a
clear workflow for the continuation of aborted runs.

While Sacred helps to capture relevant information about
experiments, it does not offer much support for organizing and
analyzing results. To tackle this we plan to provide a unified
interface for querying the records created by different observers.
This semi-standardized format will enable the creation of general
analysis tools, and extend the applicability of existing tools like
Sacredboard.

Another important direction is to automate the process of
actually reproducing Sacred experiments. As of now the researcher
has to manually reconstruct the environment, copy the stored
source files and run with the saved configuration parameters.
An integration with environment capturing tools ReproZip could
allow for creating packages that can be rerun on any system in a
completely automated fashion.

Finally, we plan on improving the support of Sacred for
scheduling and distributing runs. It already supports "queueing
up" experiments, which only creates a database entry containing
the sources, desired configuration, and the status QUEUED. In the
future, we hope to include workers that can be run on different
machines and which will fetch queued runs from the database
and execute them. This way, Sacred could offer basic support for
distributing computations.
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