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Abstract. It is often claimed that data pre-processing is an impor-
tant factor contributing towards the performance of classification algo-
rithms. In this paper we investigate feature selection, a common data pre-
processing technique. We conduct a large scale experiment and present
results on what algorithms and data sets benefit from this technique.
Using meta-learning we can find out for which combinations this is the
case. To complement a large set of meta-features, we introduce the Fea-
ture Selection Landmarkers, which prove useful for this task. All our
experimental results are made publicly available on OpenML.
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1 Introduction

Feature selection can be of value to classification for a variety of reasons. Real
world data sets can be rife with irrelevant features, especially if the data was
not gathered specifically for the classification task at hand. For instance in many
business applications hundreds of customer attributes may have been captured in
some central data store, whilst only later is decided what kind of models actually
need to be built [14]. Bag of words text classification data will by definition
include large numbers of terms that may end up not to be relevant. Micro-array
data sets consisting of genetic expression profiles are very wide data sets, whilst
the number of instances is typically very small. In general, feature selection
may help in terms of making models more interpretable, ensuring that models
actually generalize rather than overfit and it will speed up the building of models
when costly algorithms are being used. Highly cited surveys exist that provide
a more theoretical overview of feature selection [1,6], however classical empirical
papers on feature selection are typically based on small numbers of data sets
(for example, 3 data sets in [5] and 14 data sets in [10]).

In this paper we investigate the specific question: will feature selection im-
prove binary scoring models for a given data set and algorithm. We base our
findings on experiments across a large number of data sets (almost 400) and a
range of algorithms, and for repeatability all results have been made available in
OpenML, an open science experiment database [20]. This results in a meta-data
set that we leverage to learn in what circumstances feature selection may provide



better classifications for a given data set algorithm combination. We introduce
a number of new meta-features to characterize data sets and algorithms for this
purpose.

Our contributions are the following. We conduct two large scale experiments
ranging over almost 400 data sets. The first experiment investigates for which
algorithms feature selection generally improves predictive performance. This ex-
periment both confirmed well-established conjectures and raised some interesting
new findings. The second experiment exploits meta-learning to understand for
which data sets feature selection may improve results. We introduce new meta-
features, specific to this problem. All our underlying experimental results as well
as the meta-data set are made publicly available, for the purposes of verifiability,
reproducibility and generalizability.

The remainder of this paper is structured as follows. We will introduce some
background in feature selection and meta-learning (Section 2) as well some addi-
tional meta-features that prove useful (Section 3). We will then review the overall
experiments and results in terms of when feature selection may add value (Sec-
tion 4), and a meta-learning experiment where we aim to predict whether to use
feature selection for a given data set (Section 5). Section 6 concludes the paper.

2 Background

In this section we discuss relevant background and related work in feature selec-
tion, meta-learning and experiment databases.

2.1 Feature selection

As discussed in the introduction feature selection can serve a number of purposes,
such as improved interpretation, generalization and learning speed. The merits
of and methods for feature selection are discussed extensively in a number of
classical survey papers, hence we will keep the overview brief here [1,4,5,6,10].
The goal of feature selection can be to find the optimal set of features that
maximizes a given objective, and hence can be seen as a search problem with
a given search method, evaluation metric and overall objective, typically some
form of predictive power.

Exhaustive search is typically not feasible so different approaches are needed.
A simplistic approach would simply select the top features based on predictive
power. This is sub optimal, because features may be correlated to features al-
ready selected, so not adding much information, or conversely, weak features
could jointly actually be predictive, thus subset feature selection rather than
rankers are required [6,8]. The evaluation metrics could be so called filter met-
rics, such as correlation, mutual information or information gain, independent
of the classification algorithm used. Alternatively, models could be trained on
subsets of features in a so called wrapper approach, which can be valuable if the
subsequent learners have very specific biases or limitations [10]. Wrappers do
not necessarily perform better than filters [19] so in our work we have focused



on a subset filter approach [8]. Feature construction or dimension reduction can
be seen as an extension of feature selection, but this is out of scope for this
paper. Note that classification methods can also have some embedded element
of feature selection built in, but as we will see this is no guarantee that feature
selection is no longer required.

2.2 Meta-learning

Meta-learning aims to learn which learning techniques work well on what data.
A common task, known as the Algorithm Selection Problem [17], is to determine
which classifier performs best on a given data set. We can predict this by training
a meta-model on data describing the performance of different methods on differ-
ent data sets, characterized by meta-features [2,11,13]. Meta-features are often
categorized as either simple (number of examples, number of attributes), statis-
tical (mean standard deviation of attributes, mean skewness of attributes), infor-
mation theoretic (class entropy, mean mutual information) or landmarkers [12]
(performance evaluations of simple classifiers). Alternatively, performance esti-
mates of algorithms on small subsets of the data set can be used [18].

Experiment databases enable the reproduction of earlier results for verifi-
cation and reusability purposes, and make much larger studies (covering more
classifiers and parameter settings) feasible. Above all, experiment databases al-
low a variety of studies to be executed by a database look-up, rather than set-
ting up new experiments. An example of such an online experiment database
is OpenML [20]. All data sets and experimental results used in this work are
made publicly available in OpenML. Similar collaborative platforms exist in the
commercial domain, such as Kaggle [3], but these typically lack the ability to
store and search low level results in a structured manner.

3 Methods

The field of meta-learning addresses the question what machine learning algo-
rithms work well on what data. The algorithm selection problem, formalised by
Rice in [17], is a natural problem from the field of meta-learning. According to
the definition of Rice, the problem space P consists of all machine learning tasks
from a certain domain, the feature space F contains measurable characteristics
calculated upon this data (called meta-features), the algorithm space A is the set
of all considered algorithms that can execute these tasks and the performance
space Y represents the mapping of these algorithms to a set of performance
measures. The task is for any given x ∈ P , to select the algorithm α ∈ A that
maximizes a predefined performance measure y ∈ Y , which is a classification
problem. Typically, this problem is addressed by creating a meta-data set. Each
example represents an experiment where all algorithms in A are run on a data
set from P , the meta-features are measurable characteristics of this data set and
the target is the best performing algorithm on this data set. A classifier can then
learn to predict for new data sets which algorithm will perform best [22].



Table 1. Standard Meta-features.

Category Meta-features
Simple # Instances, # Attributes, Dimensionality, Default Accuracy, # Observa-

tions with Missing Values, # Missing Values, % Observations With Missing
Values, % Missing Values, # Numeric Attributes, # Nominal Attributes, #
Binary Attributes, Majority Class Size, % Majority Class

Statistical Mean of Means of Numeric Attributes, Mean Standard Deviation of Nu-
meric Attributes, Mean Kurtosis of Numeric Attributes, Mean Skewness of
Numeric Attributes

Information Theoretic Class Entropy, Mean Attribute Entropy, Mean Mutual Information, Equiv-
alent Number Of Attributes, Noise to Signal Ratio

Landmarkers [12] Accuracy of Decision Stump, Kappa of Decision Stump, Area under the
ROC Curve of Decision Stump, Accuracy of Naive Bayes, Kappa of of Naive
Bayes, Area under the ROC Curve of Naive Bayes, Accuracy of k-NN, Kappa
of k-NN, Area under the ROC Curve of k-NN

In this work we address the following problem. Given a data set and an
algorithm, should we use feature selection or not? We aim to solve this in a sim-
ilar manner. We construct a meta-data set, where each example represents the
combination of data set d and algorithm α. The features are measurable char-
acteristics of data set d, and the target is whether the performance of algorithm
α is (significantly) better after performing feature selection than without it.

The performance of meta-learning solution typically depends on the quality
of the meta-features. Typical meta-features are often categorized as either sim-
ple, statistical, information theoretic or landmarkers. The simple meta-features
can all be calculated by one single pass over all instances and describe the data
set in an aggregated manner. The statistical meta-features are calculated by
considering a statistical concept (e.g., standard deviation, skewness or kurto-
sis), calculate this for all numeric attributes and taking the mean of this. This
leads to, e.g., the mean standard deviation of numeric attributes. Likewise, the
information theoretic meta-features are calculated by considering a information
theoretic concept (e.g., mutual information or attribute entropy), calculate this
for all nominal attributes and taking the mean of this. This leads to, e.g., mean
mutual information. Landmarkers are performance evaluations of fast classifiers
on a data set, characterising the complexity landscape and bias of various learn-
ers. Table 1 shows all traditional meta-features used in the experiments.

Landmarkers are generally considered the most expensive meta-features (in
terms of resources), as well as the most useful (in terms of predictive power). Al-
though this might be true for the algorithm selection problem, there are reasons
to suspect that this might be different for the task of determining whether or
not to perform feature selection. First, many feature selection methods operate
on statistical and information theoretical concepts. Second, information about
the learning bias of various classifiers seems less relevant, as we try to obtain
information about one algorithm at a time.

For this reason, we introduce specific feature selection landmarkers. We run
a simple (fast) classifier with and without feature selection. By subtracting one
from the other, we can see what the effect of feature selection was when using
a fast algorithm. Similar to regular landmarkers, we assume that this effect
translates to the results of more expensive algorithms as well.



Table 2. Algorithms used in the experiments. All algorithms are as implemented in
Weka 3.7.13 [7] run with default parameter settings, unless stated different.

Algorithm Model type Parameter settings
Naive Bayes Bayesian
IBk k-NN k = 1
Stochastic Gradient Descent (SGD) SVM
Sequential Minimal Optimization (SMO) SVM Polynomial kernel
Logistic Logistic ridge = 0.00000001
Multilayer Perceptron Neural Network 1 hidden layer
JRip Rules
J48 Decision Tree
Hoeffding Tree Decision Tree
REP Tree Decision Tree
RandomForest Bagging 100 trees
AdaBoost Boosting 100 iterations

4 Effect of Feature Selection

In this section we will present some explorative results, surveying per algorithm
how often feature selection is beneficial and how large the effects are. All data
sets, algorithm and experimental results can be obtained from OpenML1 [20].
Figure 3 also gives some basic insight in the number of features and the dimen-
sionality of the data sets.

4.1 Experiment

All algorithms are evaluated over the data sets using 10-fold cross-validation,
with and without feature selection. We measure the difference in Area under the
ROC Curve (AUC) for each algorithm with and without feature selection. We
prefer AUC over zero one loss accuracy as an evaluation criterion for a variety of
reasons. First, if the outcome class distribution is very skewed, a simple majority
vote may achieve very high accuracy, whereas in practice this may not be very
useful model. Second, false positives and false negative classifications may come
at a different cost, but these costs are not known, hence it makes sense to evaluate
model performance across the entire model score range.

For feature selection, the Correlation-based Feature Subset Selection (Cfs-
SubsetEval) algorithm is used [8]. We experimented with other feature selection
methods as well (i.e., GainRatio and InfoGain) but as the differences in perfor-
mance were too marginal and subset feature selection is generally considered to
be a better approach we stick to CfsSubsetEval.

The data sets that are used in the experiments are all data sets containing
between 10 and 200,000 instances. As we are focusing on Area under the ROC
Curve, we selected data sets with a binary target. In total 394 data sets from
OpenML matched these criteria. Table 2 shows the algorithms that were used
and their parameter settings.
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(a) Number of data sets where ‘no feature selection’ obtained better results (red)
and ‘feature selection’ obtained better results (green)
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(b) Number of data sets on which ‘feature selection’ was statistically significant
better (green) and not statistically significant better (red)

Fig. 1. Number of data sets on which feature selection improves performance.

4.2 Results

Figure 1(a) shows for each algorithm in how many cases feature selection yields
better results. Figure 1(b) shown for each algorithm in how many cases this
difference was also statistically significant (using a double tailed T-test of 0.05).

We can also focus on how big the effect of feature selection per data set is.
In Figure 2 we plotted for some algorithms the difference in performance with
and without feature selection. The x-axis represents the various data sets, the
y-axes the difference in performance (AUC). The x-axis is sorted on this effect,
so we can see the big trends. For every dot above 0, using feature selection yields
better results than not using feature selection.

In Figure 1(a) it is observed that no feature selection is slightly better for
every algorithm, except for IBk and Multilayer Perceptron. J48 is noteworthy
because it is expected that a tree partitioning algorithm has feature selection
embedded. Controversially, the figure shows that feature selection can still add
value for many data sets (see also Figure 2(a)). For the Multilayer Perceptron,

1 Full details: http://www.openml.org/s/15
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Fig. 2. The effect of feature selection per data set on the x-axis for a given algorithm,
sorted by difference in Area under the ROC Curve as the y-axis. When the difference
is positive, the algorithm performed better after feature selection.

Naive Bayes and Hoeffding Tree, in about half of the cases feature selection
improves the performance. Figure 1(b) shows that applying feature selection
seldom results in a performance gain that is statistically significant. The IBk and
Multilayer Perceptron algorithms have the highest amount of data sets where



(a) Number of Features (b) Dimensionality

Fig. 3. The amount of data sets (blue bar) in some ranges of two meta-features, with
the red line meaning the percentage that feature selection was better in that range and
the green line where the improvement was also statistical significant.

the benefits of feature selection are statistically significant, and behind these is
Hoeffding Tree with just over 50 data sets.

Figure 3 shows a univariate analysis on how the amount of features and the
dimensionality affect the probability that feature selection improves classifica-
tion. Although a higher number of features results in a slightly higher percentage
of data sets that benefit from feature selection, no clear distinction can be made
with just one feature. A similar observation can be made for the dimensional-
ity. Later, we will see that meta-models leveraging multiple meta-features, also
highly depend on the number of features in a data set.

4.3 Discussion

The previous experiment shows both some expected behaviour as well as some
interesting patterns. First of all, from Figure 1(a) we can see that feature selec-
tion is most beneficial for methods as IBk and Naive Bayes (reflected by Figure 1
and 2(c)). This is exactly what we would expect: due to the curse of dimension-
ality, nearest neighbour methods can suffer from too many attributes [16] and
Naive Bayes is vulnerable to correlated features [9]. We also see unexpected be-
haviour. For example, it has been noted that tree-based algorithms such J48 have
built-in protection against irrelevant features [15], however it can be observed
from Figure 2(a) that still in many cases it appears to benefit from feature
selection. Multilayer Perceptrons are also supposed to learn themselves which
features are relevant [21], however Figure 2(b) shows that in many cases feature
selection makes a substantial difference for the better. This delta to the right of
the curve is higher than the delta on the left.

In general, feature selection seems to pay of for certain data sets, but the effect
is not often statistically significant. A possible explanation could be that the
data sets from OpenML are all Machine Learning data sets, where most features
have been already carefully selected by domain experts. Feature selection would
possibly yield more effect on raw data from production environments.



5 Learning when to use Feature Selection

In this section we investigate whether we can learn when to use feature selection,
which is a novel form of meta-learning.

5.1 Experiment

We want to use meta-learning to predict for a given data set and algorithm
whether feature selection will improve the Area under the ROC Curve score.
Every instance in the meta-data set are two 10-fold cross validation runs on a
algorithm, one run with and one run without feature selection, and the target is
whether the run with feature selection had a better performance. The attributes
are all the meta-features as mentioned in Section 3, for example the number of
features and the percentage of numeric features, together with attributes about
the algorithm. As meta-algorithm, we use Weka’s Random Forest (100 trees).

In order to assess whether our proposed meta-features add any predictive
value, we run the experiment with various sets of meta-features. The simple
set contains just the simple meta-features (see Table 1) totalling to 13 fea-
tures. The no landmarkers set contains all simple, statistical and information
theoretic meta-features, (i.e., all meta-features from Table 1 except the land-
markers) which are in total 22 features. The default landmarkers set contains all
meta-features from the no landmarkers set, and the traditionally described land-
markers (i.e., all meta-features from Table 1) which give a total amount of 31
features. The Feature Selection Landmarkers set contains all meta-features from
the no landmarkers set, and the newly created Feature Selection Landmarkers
as described in Section 3 thus also 31 features in total. The All Landmarkers set
is the union of all previous sets totalling up to 40 features.

The data set can also be split in various subsets containing the results of
only one algorithm. For example, we can investigate whether we can learn for a
given algorithm whether to use feature selection or not.

The main motivation for using meta-learning here is primarily to obtain a fur-
ther understanding of when feature selection may or may not add value, across
multiple dimensions, to complement the analysis in the previous section that
mainly focused on the algorithms used. A meta-model could be used in practice
to assess beforehand whether performance may be improved in general or for
specific algorithms, for example algorithms which are very costly to run. If ex-
haustive search is possible and reliable (i.e., run all algorithms for all parameters)
it may still be preferred over using meta-learning.

5.2 Results

The results are shown in Table 3. Each row represents a partition of the data set,
i.e., how well we could predict for each classifier whether we should use feature
selection.

First, from this we conclude that meta-learning can answer the question
whether to use feature selection or not. Compared to just predicting majority



Table 3. Area under the ROC Curve scores for various sets of meta-features on different
partitions of the meta-data set.

Partition Simple No LM Default LM FS LM All LM
J48 0.705 0.703 0.737 0.733 0.731
IBk 0.680 0.700 0.750 0.768 0.783
Multilayer Perceptron 0.734 0.704 0.708 0.711 0.710
Logistic 0.623 0.625 0.711 0.676 0.695
SMO 0.642 0.632 0.695 0.713 0.704
SGD 0.705 0.698 0.736 0.746 0.733
Hoeffding Tree 0.612 0.617 0.679 0.647 0.670
REP Tree 0.593 0.573 0.614 0.591 0.621
Naive Bayes 0.620 0.660 0.714 0.708 0.721
JRip 0.590 0.581 0.595 0.616 0.639
AdaBoost 0.623 0.634 0.638 0.649 0.668
RandomForest 0.712 0.722 0.764 0.774 0.784
Total data set 0.704 0.728 0.765 0.768 0.773

1 2 3 4 5

All Landmarkers
Feature Selection LM
Default Landmarkers

Simple
No Landmarkers

CD

Fig. 4. Results of Nemenyi test. Sets of meta-features are sorted by their average rank
(lower is better). Classifiers that are connected by a horizontal line are statistically
equivalent.

class (which always has an Area under the ROC Curve of 0.5), we score better on
all defined tasks, even with just a set of simple meta-features. Second, we observe
that using just the two sets without landmarkers are clearly worse than the sets
that use landmarkers. Finally, it appears that the set of default landmarkers
and the newly created feature selection landmarkers perform similar. However,
putting them together is beneficial. Figure 4 shows the result of a statistical
test. This adds to the empirical evidence that the meta-classifier benefits from
the landmarkers. However, there is no statistical evidence that one set is better
than another. One interesting observation is that the set of meta-features without
landmarkers performs worse than the set of simple meta-features. However, the
difference is not statically significant.

As an example of deeper inspection of meta-models, Figure 5 shows a decision
tree that determines when to use feature selection in combination with a Mul-
tilayer Perceptron. It splits on meta-features the Number of Attributes, Class
Entropy and twice on a Feature Selection Landmarker, suggesting that these are
important features. The interplay of these features is interesting. For example if
the number of features exceeds 48, feature selection will be useful, if the number
of features is smaller than 9 than not, and otherwise it depends on the interplay
between the feature selection landmarkers, class entropy and number of features.
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Fig. 5. Decision tree determining whether to use feature selection with a Multilayer
Perceptron. Each leaf node contains the amount of correctly classified instances and
the amount of misclassified instances.

Real world data sets often have more than 50 features, so this is an indication
that even though the OpenML collection of data sets is large, it may be still be
skewed towards ‘cleaned-up’ data sets collected for machine learning and data
mining research. By inspecting these meta-models observations like these may
surface, and in this case the meta-model will still recommend to apply feature
selection for these broader data sets.

6 Conclusion

In this paper we present the results of a large scale experiment on the benefits
of using feature selection for classification. We ran 12 algorithms across almost
400 data sets, and created a meta-model to understand when feature selection
improves classification accuracy for a given model. Surprisingly, for 41 per cent of
algorithm data set combinations feature selection improved the results, but only
in 10 per cent of cases this improvement was statistically significant. A possible
explanation for this low percentage could be that the data sets from OpenML
consist mostly of features that have already been carefully selected by domain
experts. The experimental setting would possibly yield other results on raw data
from production environments, which would be an interesting direction for future
work. Major deciding factors are the number of attributes in the data set, the
relative difficulty of the task as measured by landmarkers and the algorithm type.
Across algorithms, nearest neighbor benefits most often, but also algorithms that
have feature selection built in (such as decision trees) may still benefit.

Future work will focus on extending the set of Feature Selection landmark-
ers, aiming to perform even better on the meta-leaning task. Having a publicly
available meta-data set enables the community to actively participate in this
process.
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