
Combining Hyperband and Bayesian Optimization

Stefan Falkner Aaron Klein Frank Hutter
Department of Computer Science

University of Freiburg
{sfalkner, kleinaa, fh}@cs.uni-freiburg.de

Abstract

Proper hyperparameter optimization is computationally very costly for expensive
machine learning methods, such as deep neural networks; the same holds true
for neural architecture search. Recently, the bandit-based strategy Hyperband has
shown superior performance to vanilla Bayesian optimization methods that are
limited to the traditional problem formulation of expensive blackbox optimization.
However, while Hyperband has strong anytime performance for finding configura-
tions with acceptable results, it relies on random search and therefore does not find
the best configurations quickly. We propose to combine Hyperband with Bayesian
optimization by maintaining a probabilistic model that captures the density of good
configurations in the input space and samples from this model instead of sampling
uniformly at random. We empirically show that our new method combines Hy-
perband’s strong anytime performance with the strong eventual performance of
Bayesian optimization.

1 Introduction

Finding good hyperparameter settings for a machine learning method often makes the difference
between achieving state-of-the-art or quite weak performance. Various methods, such as Bayesian
optimization (BO) [Snoek et al., 2012, Hutter et al., 2011, Bergstra et al., 2011] or random search
[Bergstra and Bengio, 2012] try to automate the search for good hyperparameter settings by for-
mulating it as a blackbox optimization problem. However, the long training time and the demand
for large computational power of contemporary machine learning methods, such as deep neural
networks, limit the usefulness of these methods: when single function evaluations require days or
weeks it becomes computationally infeasible to apply blackbox optimizers. Recent advances in
hyperparameter optimization therefore go beyond this limiting blackbox formulation and consider
cheap approximate function evaluations, such as performance when running on a subset of data or
optimizing a deep neural network for few epochs [Swersky et al., 2014, Klein et al., 2017a, Li et al.,
2017, Klein et al., 2017b].

In particular, when approximate function evaluations are exponentially cheaper than full function
evaluations, it is possible to evaluate an exponentially larger number of configurations in the same
budget. The recent method Hyperband (HB) [Li et al., 2017] and its building block of successive
halving [Jamieson and Talwalkar, 2016] exploit this strategy by evaluating N hyperparameter
configurations based on one unit of budget (e.g., a fixed number of epochs, or time interval), continue
the best half to two units of budget, the best half thereof to four units, etc. Despite Hyperband’s
simplicity it was able to outperform Bayesian optimization methods that evaluate hyperparameter
configurations on the full budget. However, this only holds for finding reasonably good configurations;
since Hyperband and successive halving are based on random search, they do not use previous samples
to guide their search and therefore are slow in finding the best configurations.

The contribution of this paper is to extend Hyperband with a probabilistic model that captures the
density of good configurations in the input space. By sampling configurations from this model
31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



instead of uniformly at random, our new method combines Hyperband’s strong anytime property
with Bayesian optimization’s guided approach for identifying the best configuration.

2 Background

Bayesian Optimization (BO). In its vanilla version, BO [Shahriari et al., 2016] aims to find a
global optimizer x ∈ argmin f(x) of a blackbox function f : X → R. It iteratively fits a
probabilistic model p(f |D) to capture the belief about f based on previous observations D =
{(x0, y0), . . . , (xi, yi)}, where we assume only access to noisy observations y(x) = f(x) + ε,
with ε ∼ N (0, σ2

noise). To select the next point xnew to evaluate, BO uses an acquisition function
a(x) based on p(f |D) and picks a point that maximizes it, i.e. xnew ∈ argmaxx∈X a(x). It then
evaluates f at (xnew), obtains ynew, updates the probabilistic model and iterates. A popular choice
for the acquisition function is the expected improvement (EI) [Jones et al., 1998] over a reference
value α under the current model:

a(x, α) =

∫
max(0, α− f(x))d p(f(x)|D) . (1)

Tree-of-Parzen-Estimators (TPE). TPE [Bergstra et al., 2011] is a specific instantiation of the
general BO method that, instead of having an explicit model for the function f , uses Parzen kernel
density estimators (KDE) to approximate the densities

l(x) = p(y < α|x) and g(x) = p(y > α|x) (2)

that model the probability of the function value being less or greater than a given value α. Bergstra
et al. [2011] showed that optimizing Eq. (1) under this model is equivalent to maximizing the ratio
g(x)/l(x). This maximization can be performed efficiently by drawing samples according to l(x)
and evaluating the ratio. This stochastic optimization can directly be used to parallelize TPE, by
relying on the random samples to be different. To ascertain sufficient exploration, TPE allows a
user-defined prior over the search space; choosing this as the uniform distribution (as done by default)
effectively adds randomly sampled configurations, yielding a ‘safe’ BO method [Ahmed et al., 2017].
TPE also natively supports conditional hyperparameter spaces, in which not all dimensions are
relevant for all configurations.

Hyperband (HB). HB is a bandit-based strategy for hyperparameter optimization that iteratively
allocates resources to a set of random configurations. Given a predefined budget B for one iteration,
e. g. time or total number of epochs, in each of its iteration i, HB samplesNi configurations uniformly
at random and uses successive halving to discard poorly performing configurations. The budget for
each configuration increases by a factor of η while the number of continued configurations decreases
by it. By automatically exploring different trade-offs between Ni and B, HB is guaranteed to be at
most a constant factor slower than random search.

In practice, HB works very well and typically outperforms random search and Bayesian optimization
methods operating on the full function evaluation budget quite easily for small to medium total
budgets. However, its convergence to the global optimum is limited by its reliance on randomly-
drawn configurations.

3 Model-based Hyperband

We aim to combine the building blocks described above to obtain a new state-of-the-art hyperparame-
ter optimization method that fulfills the following desiderata:

• Strong anytime performance: for short/medium budgets, we aim to do as well as HB.
• Strong final performance: for large budgets, we aim to converge as well as BO.
• Computational efficiency: to facilitate parallelization, we aim for minimal overhead of

model construction and use compared to the shortest possible runs.
• Conceptual simplicity: compared to sophisticated BO methods, Hyperband is very simple,

allowing quick re-implementation in different frameworks; we thus aim for a simple model.
• Robustness: in constrast to existing BO approaches that go beyond blackbox optimization,

we aim to avoid any parametric assumptions and to also perform well for high-dimensional
and conditional spaces.

2



We achieve these goals by combining HB with TPE in our new BO-HB method to get the best of
both worlds. Our choice is based on previous evaluations of BO methods [Eggensperger et al., 2013]
which showed TPE to be comparable to GP-based methods but with substantially less computational
overhead. The sampling based optimization by Bergstra et al. [2011] also allows for efficient and
effective parallelism, even in complex search spaces with conditionals. TPE is conceptually simpler
than traditional BO methods and the properties above also make it more robust than BO approaches
that, e.g., rely on GPs.

Our extension replaces the random sampling of configurations at the beginning of each HB iteration
by a model-based search. Once the desired number of configurations for the iteration is reached, the
standard successive halving procedure is carried out using these configurations, and we keep track of
the performance across all budgets to use as a basis for our models in later iterations.

Algorithm 1: Pseudocode for how to sample a new configu-
ration in BO-HB
input :previous observations D, constant fraction of

random configurations p, percentile q, number of
samples Ns to optimize EI, minimum number of
points Nmin to build a model

output :next configuration to evaluate
if rand() < p then return random configuration
find largest budget B with at least Nmin observations
if no such B exists then return random configuration
α = qth percentile of all y values in DB

fit KDE for l(x) and g(x) on DB and α, see Eq. (2)
draw Ns samples according to l(x)
return sample with highest ratio g(x)/l(x)

Algorithm 1 describes the procedure
we use to sample new configurations
in BO-HB. We construct a model to
sample from for each budgetB, based
on the configurations evaluated so far
with that budget. We opted for a sin-
gle multidimensional KDE compared
to the hierarchical one-dimensional
KDEs used in TPE. We used the
KDE implementation from statsmod-
els [Seabold and Perktold, 2010], esti-
mating the KDE’s bandwidth with the
default estimation procedure (Scott’s
rule of thumb). For a useful KDE,
we require a minimum number of con-
figurations Nmin set to 2 · d for our
experiments, where d is the number of hyperparameters. Hence, BO-HB starts by sampling Nmin

configurations for the lowest budget at random, followed by configurations proposed by the model.
When starting a new iteration with a larger budget, we sample configurations from the model for the
largest available budget. In order to keep the theoretical guarantees of HB, we also sample a constant
fraction p of the configurations uniformly at random. Because of this, our method is still guaranteed
to be only a constant factor slower than random search in the worst case (in which the performance
for smaller budgets is negatively correlated with the one for the largest budget).

4 Experiments

We now empirically assess our method’s performance for the joint optimization of neural network
architectural choices and hyperparameters, a task that naturally lends itself to the different budgets
within HB due to the iterative optimization of network weights via stochastic gradient descent.

Table 1: The hyperparameters for the trained networks.

Hyperparameter Range Log-transform

batch size [23, 28] yes
dropout rate [0, 0.5] no

initial learning rate [10−6, 10−2] yes
exponential decay factor [−0.185, 0] no

# hidden layers {1, 2, 3, 4, 5} no
# units per layer [24, 28] yes

Benchmarks. We used a simple feed
forward network architecture and a
few hyperparameters to define our
model. The hyperparameters used de-
scribe the architecture of the network
(number of hidden layers and the num-
ber of units in a layer) and properties
of the training; all hyperparameters
can be found in Table 1, along with
their ranges. We trained networks
on four datasets from OpenML [Van-
schoren et al., 2014]: Adult [Kohavi,
1996], Higgs [Baldi et al., 2014], Letter [Frey and Slate, 1991], and Poker [Cattral et al., 2002], using
the Adam optimizer [Kingma and Ba, 2014]. For faster development and to afford more runs of the
different optimizers, we constructed surrogate benchmarks based on random evaluations following
Eggensperger et al. [2013]; a detailed description of this procedure can be found in the supplementary
material. On these surrogates, we evaluated the performance of all optimizers by running them

3



100 101 102 103 104 105 106

wall clock time [s]

10−3

10−2

10−1

re
gr

et

Adult

HB

BO-HB

TPE

RS

100 101 102 103 104 105 106

wall clock time [s]

10−3

10−2

10−1

100

re
gr

et

Higgs

HB

BO-HB

TPE

RS

100 101 102 103 104 105 106

wall clock time [s]

10−3

10−2

10−1

100

re
gr

et

Letter

HB

BO-HB

TPE

RS

101 102 103 104 105 106 107

wall clock time [s]

10−4

10−3

10−2

10−1

100

re
gr

et

Poker

HB

BO-HB

TPE

RS

Figure 1: Immediate regret of random search (RS), TPE, HB and BO-HB for optimizing a neural
network on the four datasets. We averaged the performance of 256 runs for each method and show
twice the standard error of the mean as uncertainty. Note how RS and TPE are indistinguishable for
the first 20-30 function evaluations. HB and BO-HB evaluate shorter runs hence their trajectories
start earlier. While the latter two clearly dominate the regret for small budgets, TPE can be very
competitive and even beat both when run long enough.

repeatedly and averaging the results. To better compare the convergence towards the true optimum,
we compute the regret |f(x) − f(x∗)| where x∗ ∈ argmin f(x). We specify the training budgets
used on the different datasets in the supplementary material.

Results. We ran random search, TPE, HB (with the default η = 3) and BO-HB on all four surrogates
and summarize the results in Figure 1. We note that HB initially performed much better than TPE,
but TPE caught up in all cases for large enough budgets. BO-HB started out identical to HB and
performed better with larger budgets (with comparable results to TPE); in particular, BO-HB and TPE
reached comparable performance for Higgs and Poker, with Adult and Letter representing examples
of BO-HB and TPE performing a bit better in the end, respectively.

The results on Letter are a clear indication that for large enough budgets, the overhead of evaluating
different budgets can be detrimental to the performance. We see two main reasons for this: (a) the
model TPE built for the largest budget contained more data points than the one in BO-HB, thereby
impacting performance, and (b) the partial evaluation of new hyperparameter configurations slows
down progress in later phases by wasting computational power.

All three methods substantially outperformed random search at the end of their budget. If continued
for more than ten times the budget of the other methods, random search also found competitive
configurations. We note that the speedups that TPE achieved over random search are comparable to
the speedups BO-HB gained over HB.

5 Conclusions

We introduced BO-HB, an extension to Hyperband that, similar to TPE, models the density of
good and bad performing configuration in the input space. By sampling from this model instead of
uniformly at random, we can cure the drawbacks of random search but keep the performance gains of
Hyperband. In future work we will extend our model to work in mixed continuous and discrete space,
study the performance when run in parallel and apply it to more realistic benchmarks.

4



6 Acknowledgements

We thank Ilya Loshchilov for suggesting to track the best hyperparameter setting across different
budgets (already in late 2015), which influenced our thoughts about the problem and ultimately the
development of BO-HB. This work has partly been supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme under grant
no. 716721, by the Euro- pean Commission under grant no. H2020-ICT-645403-ROBDREAM, and
by the German Research Foundation (DFG) under Priority Programme Autonomous Learning (SPP
1527, grant BR 3815/8-1 and HU 1900/3-1) Furthermore, the authors acknowledge support by the
state of Baden-Württemberg through bwHPC and the DFG through grant no INST 39/963-1 FUGG.

References
J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning

algorithms. In Proc. of NIPS’12, pages 2960–2968, 2012.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In Proc. of LION’11, pages 507–523, 2011.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In
Proc. of NIPS’11, pages 2546–2554, 2011.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13:281–305, 2012.

K. Swersky, J. Snoek, and R. Adams. Freeze-thaw bayesian optimization. arXiv:1406.3896, 2014.

A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian optimization of machine
learning hyperparameters on large datasets. In Proc. of AISTATS’17, 2017a.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-based
configuration evaluation for hyperparameter optimization. In Proc. of ICLR’17, 2017.

A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter. Learning curve prediction with Bayesian
neural networks. In Proc. of ICLR’17, 2017b.

K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter optimiza-
tion. In Proc. of AISTATS’16, 2016.

B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. de Freitas. Taking the human out of the loop:
A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black box functions.
Journal of Global Optimization, 13:455–492, 1998.

M. Ahmed, B. Shahriari, and M. Schmidt. Do we need “harmless” bayesian optimization and
“first-order” bayesian optimization? In Proc. of BayesOpt’17, 2017.

K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown.
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS
Workshop on Bayesian Optimization in Theory and Practice (BayesOpt’13), 2013.

Skipper Seabold and Josef Perktold. Statsmodels: Econometric and statistical modeling with python.
In 9th Python in Science Conference, 2010.

J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine learning.
SIGKDD Explor. Newsl., 15(2):49–60, June 2014.

Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In KDD,
volume 96, pages 202–207, 1996.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications, 5, 2014.

5



Peter W. Frey and David J. Slate. Letter recognition using holland-style adaptive classifiers. Machine
Learning, 6(2):161–182, Mar 1991.

Robert Cattral, Franz Oppacher, and Dwight Deugo. Evolutionary data mining with automatic rule
generalization. Recent Advances in Computers, Computing and Communications, 1(1):296–300,
2002.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.

A Constructing the surrogates

To build a surrogate, we sampled 10 000 random configurations for each dataset, trained them for 50
epochs, and recorded their classification error after each epoch, along with their total training time.
We fitted two random forests to predict both quantities independently given a new hyperparameter
configuration. This enabled us to predict the classification error as a function of time with sufficient
accuracy. As almost all networks converged within the 50 epochs, we extend the curves by the last
obtained value if the budget would allow for more epochs.

The surrogates allow cheap evaluations and are the reason we could afford to run each algorithm
256 times. Since evaluating a configuration with the random forest is inexpensive, we used a global
optimizer (differential evolution) to find the true optimum. We allowed the optimizer 10 000 iterations
which should be sufficient to find the true optimum.

Besides these positive aspects about the surrogates, there are also drawback that we want to mention
explicitly:

(a) There is no guarantee that the surrogate actually reflects the important properties of the true
benchmark.

(b) The presented results show the optimized classification error on the validation set used
during training. There is no test performance that could indicate overfitting.

(c) Training with stochastic gradient descent is an inherently noisy process, i.e. two evaluations
of the same configuration can result in different performances. This is not at all reflected by
our surrogates, making them a potentially easier benchmark.

(d) By fixing the budgets (see below) and having deterministic surrogates, the global optimizers
might be the result of some small fluctuation in the classification error in the surrogates’
training data. That means that surrogate’s optimizer might not be the true optimizer of the
real benchmark.

None of these downsides have any real implications for comparing different optimizers, they simply
show that the surrogate benchmarks are not perfect models for the real benchmark they mimic.
Nevertheless, we believe that, especially for development of novel algorithms, the positive aspects
outweigh the negative ones.

B Determining the budgets

To choose the largest budget for training, we looked at the best configuration as predicted by the
surrogate and its training time. We chose the closest power of 3 (because we also used η = 3 for
HB and BO-HB) to achieve that performance. We chose the smallest budget for HB such that most
configurations had finished at least one epoch. Table 2 lists the budgets used for all datasets.

Table 2: The budgets used by HB and BO-HB; random search and TPE only used the last budget

Dataset Budgets in seconds for HB and BO-HB
Adult 9, 27, 81, 243
Higgs 9, 27, 81, 243
Letter 3, 9, 27, 81
Poker 81, 243, 729, 2187

6


	Introduction
	Background
	Model-based Hyperband
	Experiments
	Conclusions
	Acknowledgements
	Constructing the surrogates
	Determining the budgets

