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A Description of the classification algorithms and preprocessing methods

In this section we give a more detailed explanation of the classification and preprocessing methods
that we used in auto-sklearn.

A.1 Classification algorithms

Our auto-sklearn framework contains 15 base classifiers from scikit learn (out of which exactly one is
chosen at each point during the optimization process). The 15 algorithms can generally be separated
into 7 categories: generalized linear models (2 algorithms), support vector machines (2), discriminant
analysis (2), nearest neighbors (1), naı̈ve Bayes (3), decision trees (1) and ensemble methods (4). A
complete list of the algorithms is given in Table 1a in the main paper. While an in-depth description
of each algorithm is out of the scope of this paper we want to give a brief description of each category
and highlight complementary strengths of algorithms within one category.

Generalized linear models. The first class of algorithms we consider are generalized linear models
(GLM) for classification. These are linear classification algorithms. Since we are interested in scaling
our AutoML system to medium to large datasets we only use online learning algorithms from this
category: Linear Classification via online stochastic gradient descent (SGD) either with a negative log
likelihood, a hinge or a Huber los, and maximum margin classification via online passive aggressive
algorithms [1] – which iteratively solve constrained optimization problems to update the model
weights to both guarantee small steps and retain a large margin.

Support vector machines. Closely related to the algorithms from the GLM class described above
support vector machines construct a maximal margin separating hyperplane by minimizing the hinge
loss on the training data. As is well known, they can also be used for non-linear classification by
employing the “kernel trick”. The SVM implementations used in scikit-learn are based on online
optimization using LibSVM [2] or liblinear [3] as backends.

Discriminant analysis. We also consider two instantiations from the family of discriminant analysis
methods: (1) Quadratic discriminant analysis (QDA) assumes that the feature values for each class
are normally distributed. Classification is done by applying the likelihood ratio test. (2) Linear
discriminant analysis (LDA) makes the additional assumption that the covariance of each of the
classes is identical, which leads to a linear decision boundary.

Nearest neighbors classification. k-nearest neighbors is a non-parametric classification algorithm
that classifies samples based on the class membership of their nearest neighbors in feature space.
Nearest neighbor classifiers often exhibit strong performance in problems where a proper metric in
feature space is known, but can be computationally expensive to compute for large datasets (when
using a basic implementation as that contained in scikit-learn).
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Naı̈ve Bayes. Naı̈ve Bayes methods assume independence between every pair of features allowing
the use of Bayes’ theorem to find the most probable class given the training data. They are fast to
train and very robust due to their simplifying assumptions. We consider three variants of Naı̈ve Bayes:
In Gaussian Naı̈ve Bayes the likelihood of the features is assumed to be Gaussian. Multinomial
Naı̈ve Bayes is a variant suitable for multinomially distributed data. Bernoulli Naı̈ve Bayes assumes a
Bernoulli distribution. However, as shown in our experiments they proved too simplistic of a classifier
choice to be effective in the AutoML setting.

Decision trees. Decision trees are one of the most frequently used baseline classifiers in operation.
They also constitute the building block of ensemble methods such as random forests which often
show strong empirical performance. Basic decision trees (as used in our pipeline) are constructed
by recursively splitting the training data into subsets based on the feature values. The criteria for
determining the best rule for splitting in scikit-learn are based on a cross-entropy measurement or
Gini impurity.

Ensemble methods. The final set of machine learning models we consider are simple, yet powerful,
ensemble methods. Concretely we consider AdaBoost, gradient boosting, random forests and
extremely randomized trees. Among these, AdaBoost is perhaps the most prototypical ensemble
method which combines a sequence of “weak learners” into a weighted majority vote. Successive
weak learners are trained with reweighted versions of the training data, where higher weights are
assigned to misclassified samples. We use decision trees with a maximum depth of 10 as weak
learners. The other ensemble methods we consider also use decision trees as base classifiers: Gradient
boosting generalizes the idea of AdaBoost to arbitrarily differentiable loss functions. Random forests
and extremely randomized trees are ensembles of decision trees that are trained with a bootstrap
sample of the training data. In random forests the best splitting rule is determined by optimizing Gini
impurity or information gain among a random subset of the features. Extremely randomized trees use
randomly generated splitting rules as candidates and choose the best one.

A.2 Feature preprocessing algorithms

In addition to the classifier choices auto-sklearn contains a large set of different feature preprocessing
algorithms; which can optionally be selected by the Bayesian optimization algorithm. These again
can be separated roughly into 8 categories.

Matrix decomposition. The first category of feature preprocessing methods decomposes the given
data into maximally descriptive components. Among these we consider Principal component analysis
(PCA), a truncated SVD, Kernel PCA and Independent component analysis (ICA). Principal compo-
nent analysis (PCA) is perhaps the most well known feature preprocessing method and performs a
linear mapping of the data onto its principal components. Truncated SVD is an approximation to PCA
which also works in a spare data regime. Kernel PCA is performing principal component analysis
in a reproducing kernel Hilbert space, allowing for non-linear mappings. Independent component
analysis (ICA) finds basis vectors such that data projected onto these basis have maximum statistical
independence.

Univariate feature selection. A second category of feature preprocessing methods which, although
simple, often performs well is to “simply” select features based on univariate statistical tests on the
dataset. From these, scikit-learn includes: (1) feature selection according to a percentile of the highest
scores given some scoring function (such as the feature variance) (2) discarding features lower than a
given threshold on a scoring function (this is called select rates in the main paper).

Classification-based feature selection. Feature selection can also be performed by more elaborate
machine learning methods. We include classification-based feature selection which consists of fitting
a classifier to the data and choosing features that the classifier deems to be important for correct
classification. Concretely, we allow for the use of l1-regularized linear SVMs for feature selection
by fitting the SVM to the data and choosing features corresponding to non-zero model coefficients.
Additionally, extremely randomized trees can be used as a preprocessor for feature selection. The
relative importance of a feature is calculated as the reduction of the splitting criterion brought by that
feature. Then only the most important features are selected.
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Feature clustering. Instead of feature selection one can also merge features (i.e. add them together)
which highly correlate. For this purpose the feature agglomeration preprocessing, implemented in
scikit-learn is included in our AutoML system.

Kernel approximations. Can be used to approximate kernel functions (such as the RBF kernel)
over the dataset without the need for actual (costly) computation of the kernel between all data points.
From these we consider random kitchen sinks and nystroem sampling. Random kitchen sinks map the
data to a higher dimensional feature space through a randomized feature map that guarantees that
inner product between pairs of points in feature space approximates the evaluation of a kernel (in our
case the Gaussian kernel). Nystroem sampling is a technique that accomplishes the same goal by
projecting examples on a random subset of the data.

Polynomial feature expansion. Simply expands the set of available features by calculating all
polynomial combinations (up to a given degree) of the features.

Feature embeddings. Project the set of features into a feature space through a non-linear embed-
ding. While there exists a multitude of such embedding methods we consider only embedding through
random forests. More precisely our random trees embedding uses an ensemble of totally random trees
for unsupervised transformation of the data to a sparse representation. Points are encoded according
to the leaf of each tree they are sorted in.

Sparse representation transformation. For completeness we also include a simple sparse to dense
transformation in our preprocessing pipeline which, while costly, allows us to use algorithms on
sparse data that cannot natively handle sparsely represented inputs.

A.3 Data preprocessing algorithms

Prior to doing feature preprocessing and classification, the data is preprocessed by the following
algorithms in the presented order:

1. One Hot Encoding replaces categorical features f with domain v1, . . . , vk by k binary
variables, only the i-th of which is set to true for data points where f is set to vi.

2. Imputation will replace missing values by the mean, median or most frequent value.

3. Rescaling either standardizes the features to have zero mean and unit variance or rescales
them into the range [0, 1]. Alternatively, it can normalize samples to have unit length or
leave features unscaled.

4. Balancing activates a class weight mechanism of the classification algorithm if it supports
one.

B Details of auto-sklearn

As with every robust real-world system, we had to handle many important details in auto-sklearn.
To make the most of our computational power and not get stuck in a very slow run of a certain
combination of preprocessing and machine learning algorithm, we implemented measures to prevent
such long runs. First, we limited the time for each evaluation of an instantiation of the ML framework,
typically to 1

10 of the overall time limit. We also limited the memory of such evaluations to prevent
the operating system from swapping. When an evaluation went over one of those limits, we killed it
and returned the worst possible score for the given evaluation metric. For some of the models we
employed an iterative training procedure; we instrumented these to still return a performance value
when a limit was reached. To further reduce the amount of overly long runs, we forbade several
combinations of preprocessors and classification methods: in particular, kernel approximation was
forbidden to be active in conjunction with non-linear and tree-based methods as well as the KNN
algorithm. (SMAC handles such forbidden combinations natively.) For the same reason we also left
out feature learning algorithms, such as dictionary learning.

Another issue in hyperparameter optimization is overfitting and data resampling. Here we had to
trade off between running a more robust cross-validation (which comes at little additional overhead
in SMAC) and evaluating models on all cross-validation folds to allow for ensemble construction
with these models. Thus, for tasks with a rigid time limit of 1h, we used a simple train/test split. In
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contrast, we are able to employ ten-fold crossvalidation in our 24h and 30h runs, as well as in our
experiments for the human track of the AutoML challenge.

Finally, not every supervised learning task (for example classification with multiple targets), can be
solved by all of the algorithms available in auto-sklearn. Thus, given a new dataset, auto-sklearn
preselects the methods that are suitable for the dataset’s properties. Since scikit-learn methods
are restricted to numerical input values, we transformed data by applying a one-hot encoding to
categorical features. In order to keep the number of dummy features low, we configured a percentage
threshold. A value occurring more seldom than this percentage was transformed to a special other
variable [4].
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C Meta-features

Meta-feature Value Calculation time (s)
Minimum Mean Maximum Minimum Mean Maximum

class-entropy 0.64 1.92 4.70 0.00 0.00 0.00
class-probability-max 0.04 0.43 0.90 0.00 0.00 0.00
class-probability-mean 0.04 0.28 0.50 0.00 0.00 0.00
class-probability-min 0.00 0.19 0.48 0.00 0.00 0.00
class-probability-std 0.00 0.10 0.35 0.00 0.00 0.00
dataset-ratio 0.00 0.06 0.62 0.00 0.00 0.00
inverse-dataset-ratio 1.62 141.90 1620.00 0.00 0.00 0.00
kurtosis-max -1.30 193.43 4812.49 0.00 0.01 0.05
kurtosis-mean -1.30 24.32 652.23 0.00 0.01 0.05
kurtosis-min -3.00 -0.59 5.25 0.00 0.01 0.05
kurtosis-std 0.00 48.83 1402.86 0.00 0.01 0.05
landmark-1NN* 0.20 0.79 1.00 0.01 0.61 8.97
landmark-decision-node-learner* 0.07 0.55 0.96 0.00 0.13 1.34
landmark-decision-tree* 0.20 0.78 1.00 0.00 0.49 5.23
landmark-lda* 0.26 0.79 1.00 0.00 1.39 70.08
landmark-naive-bayes* 0.10 0.68 0.97 0.00 0.06 1.05
landmark-random-node-learner* 0.07 0.47 0.91 0.00 0.02 0.26
log-dataset-ratio -7.39 -3.80 -0.48 0.00 0.00 0.00
log-inverse-dataset-ratio 0.48 3.80 7.39 0.00 0.00 0.00
log-number-of-features 1.10 2.92 5.63 0.00 0.00 0.00
log-number-of-instances 4.04 6.72 9.90 0.00 0.00 0.00
number-of-Instances-with-missing-values 0.00 96.00 2480.00 0.00 0.00 0.01
number-of-categorical-features 0.00 13.25 240.00 0.00 0.00 0.00
number-of-classes 2.00 6.58 28.00 0.00 0.00 0.00
number-of-features 3.00 33.91 279.00 0.00 0.00 0.00
number-of-features-with-missing-values 0.00 3.54 34.00 0.00 0.00 0.00
number-of-instances 57.00 2126.33 20000.00 0.00 0.00 0.00
number-of-missing-values 0.00 549.49 22175.00 0.00 0.00 0.00
number-of-numeric-features 0.00 20.67 216.00 0.00 0.00 0.00
pca-95percent* 0.02 0.52 1.00 0.00 0.00 0.00
pca-kurtosis-first-pc* -2.00 13.38 730.92 0.00 0.00 0.01
pca-skewness-first-pc* -27.07 -0.16 6.46 0.00 0.00 0.04
percentage-of-Instances-with-missing-values 0.00 0.14 1.00 0.00 0.00 0.00
percentage-of-features-with-missing-values 0.00 0.16 1.00 0.00 0.00 0.00
percentage-of-missing-values 0.00 0.03 0.65 0.00 0.00 0.00
ratio-categorical-to-numerical 0.00 1.35 33.00 0.00 0.00 0.00
ratio-numerical-to-categorical 0.00 0.49 7.00 0.00 0.00 0.00
skewness-max 0.00 5.34 67.41 0.00 0.00 0.04
skewness-mean -0.56 1.27 14.71 0.00 0.00 0.04
skewness-min -21.19 -0.62 1.59 0.00 0.00 0.04
skewness-std 0.00 1.60 18.89 0.00 0.01 0.05
symbols-max 0.00 13.09 429.00 0.00 0.00 0.00
symbols-mean 0.00 3.01 41.38 0.00 0.00 0.00
symbols-min 0.00 1.44 12.00 0.00 0.00 0.00
symbols-std 0.00 3.06 107.21 0.00 0.00 0.00
symbols-sum 0.00 71.04 1648.00 0.00 0.00 0.00

Table 1: List of implemented meta-features. Meta-features marked with an asterisks were only used to do the
dataset clustering in Section 6

D Ensemble selection

Pseudocode explaining our implementation of the ensemble selection algorithm [5].

Procedure 1: EnsembleSelection(M,S)
Input :Models M , Ensemble size S , n = |M |
Output :Ensemble E

1 E ← ∅
2 for i = 0 . . . S do
3 b← argmaxj=0...n performance(E ∪M [j])
4 E ← E ∪M [b]

5 return E
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E Configuration spaces for different dataset properties

(a) classifiers

name #λ cat (cond) cont (cond)

AdaBoost (AB) 4 1 (-) 3 (-)
Bernoulli naı̈ve Bayes 2 1 (-) 1 (-)
decision tree (DT) 4 1 (-) 3 (-)
extreml. rand. trees 5 2 (-) 3 (-)
Gaussian naı̈ve Bayes - - -
gradient boosting (GB) 6 - 6 (-)
kNN 3 2 (-) 1 (-)
LDA 4 1 (-) 3 (1)
linear SVM 4 2 (-) 2 (-)
kernel SVM 7 2 (-) 5 (2)
multinomial naı̈ve Bayes 2 1 (-) 1 (-)
passive aggressive 3 1 (-) 2 (-)
QDA 2 - 2 (-)
random forest (RF) 5 2 (-) 3 (-)
SGD 10 4 (-) 6 (3)

(b) preprocessing methods

name #λ cat (cond) cont (cond)

densifier - - -
extreml. rand. trees prepr. 5 2 (-) 3 (-)
kernel PCA 5 1 (-) 4 (3)
rand. kitchen sinks 2 - 2 (-)
linear SVM prepr. 3 1 (-) 2 (-)
no preprocessing - - -
nystroem sampler 5 1 (-) 4 (3)
random trees embed. 4 - 4 (-)
select percentile 2 1 (-) 1 (-)
select rates 3 2 (-) 1 (-)
truncated SVD 1 - 1 (-)

one-out-of-k encoding 2 1 (-) 1 (1)
imputation 1 1 (-) -
balancing 1 1 (-) -
rescaling 1 1 (-) -

Table 2: Number of hyperparameters for each possible classifier (left) and feature preprocessing method (right)
for a binary classification dataset in sparse representation.

(a) classifiers

name #λ cat (cond) cont (cond)

AdaBoost (AB) 4 1 (-) 3 (-)
decision tree (DT) 4 1 (-) 3 (-)
extreml. rand. trees 5 2 (-) 3 (-)
Gaussian naı̈ve Bayes - - -
gradient boosting (GB) 6 - 6 (-)
kNN 3 2 (-) 1 (-)
LDA 4 1 (-) 3 (1)
linear SVM 4 2 (-) 2 (-)
kernel SVM 7 2 (-) 5 (2)
multinomial naı̈ve Bayes 2 1 (-) 1 (-)
passive aggressive 3 1 (-) 2 (-)
QDA 2 - 2 (-)
random forest (RF) 5 2 (-) 3 (-)
SGD 10 4 (-) 6 (3)

(b) preprocessing methods

name #λ cat (cond) cont (cond)

extreml. rand. trees prepr. 5 2 (-) 3 (-)
fast ICA 4 3 (-) 1 (1)
feature agglomeration 4 3 (-) 1 (-)
kernel PCA 5 1 (-) 4 (3)
rand. kitchen sinks 2 - 2 (-)
linear SVM prepr. 3 1 (-) 2 (-)
no preprocessing - - -
nystroem sampler 5 1 (-) 4 (3)
PCA 2 1 (-) 1 (-)
polynomial 3 2 (-) 1 (-)
random trees embed. 4 - 4 (-)
select percentile 2 1 (-) 1 (-)
select rates 3 2 (-) 1 (-)

one-out-of-k encoding 2 1 (-) 1 (1)
imputation 1 1 (-) -
balancing 1 1 (-) -
rescaling 1 1 (-) -

Table 3: Number of hyperparameters for each possible classifier (left) and feature preprocessing method (right)
for a multiclass classification dataset in dense representation.

(a) classifiers

name #λ cat (cond) cont (cond)

AdaBoost (AB) 4 1 (-) 3 (-)
decision tree (DT) 4 1 (-) 3 (-)
extreml. rand. trees 5 2 (-) 3 (-)
Gaussian naı̈ve Bayes - - -
gradient boosting (GB) 6 - 6 (-)
kNN 3 2 (-) 1 (-)
LDA 4 1 (-) 3 (1)
linear SVM 4 2 (-) 2 (-)
kernel SVM 7 2 (-) 5 (2)
multinomial naı̈ve Bayes 2 1 (-) 1 (-)
passive aggressive 3 1 (-) 2 (-)
QDA 2 - 2 (-)
random forest (RF) 5 2 (-) 3 (-)
SGD 10 4 (-) 6 (3)

(b) preprocessing methods

name #λ cat (cond) cont (cond)

densifier - - -
extreml. rand. trees prepr. 5 2 (-) 3 (-)
kernel PCA 5 1 (-) 4 (3)
rand. kitchen sinks 2 - 2 (-)
linear SVM prepr. 3 1 (-) 2 (-)
no preprocessing - - -
nystroem sampler 5 1 (-) 4 (3)
random trees embed. 4 - 4 (-)
select percentile 2 1 (-) 1 (-)
select rates 3 2 (-) 1 (-)
truncated SVD 1 - 1 (-)

one-out-of-k encoding 2 1 (-) 1 (1)
imputation 1 1 (-) -
balancing 1 1 (-) -
rescaling 1 1 (-) -

Table 4: Number of hyperparameters for each possible classifier (left) and feature preprocessing method (right)
for a multiclass classification dataset in sparse representation.
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F Properties of datasets used in the experiments

Name #Continuous #Nominal #Classes Sparse? Missing Values #Training Samples #Test Samples

Abalone 7 1 26 - - 2924 1253
Amazon 10000 0 50 - - 1050 450
Car 0 6 4 - - 1210 518
Cifar10 3072 0 10 - - 50000 10000
Cifar-10-Small 3072 0 10 - - 10000 10000
Convex 784 0 2 - - 8000 50000
Dexter 20000 0 2 X - 420 180
Dorothea 100000 0 2 X - 805 345
GermanCredit 7 13 2 - - 700 300
Gisette 5000 0 2 - - 4900 2100
KDD09-Appetency 192 38 2 - X 35000 15000
KR-vs-KP 0 36 2 - - 2238 958
Madelon 500 0 2 - - 1820 780
MNIST Basic 784 0 10 - - 12000 50000
Rot. MNIST + BI 784 0 10 - - 12000 50000
Secom 590 0 2 - X 1097 470
Semeion 256 0 10 - - 1116 477
Shuttle 9 0 7 - - 43500 14500
Waveform 40 0 3 - - 3500 1500
Wine Quality 11 0 7 - - 3429 1469
Yeast 8 0 10 - - 1039 445

Table 5: Auto-WEKA datasets [6].

ID Name #Continuous #Nominal #Classes Sparse? Missing
Values

#Training
Samples

#Test
Samples

38 Sick 7 22 2 - X 2527 1245
46 Splice 0 60 3 - - 2137 1053
179 adult 2 12 2 - X 32724 16118
184 KROPT 0 6 18 - - 18797 9259
554 MNIST 784 0 10 - - 46900 23100
772 quake 3 0 2 - - 1459 719
917 fri c1 1000 25 (binarized) 25 0 2 - - 670 330
1049 pc4 37 0 2 - - 976 482
1111 KDDCup09 Appetency 192 38 2 (X) X 33500 16500
1120 Magic Telescope 10 0 2 - - 12743 6277
1128 OVA Breast 10935 0 2 - - 1035 510
293 Covertype (binarized) 54 0 2 X - 389278 191734
389 fbis wc 2000 0 17 X - 1651 812

Table 6: Representative datasets for the 13 clusters obtained via g-means clustering of the 140 datasets’
meta-feature vectors.
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ID Name #Continuous #Nominal #Classes Sparse? Missing Values #Training Samples #Test Samples

3 kr-vs-kp 0 36 2 - - 2141 1055
6 letter 16 0 26 - - 13402 6598
12 mfeat-factors 216 0 10 - - 1340 660
14 mfeat-fourier 76 0 10 - - 1340 660
16 mfeat-karhunen 64 0 10 - - 1340 660
18 mfeat-morphological 6 0 10 - - 1340 660
21 car 0 6 4 - - 1157 571
22 mfeat-zernike 47 0 10 - - 1340 660
23 cmc 2 7 3 - - 986 487
24 mushroom 0 22 2 - X 5443 2681
26 nursery 0 8 5 - - 8682 4278
28 optdigits 64 0 10 - - 3765 1855
30 page-blocks 10 0 5 - - 3666 1807
31 credit-g 7 13 2 - - 670 330
32 pendigits 16 0 10 - - 7364 3628
36 segment 19 0 7 - - 1547 763
38 sick 7 22 2 - X 2527 1245
44 spambase 57 0 2 - - 3082 1519
46 splice 0 60 3 - - 2137 1053
57 hypothyroid 7 22 4 - X 2527 1245
60 waveform-5000 40 0 3 - - 3351 1649
179 adult 2 12 2 - X 32724 16118
180 covertype 14 40 7 - - 73962 36431
181 yeast 8 0 10 - - 991 493
182 satimage 36 0 6 - - 4308 2122
184 kropt 0 6 18 - - 18797 9259
185 baseball 15 1 3 - X 897 443
273 IMDB.drama 1001 0 2 X - 81007 39899
293 covertype 54 0 2 X - 389278 191734
300 isolet 617 0 26 - - 5224 2573
351 codrna 8 0 2 X - 327338 161227
354 poker 10 0 2 X - 686756 338254
357 vehicle sensIT 100 0 2 X - 66012 32516
389 fbis.wc 2000 0 17 X - 1651 812
390 new3s.wc 26832 0 44 X - 6401 3157
391 re0.wc 2886 0 13 X - 1007 497
392 oh0.wc 3182 0 10 X - 672 331
393 la2s.wc 12432 0 6 X - 2059 1016
395 re1.wc 3758 0 25 X - 1109 548
396 la1s.wc 13195 0 6 X - 2146 1058
398 wap.wc 8460 0 20 X - 1044 516
399 ohscal.wc 11465 0 10 X - 7478 3684
401 oh10.wc 3238 0 10 X - 702 348
554 mnist 784 784 0 10 - - 46900 23100
679 rmftsa sleepdata 2 0 4 - - 687 337
715 fri c3 1000 25 25 0 2 - - 670 330
718 fri c4 1000 100 100 0 2 - - 670 330
720 abalone 7 1 2 - - 2798 1379
722 pol 48 0 2 - - 10050 4950
723 fri c4 1000 25 25 0 2 - - 670 330
727 2dplanes 10 0 2 - - 27314 13454
728 analcatdata supreme 7 0 2 - - 2714 1338
734 ailerons 40 0 2 - - 9212 4538
735 cpu small 12 0 2 - - 5488 2704
737 space ga 6 0 2 - - 2081 1026
740 fri c3 1000 10 10 0 2 - - 670 330
741 rmftsa sleepdata 1 1 2 - - 686 338
743 fri c1 1000 5 5 0 2 - - 670 330
751 fri c4 1000 10 10 0 2 - - 670 330
752 puma32H 32 0 2 - - 5488 2704
761 cpu act 21 0 2 - - 5488 2704
772 quake 3 0 2 - - 1459 719
797 fri c4 1000 50 50 0 2 - - 670 330
799 fri c0 1000 5 5 0 2 - - 670 330
803 delta ailerons 5 0 2 - - 4776 2353
806 fri c3 1000 50 50 0 2 - - 670 330
807 kin8nm 8 0 2 - - 5488 2704
813 fri c3 1000 5 5 0 2 - - 670 330
816 puma8NH 8 0 2 - - 5488 2704
819 delta elevators 6 0 2 - - 6376 3141
821 house 16H 16 0 2 - - 15265 7519
822 cal housing 8 0 2 - - 13828 6812
823 houses 8 0 2 - - 13828 6812
833 bank32nh 32 0 2 - - 5488 2704
837 fri c1 1000 50 50 0 2 - - 670 330
843 house 8L 8 0 2 - - 15265 7519
845 fri c0 1000 10 10 0 2 - - 670 330
846 elevators 18 0 2 - - 11121 5478
847 wind 14 0 2 - - 4404 2170

Table 7: All datasets which were used for generating metadata and the experiments in Section 5 of the main
paper.
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ID Name #Continuous #Nominal #Classes Sparse? Missing Values #Training Samples #Test Samples

849 fri c0 1000 25 25 0 2 - - 670 330
866 fri c2 1000 50 50 0 2 - - 670 330
871 pollen 5 0 2 - - 2578 1270
881 mv 7 3 2 - - 27314 13454
897 colleges aaup 13 2 2 - X 777 384
901 fried 10 0 2 - - 27314 13454
903 fri c2 1000 25 25 0 2 - - 670 330
904 fri c0 1000 50 50 0 2 - - 670 330
910 fri c1 1000 10 10 0 2 - - 670 330
912 fri c2 1000 5 5 0 2 - - 670 330
913 fri c2 1000 10 10 0 2 - - 670 330
914 balloon 1 0 2 - - 1340 661
917 fri c1 1000 25 25 0 2 - - 670 330
923 visualizing soil 3 1 2 - - 5789 2852
930 colleges usnews 32 1 2 - X 872 430
934 socmob 1 4 2 - - 774 382
953 splice 0 60 2 - - 2137 1053
958 segment 19 0 2 - - 1547 763
959 nursery 0 8 2 - - 8683 4277
962 mfeat-morphological 6 0 2 - - 1340 660
966 analcatdata halloffame 15 1 2 - X 897 443
971 mfeat-fourier 76 0 2 - - 1340 660
976 kdd JapaneseVowels 14 0 2 - - 6673 3288
977 letter 16 0 2 - - 13400 6600
978 mfeat-factors 216 0 2 - - 1340 660
979 waveform-5000 40 0 2 - - 3350 1650
980 optdigits 64 0 2 - - 3765 1855
991 car 0 6 2 - - 1157 571
993 kdd ipums la 97-small 33 27 2 - X 4702 2317
995 mfeat-zernike 47 0 2 - - 1340 660
100 hypothyroid 7 22 2 - X 2527 1245
100 kdd ipums la 98-small 16 39 2 - X 5014 2471
101 kdd ipums la 99-small 15 41 2 - X 5925 2919
101 pendigits 16 0 2 - - 7364 3628
102 mfeat-karhunen 64 0 2 - - 1340 660
102 page-blocks 10 0 2 - - 3666 1807
103 sylva agnostic 216 0 2 - - 9644 4751
104 sylva prior 108 0 2 - - 9644 4751
104 gina prior2 784 0 10 - - 2322 1146
104 pc4 37 0 2 - - 976 482
105 pc3 37 0 2 - - 1047 516
105 jm1 21 0 2 - X 7292 3593
105 mc1 38 0 2 - - 6342 3124
106 kc1 21 0 2 - - 1413 696
106 pc1 21 0 2 - - 743 366
106 pc2 36 0 2 - - 3744 1845
1111 KDDCup09 appetency 192 38 2 - X 33500 16500
1112 KDDCup09 churn 192 38 2 - X 33500 16500
1114 KDDCup09 upselling 192 38 2 - X 33500 16500
1116 musk 166 1 2 - - 4420 2178
1119 adult-census 6 8 2 - X 21815 10746
1120 MagicTelescope 10 0 2 - - 12743 6277
1128 OVA Breast 10935 0 2 - - 1035 510
1130 OVA Lung 10935 0 2 - - 1035 510
1134 OVA Kidney 10935 0 2 - - 1035 510
1138 OVA Uterus 10935 0 2 - - 1035 510
1139 OVA Omentum 10935 0 2 - - 1035 510
1142 OVA Endometrium 10935 0 2 - - 1035 510
1146 OVA Prostate 10935 0 2 - - 1035 510
1161 OVA Colon 10935 0 2 - - 1035 510
1166 OVA Ovary 10935 0 2 - - 1035 510

Table 8: All datasets which were used for generating metadata and the experiments in Section 5 of the main
paper (continued).
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G Setup section 4

To compare against Auto-WEKA, we used 21 datasets (detailed in Table 5) with their original
train/test split [6], a walltime limit of 30 hours, 10-fold cross validation (where the evaluation of each
fold was allowed to take 150 minutes, except for hyperopt-sklearn which uses a 80/20 train/test split),
and 10 independent optimization runs with SMAC on each dataset. Our results for Auto-WEKA
resemble those of Thornton et al. [7], with minor differences caused by our faster machines: All
our experiments ran on Intel Xeon E5-2650 v2 eight-core processors with 2.60GHz and 4GiB of
RAM. We allowed the machine learning framework to use 3GiB and reserved the rest for SMAC. All
experiments used Auto-WEKA 0.5 and scikit-learn 0.16.1.

H Evaluation of our new AutoML methods - additional plot
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Figure 1: Average rank of all four auto-sklearn versions ranked by balanced error (BER) across 140 datasets.
In contrast to the plot in the main paper, this plot is on a log-scale. Due to the little additional overhead that
meta-learning and ensemble selection cause, vanilla auto-sklearn is able to achieve the best rank within the first
10 seconds as it produces predictions before the other auto-sklearn variants finish training their first model.
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I Average rank over datasets for optimizing single classifiers and preproces-
sors compared to auto-sklearn
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Figure 2: Average rank. We compare test performance over time for optimizing each classifier with all
preprocessing methods separately with optimizing the joint space auto-sklearn. We optimize each method for
one day. Each line shows the average across 13 datasets; for each dataset drew a bootstrap sample of 100 joint
runs and computed the average rank across these runs.
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Figure 3: Average rank for different preprocessing methods on a dense dataset. We compare test performance
over time for optimizing each preprocessing method with all classifier with optimizing the joint space auto-
sklearn. We optimize each method for one day. Each line shows the average across 13 datasets; for each dataset
drew a bootstrap sample of 100 joint runs and computed the average rank across these runs.
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(a) Classifiers on dataset 554
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(b) Classifiers on dataset 1049

Figure 4: Performance (balanced classification error, BER) of different subspaces compared to auto-sklearn
over time. We show the median test performance over time for all classifiers with all preprocessing methods
separately with optimizing the joint space.
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