
SpyBug: Automated Bug Detection in the
Configuration Space of SAT Solvers

Norbert Manthey1? and Marius Lindauer2??

1 Technische Universität Dresden, Dresden, Germany
2 University of Freiburg, Freiburg, Germany

Abstract. Automated configuration is used to improve the performance
of a SAT solver. Increasing the space of possible parameter configurations
leverages the power of configuration but also leads to harder maintain-
able code and to more undiscovered bugs. We present the tool SpyBug
that finds erroneous minimal parameter configurations of SAT solvers
and their parameter specification to help developers to identify and nar-
row down bugs in their solvers. The importance of SpyBug is shown by
the bugs we found for four well-known SAT solvers that won prices in
international competitions.

1 Introduction

Recently, algorithm configuration [12] has shown to considerably improve the
performance of SAT solvers by tuning their parameters, e.g. in the Configurable
SAT Solver Challenge (CSSC; [13]). As a consequence, SAT solvers became
highly flexible and configurable such that their performance can be optimized
for broad range of different SAT formulas. One well-known example is the solver
Lingeling [4] that exposes 323 parameters to the user and gave rise to 101341 pos-
sible parameter configurations in the CSSC’14. In combination with its already
strong default performance, Lingeling won the industrial track of the CSSC’14.

This flexibility of solvers comes with a price: as it is infeasible to assess the
performance of all possible parameter settings, it is also infeasible to verify the
correctness of all these settings. The high number of parameters of SAT solvers
motivated this work, as we expect to find untested (possibly buggy) configura-
tions when searching long enough. Since the components of a SAT solver highly
interact with each other and due to their increasing size and complexity, it is
hard to apply traditional methods aiming at formally proving SAT solver to be
bug free (see Section 2). Therefore, we propose a new tool, called SpyBug (see
Section 3) that searches in the space of possible parameter settings and instances
to find erroneous solver runs that unexpectedly terminated or returned a wrong
proof. Since SAT solvers have many parameters and in most cases only a few
parameters actually trigger the bug (often 2 - 10 out of hundreds of parame-
ters), we furthermore use a heuristic to minimize the parameter configuration

? N. Manthey was supported by the DFG grant HO 1294/11-1.
?? M. Lindauer was supported by the DFG under Emmy Noether grant HU 1900/2-1.



by removing all parameters that are not necessary for the bug. This automatic
procedure helps the developer to narrow down the reason of the bug. In Section 4,
we demonstrate the effectiveness of SpyBug on the participants of the industrial
track of the CSSC 2014 and show that in 4 out of the 6 participants we were able
to find bugs which can be often explained by less than 10 parameters. With a
few modifications, SpyBug could also be applied to other problem domains, e.g.
mixed integer programming (MIP), maximum satisfiability (MaxSAT), quanti-
fied Boolean formula (QBF) or SAT modulo theory (SMT).

2 Related Work: Bug Detection in Software

Bugs in software are found in several ways. On one hand, formal methods can be
used to verify the software with respect to a specification, or to formally prove
that certain error states cannot be reached. Typically recognizable states are
assertions in the code, numerical overflows, or passing memory bounds. Similar
bugs are found with symbolic execution, or by fuzz testing. Finally, we can use
unit tests to test single components of a software system. A survey on formal
methods for software verification can be found in [20].

Depending on the size of the software system under test, certain methods
are not feasible due to their computational complexity. Unit tests are possible as
soon as there are single components in a system. Here, for example the solvers
data structures could be tested. Fuzz testing executes the software binary many
times and checks each run for errors. For SAT solvers, there exists the fuzz
testing suite [7, 1], whose latter versions also support passing parameters to the
used SAT solver and minimizing faulty combinations. However, the required
feature to parse parameters from the formulas is not supported by many solvers.
The approach of SpyBug treats the software under examination as a black box.
Instead of the binary, the API of a solver library can be tested [7].

Formal methods have been applied to write verified SAT solvers with clause
learning: F. Marić [16] specified a SAT solver in the Isabelle interactive theorem
prover and then a solver implemented in Haskell is created. The SAT solver
versat [17] is created and verified by using the language Guru and translating
the code to C. In both projects, many techniques of recent systems have not
been implemented, and there is a performance gap to modern systems.

For symbolic execution and proving the reachability of erroneous states it is
hard to add assertions that check whether a solver state is valid. Therefore, we
currently focus on improved fuzz testing, as we want to check the correctness of
a highly configurable system without modifying the tool itself. With fuzz testing,
we only require that there exists a formal specification of the parameters of the
solver, and a standard input format and output format.

Hutter et al. [10] implemented a similar approach as used in SpyBug to
identify bugs in two MIP solvers. They modified the algorithm configurator
ParamILS [12] to record erroneous configurations and to minimize them. The
main difference to SpyBug is that ParamILS will find bugs mostly in well-per-
forming areas of the configuration space since its goal is not to find bugs but to



SpyBug

Solver A with
Configuration

Space C

Instances I

Budget

Randomly
sample i ∈ I
and c ∈ C

Run A(c) on i

Minimize bug
configuration

Forbid config-
uration cmin

No Bug Bug found

Minimized
Bugs

Fig. 1. Workflow of SpyBug

optimize the performance of a solver. As ParamILS aims at optimization, it is
more complicated to set up ParamILS compared to setting up SpyBug.

3 SpyBug’s Framework

The tool SpyBug is supposed to help developers by finding bugs in large con-
figuration spaces. We require only a parameter specification, the solver binary
and a list of formulas to perform testing.3 In the following sections, we explain
the internals of SpyBug and present a use case. The tool is open-source under
GPLv2 and available at http://www.ml4aad.org/spybug/.

3.1 Workflow

Since the idea of SpyBug is to search in the space of parameter configurations,
it is built upon a simplified subset of the already well-known interfaces of the
state-of-the-art algorithm configurators ParamILS [12] and SMAC [11] that was
also used in the Configurable SAT Solver Challenge [13]. Hence, developers al-
ready using algorithm configuration can use SpyBug directly out-of-the-box. As
illustrated in Figure 1, the input of SpyBug is a solver with its configuration
space, a set of instances to run the solver on, and a budget how long SpyBug

runs (i.e., a wall clock time budget or a maximal number of solver runs). In the
end, SpyBug returns a list of all minimized found erroneous configurations of the
given solver.

The main workflow of SpyBug consists of a loop:

1. It samples an instance and a valid configuration uniformly at random.
2. It runs the solver with the configuration on the instance with some resource

limits (i.e., the used runtime cutoff or memory limit). The solver is wrapped
by the so-called generic wrapper, which was used in the CSSC and which
is responsible to determine whether it was a valid run or not. In a valid

3 Such a collection could be generated with fuzzing tools [7].



run, the solver either returned SATISFIABLE with a corresponding model or
UNSATISFIABLE – to verify the output, we check the returned model – or it
violated the resource limits. Hence, segmentation faults or failed assertions
are also considered as bugs.

3. If it was a valid run, we continue with Step 1. Otherwise, we first minimize
the found bug and then forbid the minimized configuration (or any super set
of this configuration) to be sampled again. If the minimized configuration
is empty (i.e., the bug is also triggered by the default configuration), we
remove the instance from the instance set because we assume that the solver
will always fail to run on this instance.

The generic wrapper judges a run based on the output of the solver, and the
report of the runsolver tool [19]. By replacing the SAT-specific component of
this script, SpyBug can easily be adapted to other types of solvers, for example
MaxSAT solvers, Pseudo-Boolean solvers, QBF solver or SMT solvers.

3.2 Bug Minimization

The minimization of a configuration that triggered a bug is important to narrow
down the reason for this bug. In the end, we are interested in the changed error-
prone parameters with respect to the default configuration of a solver since the
default configuration is often well tested and well studied by the developers. We
therefore apply two iterations of a backward elimination, i.e., we iterate over all
changed parameters and flip them to the default if the bug remains. The second
iteration is done in reversed order of the parameters because a single traversal of
the parameters could keep many non-relevant parameters. In preliminary tests,
many further non-relevant parameters were removed with the help of a reverse
traversal. To not spend too much time on the minimization, we do not use a full
minimization procedure.

In this minimization process, we have to consider that the parameter con-
figuration space (pcs) of a solver could be structured. According to the used
pcs-format4, the configuration space can consist of forbidden parameter com-
binations and conditional parameter clauses. For the first, we simply have to
ensure that we do not violate these forbidden combinations. In contrast, condi-
tional parameter clauses define when a parameter is active (e.g., a parameter of
a heuristic is only active if this heuristic is indeed used). If we flip a parameter
value we check which parameters are inactive and which ones need to be acti-
vated. Since a parameter will be set to its default value when it gets activated,
the number of parameters to activate does not increase by flipping parameters
during minimization.

In order to not find the same faulty configuration twice, the obtained com-
bination of parameters is disallowed for all further solver calls. We furthermore
remove all continuous parameters from this parameter configuration, as for such
a kind of parameter there might be too many other values that would lead to
the same fault in the solver.
4 http://www.cs.ubc.ca/labs/beta/Projects/SMAC/v2.08.00/manual.pdf



Table 1. Overview of participants of the industrial track of the Configurable SAT
Solver Challenge 2014. For illustration, the number of configurations refers to a dis-
cretized version of the configuration space where each parameter has at most 8 possible
values.

Solver # Parameters # Configurations Reference

Minisat-HACK-999ED 10 8 · 105 [18]
Cryptominisat 36 3 · 1024 [21]
Clasp-3.0.4-p8 75 1 · 1049 [9]
Riss-4.27 214 5 · 1086 [15]
SparrowToRiss 222 1 · 10112 [2]
Lingeling 323 2 · 101341 [5]

3.3 An Exemplary Use Case

We present a small use case for the solver Riss-4.27 [15] (riss) with its 214
parameters (specified in the file riss.pcs). We use the solver and parameter
specification that were submitted to the CSSC 2014 [13]. As a benchmark set,
we use Circuit Fuzz formulas [7].

When starting SpyBug for the submitted version of Riss-4.27 with the above
setup, the following lines will be printed.

found a bug in -agil-r no -probe yes [...] on fuzz_100_20562.cnf

[...]

Minimal bug config: -cp3_strength no [...] -inprocess yes

The example highlights the major properties of SpyBug: when it finds a bug, it
reports the full parameters that have been passed to the solvers wrapper script.5

Furthermore, the formula that triggered the bug is printed (SAT dat.k50.cnf).
Next, the minimized list of parameters is printed. For the given example, the
parameter -agil-r is not set any longer in the minimized set, as the bug is repro-
ducible with the default value for this parameter. This combination is reported
to the user, as shown in the example above.

4 Case Study: Configurable SAT Solver Challenge

To demonstrate the usefulness of SpyBug, we evaluated the 6 solvers that have
been submitted to industrial track of the CSSC 2014 [13]. We independently
analyze the solvers on the three benchmark families, i.e., hardware verification
(IBM [22]), circuit fuzz (CF [7]), and bounded model checking (BMC [6]). Sim-
ilar to automated configuration, we repeat the analysis for the combination of a
solver and a benchmark family four times. The execution of a solver on a formula
is limited to 300 CPU seconds and 3 GB RAM. We stop the analysis as soon as

5 When reproducing the buggy configuration with the native binary, the parameters
that might be added to the solver call in the wrapper script must be considered.



Table 2. Number of found bugs and their minimized average sizes (± standard devia-
tion) in the configuration space after 4 independent runs of SpyBug for at most 2 days
or 10.000 randomly sampled configuration-instance pairs.

# Bugs ∅ Bugs
IBM CF BMC IBM CF BMC

Minisat-HACK-999ED 0 0 0 − − −
Cryptominisat 2 0 7 2± 0 − 3± 2
Clasp-3.0.4-p8 0 0 0 − − −
Riss-4.27 3 5 2 5± 1 13± 6 6± 4
SparrowToRiss 0 0 1 − − 7± 0
Lingeling 0 2 0 − 8± 2 −

we tested 10 000 random configurations, or when reaching 2 days wall clock time.
We communicated the found erroneous configurations to the solver developers.

The experiment has been executed on a cluster with 64 GB RAM that is
shared among two Intel Xeon E5-2650v2 8-core CPUs with 20 MB L2 cache;
running Ubuntu 14.04 LTS 64 bit. Table 1 presents the 6 solvers of the analysis
and their number of parameters. While larger configuration spaces might yield
better configurations, verifying the absence of bugs becomes harder.

Next, we present a summary of the bugs we found during the analysis in
Table 2. For Minisat-HACK-999ED and Clasp-3.0.4-p8 , we did not find a bug
during our experiments. Lingeling has two misbehaving configurations for the CF
family and SparrowToRiss shows bugs for the BMC family. For Cryptominisat
and Riss-4.27 , more than 5 bugs could be revealed on different families. The
table furthermore presents how many parameters have to be changed from the
default configuration to reach the faulty configuration. We note that SpyBug

minimized the erroneous configurations of Lingeling with 323 parameters down
to 8 parameters on average which drastically reduces the possible reasons of the
responsible bugs. SpyBug got the best narrowing of responsible parameters for
Cryptominisat for which only 2 or 3 parameters on average were necessary.

5 Conclusion

State-of-the-art SAT solvers contain many different techniques such as simplifi-
cation during search. Combining only a few of these techniques can already result
in unsound sequential systems [14]. Implementing competitive SAT solvers is a
difficult task, especially if the system should be tuned for different applications.
We presented the tool SpyBug, which orthogonally to existing tools finds bugs in
the configuration space of the SAT solver. One specific use-case of SpyBug is to
reveal bugs in solvers, before tuning them with many expensive resources. We
reported bugs for four SAT solvers that won first prices in international competi-
tions in 2014. For the future, we plan to integrate SpyBug into the framework of
SpySMAC [8], i.e., an automatic framework to tune and analyse of SAT solvers.



References

1. Artho, C., Biere, A., Seidl, M.: Model-based testing for verification back-ends. In:
Proc. of TAP’13. pp. 39–55 (2013)

2. Balint, A., Manthey, N.: SparrowToRiss. In: Belov et al. [3], pp. 77–78
3. Belov, A., Diepold, D., Heule, M., Järvisalo, M. (eds.): Proceedings of SAT Compe-

tition 2014: Solver and Benchmark Descriptions, Department of Computer Science
Series of Publications B, vol. B-2014-2. University of Helsinki (2014)

4. Biere, A.: Lingeling, plingeling and treengeling entering the sat competition 2013.
In: Proc. of SAT Competition 2013. pp. 51–52 (2013)

5. Biere, A.: Yet another local search solver and Lingeling and friends entering the
SAT competition 2014. In: Belov et al. [3], pp. 39–40

6. Biere, A., Cimatti, A., Claessen, K.L., Jussila, T., McMillan, K., Somenzi, F.:
Benchmarks from the 2008 hardware model checking competition (HWMCC’08)
(2008), available at http://fmv.jku.at/hwmcc08/benchmarks.html

7. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Proc. of SAT’10, pp. 44–57

8. Falkner, S., Lindauer, M., Hutter, F.: SpySMAC: Automated configuration and
performance analysis of SAT solvers. pp. 1–8

9. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187-188, 52–89 (2012)

10. Hutter, F., Hoos, H., Leyton-Brown, K.: Automated configuration of mixed integer
programming solvers. In: Proc. of CPAIOR’10. pp. 186–202 (2010)

11. Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Proc. of LION’11. pp. 507–523 (2011)

12. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

13. Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H.H., Leyton-Brown, K.:
The Configurable SAT Solver Challenge. CoRR (2015), http://arxiv.org/abs/
1505.01221

14. Järvisalo, M., Heule, M., Biere, A.: Automated Reasoning: 6th International Joint
Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, chap.
Inprocessing Rules, pp. 355–370. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

15. Manthey, N.: Riss 4.27. In: Belov et al. [3], pp. 65–67
16. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into

isabelle/hol. Theoretical Computer Science 411(50), 4333–4356 (2010)
17. Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: A verified modern SAT solver. In:

Kuncak, V., Rybalchenko, A. (eds.) Proc. of VMCAI 2012. pp. 363–378. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

18. Oh, C.: MiniSat HACK 999ED, MiniSat HACK 1430ED and SWDiA5BY. In:
Belov et al. [3], p. 46

19. Roussel, O.: Controlling a solver execution with the runsolver tool. Journal on
Satisfiability, Boolean Modeling and Computation 7(4), 139–144 (2011)

20. Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques for
formal software verification. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on 27(7), 1165–1178 (2008)

21. Soos, M.: CryptoMiniSat v4. In: Belov et al. [3], p. 23
22. Zarpas, E.: Benchmarking SAT solvers for bounded model checking. In: Proc. of

SAT’05. pp. 340–354 (2005)


