Towards Automatically-Tuned Neural Networks

Hector Mendoza, Aaron Klein, Matthias Feurer, Tobias Jost Springenberg, Frank Hutter {mendozah, kleinaa, feurerm, springj, fh} @cs.uni-freiburg.de
Department of Computer Science, University of Freiburg

In a nutshell

- Deep Learning has become a powerful machine learning tool, but is still complicated to use for non-experts on the field.
- Requires human expert input in the setting of hyperparamenters, but is an expensive and not straightforward task.
- Auto-sklearn has been used in the past for automated configuration of algorithms
 - We include neural networks as an extra classifier and regressor to use inside auto-sklearn machinery
- Automatically configured networks proved to be reliably and robust, winning three datasets on the AutoML Challenge

Inside auto-sklearn

- Bayesian optimization is a powerful hyperparameter optimization tool.
- Specially around highly conditional, mixed discrete/continuous hyperparameter space, just like the one of neural networks
- Configurable machine learning pipeline, originally built around scikit-learn.

feature preprocessors to help Autonet

Uses **SMAC**, a tree based method for BO instead of *GPs*

Auto-sklearn combines:

- Preprocessing methods: Feature selection or dimensionality reduction that speeds up neural network training or improve performance.
- Data preprocessing: Imputation, balancing and rescaling of the input data
- Ensemble selection: Better prediction than single models. Chosen greedily allowing repetitions of models.
- Methods that are particulary helpful to nets:
- To handle sparsity
 - Truncated SVD
 - Densifier
- To reduce dimensionality
 - Gaussian Random Embedding
 - Nystroem Sampler
- But there's **no silver bullet**, it depends on the dataset and task type

We do this to include only neural networks,
 but also as a complement to the 16 classifiers
 and regressors inside scikit-learn

AutoML Bayesian optimizer system $\{X_{train}, Y_{train},$ metadata prefeature build classifier $\rightarrow \hat{Y}_{test}$ $\{m{X}_{test}, \mathcal{L}\}$ learning ensemble preprocessor processor ML framework

Bottom: The AutoML workflow as used in auto-sklearn. We use four data preprocessors and choose between 13

Networks' Plug & Play

Implement Autonet as a component inside auto-sklearn system

- Independent of model implementation
- Initial neural network model using Theano and Lasagne python libraries
- Most of the cases are already implemented on lasagna package.
 Only smorms solver was specially implemented.
- Handles sparse datasets out of the box, multilabel, regression and binary and multiclass classification.
- Several conditional parameters based on the number of layers. e.g. Units on layer 4 only active if number of layers is 4 or bigger

Possible extensions:

- Add more hyperparameters such as loss functions or L1-regularization
- Include custom learning rate policies or solvers or parameterized layers

Available on github.com/hmendozap/auto-sklearn@development_java

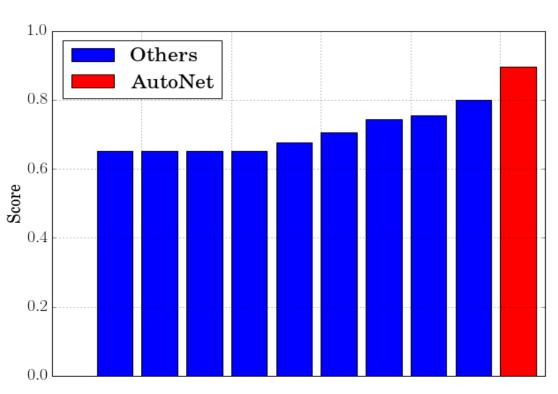
Neural Network Hyperparameter space: A total of 57 hyperparameters with combinations of categorical, integers, floats and layer dependent.

	Name	Range	Default	\log scale	Type	Conditiona
	batch size	[32, 4096]	32	✓	float	-
Network	number of updates	[50, 2500]	200	\checkmark	int	-
hyperparam- eters	number of layers	[1,6]	1	-	int	-
	learning rate	$[10^{-6}, 1.0]$	10^{-2}	\checkmark	float	-
	L_2 regularization	$[10^{-7}, 10^{-2}]$	10^{-4}	\checkmark	float	-
	dropout output layer	[0.0, 0.99]	0.5	\checkmark	float	-
	solver type	{SGD, Momentum, Adam, Adadelta, Adagrad, smorm, Nesterov}	smorm3s	-	cat	-
	lr-policy	${Fixed, Inv, Exp, Step}$	fixed	-	cat	-
Conditioned on solver type	β_1	$[10^{-4}, 10^{-1}]$	10^{-1}	✓	float	✓
	β_2	$[10^{-4}, 10^{-1}]$	10^{-1}	\checkmark	float	\checkmark
	ρ	[0.05, 0.99]	0.95	\checkmark	float	\checkmark
	momentum	[0.3, 0.999]	0.9	\checkmark	float	\checkmark
Conditioned on lr-policy	γ	$[10^{-3}, 10^{-1}]$	10^{-2}	✓	float	√
	k	[0.0, 1.0]	0.5	-	float	\checkmark
	s	[2,20]	2	-	int	\checkmark
	activation-type	{Sigmoid, TanH, ScaledTanH, ELU, ReLU, Leaky, Linear}	ReLU	-	cat	✓
Per-layer	number of units	[64, 4096]	128	\checkmark	int	\checkmark
nyperparame-	dropout in layer	[0.0, 0.99]	0.5	-	float	\checkmark
ters	weight initialization	{Constant, Normal, Uniform, Glorot-Uniform, Glorot-Normal, He-Normal, He-Uniform, Orthogonal, Sparse}	He-Normal	-	cat	\checkmark
	std. normal init.	$[10^{-7}, 0.1]$	0.0005	-	float	\checkmark
	leakiness	[0.01, 0.99]	$\frac{1}{3}$	-	float	\checkmark
	tanh scale in	[0.5, 1.0]	2/3	-	float	\checkmark
	tanh scale out	[1.1, 3.0]	1.7159	\checkmark	float	\checkmark

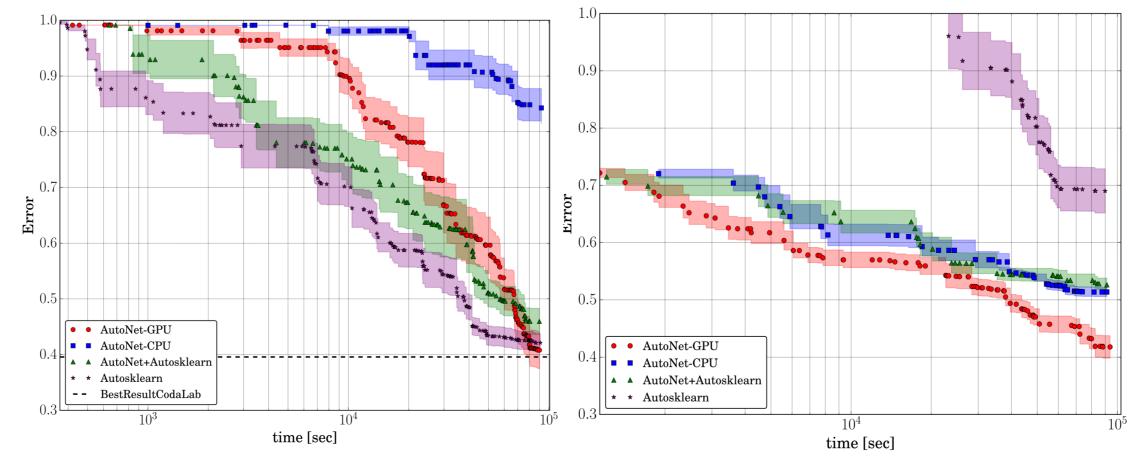
Baseline and AutoML ChallengeResults

- Compare CPU-, GPU-Autonet, auto-sklearn and Autonet + autosklearn
- Tested on five datasets of phase-0 in AutoML Challenge
- GPU version a order of magnitude faster
- GPU-Autonet better on one dataset, tied on other 3 and worst on only one.
- GPU-Autonet won datasets on Phase 4 (alexis) and Phase 5 (tania) of AutoML Challenge.

Official competition results for dataset alexis (bottom).



- 3rd. Place on GPU track
- To our knowledge first automatically tuned neural network to win a competition dataset
- Ensemble winning consisted of 8 1-layer networks, 2 2-layer networks and logistic regressor trained with SGD
- Autonet-GPU and -CPU outperformed autosklearn on a tania dataset.
- The combination Autonet + autosklearn saw an increase in performance despite the increase in the configuration space.



Ensemble performance on dataset tania (right) and newsgroups (left) over time. Cross-validation performance on training set due to lack of test set availability.

