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Abstract

The development of domain-independent planners
within the AI Planning community is leading to
“off the shelf” technology that can be used in a
wide range of applications. Moreover, it allows a
modular approach — in which planners and domain
knowledge are modules of larger software appli-
cations — that facilitates substitutions or improve-
ments of individual modules without changing the
rest of the system. This approach also supports the
use of reformulation and configuration techniques,
which transform how a model is represented in or-
der to improve the efficiency of plan generation.

In this paper, we investigate how the performance
of planners is affected by domain model configura-
tion. We introduce a fully automated method for
this configuration task, and show in an extensive
experimental analysis with six planners and seven
domains that this process (which can, in princi-
ple, be combined with other forms of reformulation
and configuration) can have a remarkable impact on
performance across planners. Furthermore, study-
ing the obtained domain model configurations can
provide useful information to effectively engineer
planning domain models.

1 Introduction

The development of domain-independent planners within the
Al Planning community is leading to the use of this “off the
shelf” technology to a wide range of applications. This is de-
spite the complexity issues inherent in plan generation, which
are exacerbated by the separation of planner logic from do-
main knowledge. One important class of application is where
the planner is an embedded component within a larger frame-
work, with the domain model and planning problem being
generated by hand, or potentially automatically. This appli-
cation class has the advantage that planners which accept the
same domain model language and deliver the same type of
plans can be interchanged in a modular way, without any
changes to the rest of the system.

This modular approach also supports the use of reformu-
lation and configuration techniques which can automatically

re-formulate, re-represent or tune the domain model and/or
problem description in order to increase the efficiency of
a planner and increase the scope of problems solved. The
idea is to make these techniques to some degree indepen-
dent of domain and planner (that is, applicable to a range
of domains and planning engine technologies), and use them
to form a wrapper around a planner, improving its overall
performance for the domain to which it is applied. Types
of reformulation include macro-learning [Botea et al., 2005;
Newton ef al., 2007], action schema splitting [Areces et al.,
2014] and entanglements [Chrpa and McCluskey, 2012]: here
the domain model is transformed to a more efficient form
that is fed into the planner. The transformation is then re-
versed after a solution has been found, such that the solution
is rephrased in the original formulation language. Another
general approach for improving planner efficiency is to apply
automated algorithm configuration tools [Hutter et al., 2009]
to tune the free parameters of a planner to a particular type
of instances. In planning, this approach has mainly been ap-
plied to optimise LPG [Vallati et al., 2013] and Fast Down-
ward [Fawcett et al., 2011], yielding average speedup factors
in satisficing planning of up to 23 and 118, respectively.

In this context, we explore the automated configuration
of domain models instead of algorithm parameters. We in-
vestigate this area by considering domain models written in
PDDL, using as the parameters of configuration the potential
orderings of predicate declarations, the ordering of operators,
and the ordering of predicates within pre- and post condi-
tions. Through comprehensive experiments using six state-
of-the-art planners on seven planning domains and approxi-
mately 3,800 planning problems, we demonstrate that config-
uration is an effective approach for improving planners’ per-
formance. Next to making a significant contribution to plan-
ning speed-up, this work (i) introduces a general framework
that can be exploited for improving planners’ performance by
tailoring the domain model configuration; (ii) gives insights
into how to view results from competitions such as the Inter-
national Planning Competition (IPC), by showing that even
small changes in the models can change the final ranking of
participants; and (iii) provides useful information to help en-
gineer more efficient planning domain models.

Howe and Dahlman (2002) investigated how experiment
design decisions affect the performance of planning systems,
noticing that changing the order of elements in either domain



models or problem specifications can affect performance.
Our investigation expands their pioneering work in a num-
ber of ways: (i) while their analysis dates back 13 years and
was focused on STRIPS problems only, we consider a larger
set of PDDL features, and current planners and instances; (ii)
while their analysis was limited to a fairly small number of
permutations (10 per problem) we consider the full combi-
natorial space of permutations for each planner; and (iii) we
evaluate the impact of domain model configuration using var-
ious performance metrics, namely coverage, IPC score and
penalized average runtime. Maybe more fundamentally, (iv)
we introduce an automatic approach for configuring domain
models in order to improve planners’ performance; and (v)
we describe which changes have a stronger impact on plan-
ners’ performance, thus providing help for engineering future
domain models.

2 Domain Model Configuration

In this section, we first describe some background on auto-
mated planning and algorithm configuration, then describe
the choices we have in designing domain models, and finally
show how to use configuration to make these choices auto-
matically.

2.1 Automated Planning

Automated planning, and specifically classical planning,
deals with finding a (partially or totally ordered) sequence
of actions transforming a static, deterministic and fully ob-
servable environment from some initial state to a desired goal
state [Ghallab et al., 2004].

In the classical planning, environment is represented by
first order logic predicates. States are defined as sets of
ground predicates.

A planning operator o =
(name(o), pre(o), eff (o), eff (o)) is specified such that
name(o) = op_name(x1,...,xy) (op_name is a unique op-
erator name and x1, . .. x are variable symbols (arguments)
appearing in the operator), pre(o) is a set of predicates repre-
senting operator’s precondition, eff (o) and eff" (o) are sets
of predicates representing operator’s negative and positive
effects. Actions are ground instances of planning operators.
An action a = (pre(a),eff (a),eff" (a)) is applicable in a
state s if and only if pre(a) C s. Application of a in s (if
possible) results in a state (s \ eff (a)) Ueff™ (a).

A planning domain model is specified via sets of predicates
and planning operators. A planning problem is specified via a
planning domain model, initial state and set of goal atoms. A
solution plan is a sequence of actions such that a consecutive
application of the actions in the plan (starting in the initial
state) results in a state that satisfies the goal.

2.2 Algorithm Configuration

Most algorithms have several free parameters that can be ad-
justed to optimise performance (e.g., solution cost, or runtime
to solve a set of instances). Formally, this algorithm configu-
ration problem can be stated as follows: given a parametrised
algorithm with possible configurations C, a benchmark set II,

and a performance metric m(c, 7) that measures the perfor-
mance of configuration ¢ € C on instance 7 € II, find a
configuration ¢ € C that minimises m over II , i.e., that min-
imises

1
f(c):ﬁZm(c,ﬂ'). (1)

The AI community has recently developed dedicated al-
gorithm configuration systems to tackle this problem [Hut-
ter et al., 2009; Ansétegui et al., 2009; Yuan et al., 2010;
Hutter et al., 2011]. Here we employ the sequential model-
based algorithm configuration method SMAC [Hutter et al.,
2011], which represents the state of the art of configura-
tion tools and, in contrast to ParamILS [Hutter et al., 20091,
can handle continuous parameters. SMAC uses predictive
models of algorithm performance [Hutter et al., 2014b] to
guide its search for good configurations. More precisely, it
uses previously observed {(configuration, performance) pairs
(¢, f(c)) and supervised machine learning (in particular, ran-

dom forests [Breiman, 2001]) to learn a function f :C— R
that predicts the performance of arbitrary parameter configu-
rations (including those not yet evaluated). The performance
data to fit these models is collected sequentially. In a nut-
shell, after an initialisation phase, SMAC iterates the follow-
ing three steps: (1) use the performance measurements ob-

served so far to fit a random forest model f ; (2) use f to
select a promising configuration ¢ € C to evaluate next, trad-
ing off exploration in new parts of the configuration space and
exploitation in parts of the space known to perform well; and
(3) run ¢ on one or more benchmark instances and compare
its performance to the best configuration observed so far.

2.3 Degrees of Freedom in Domain Models

A key product of knowledge engineering for automated plan-
ning is the domain model. Currently, this knowledge engi-
neering is somewhat of an ad-hoc process, where the skills
of engineers may significantly influence the quality of the do-
main model, and therefore the performance of planners. Al-
though usually underestimated, there are significant degrees
of freedom in domain model descriptions.

Here, we are focusing on one particular aspect of know-
ledge engineering: given the components of a domain
model (domain predicates and operators with pre- and post-
conditions), in which order should these be listed in the do-
main model? Specifically, we considered as configurable the
order in which domain predicates are declared and operators
are listed in the PDDL domain model and, within every oper-
ator, the order in which pre and post condition predicates are
shown.

Example 1. The simplest domain we consider here, Parking,
contains 5 domain predicates and 4 operators, with 3, 4, 3,
and 4 pre-conditions and 4, 5, 5, and 4 post-conditions, re-
spectively. We need to specify 10 different orders: the order
of the 5 domain predicates; the order of the 4 operators; 4
pre-condition orders (one per operator); and 4 post-condition
orders (one per operator).



2.4 Configuration of Domain Models

In this work, we use SMAC for configuring domain models
M in order to improve the runtime performance of a given
planner P. In this setting, it is possible to evaluate the “qual-
ity” of a domain model M by the performance of P when
run on problem instances encoded using domain model M.
Therefore, on a high level our approach is to express the de-
grees of freedom in the domain model as parameters, and use
algorithm configuration to set these parameters to optimise
planner performance.

It is not directly obvious how to best encode the degrees
of freedom in domain models as parameters. Configuration
over orders is not natively supported by any general config-
uration procedure, but needs to be encoded using numerical
or categorical parameters. The simplest encoding for an or-
dering of m elements would be to use a single categorical
parameter with m! values. However, next to being infeasible
for large m, this encoding treats each ordering as independent
and does not allow configuration procedures to discover and
exploit patterns such as “element ¢ should come early in the
ordering”. Two better encodings include:

1. (’g) binary parameters: each parameter expresses
which of two elements should appear first in the order-
ing, with the actual order determined, e.g., by order-
ing elements according to the number of elements that

should appear after them.

2. m continuous parameters: each element ; is associated
a continuous “precedence” value p; from some interval
(e.g., [0,1]), and elements are ordered by their prece-
dence.

To select which of these two strategies to use in our an-
alysis, we ran preliminary experiments to evaluate them; in
these experiments, we configured one domain model (De-
pots) for each of two planners (LPG and Yahsp3 [Vidal,
2014]). In both of these experiments, the two strategies lead
to domain model configurations of similar quality, with a
slight advantage for the second strategy; we therefore selected
that strategy for our study. Nevertheless, we would like to
stress the preliminary nature of our comparison and that one
could encode configuration across orders in many other pos-
sible ways; we believe that a comprehensive study of the pos-
sible strategies may well lead to substantial performance im-
provements (and would thereby boost domain configuration
further). We leave such a study to future work to fully focus
on domain configuration here.

We now describe the encoding we chose in more detail.
To express domain configuration as an algorithm configura-
tion problem we introduce a numerical parameter p; (with
domain [0, 1]) for each configurable element (i.e., each do-
main predicate, operator, pre-condition and post-condition of
an operator). Thus, the configuration space for domains with
m configurable elements is C = [0,1]™. A configuration
¢ = (p1,...,pm) € C instantiates each of the parameters, and
the corresponding domain model configuration for it is ob-
tained by grouping and sorting the parameters as follows. For
domains with k operators, PDDL elements are grouped into
2+ 2k groups: predicate declarations, operators and, for each
operator, preconditions and post-condition predicates. Within

each group, items are sorted in order of increasing parameter
value; ties are broken alphabetically. Following this order, el-
ements are listed in the resulting PDDL model. The simplest
domain we consider here is Parking (see Example 1), with
41 parameters. The most complex domain we considered is
Rovers, with 109 parameters.

Example 1 (continued). In the Parking example (5 domain
predicates and 4 operators, with 3, 4, 3, and 4 pre-conditions
and 4, 5, 5, and 4 post-conditions, respectively), our for-
mulation of the domain configuration problem has 41 pa-
rameters with domain [0, 1]: 5 domain predicate precedence
parameters, 4 operator precedence parameters, (3+4+3+4)
pre-condition precedence parameters, and (4+5+5+4) post-
condition precedence parameters. For the sake of simplicity,
in the remainder of this example, we focus on configuring
only the degrees of freedom of the first operator. It has 3 pre-
conditions (prel, pre2, pre3) and 4 post-conditions (post1,
post2, post3, postd). This gives rise to 7 parameters: pl, p2,
p3 (which control the order of pre-conditions) and p4, p5, p6,
p7 (which control the order of post-conditions). SMAC there-
fore searches in the parameter space [0, 1]7, and each parame-
ter setting induces a domain model. If SMAC evaluates, e.g.,
[p1=0.32, p2=0.001, p3=0.7, p4=0.98, p5=0.11, p6=0.34,
p7=0.35], this induces a domain model in which precondi-
tions are ordered (pre2, prel, pre3), and post-conditions are
ordered (post2, post3, post4, postl).

A major difference between standard algorithm configura-
tion on the one hand and domain configuration on the other
is that the former only applies to planners that expose a
large number of explicit tuning parameters. For this reason,
within planning, standard algorithm configuration has only
been applied to LPG [Vallati et al., 2013]) and Fast Down-
ward [Fawcett et al., 2011]). In contrast, in domain configu-
ration we configure over the inputs of a planner, which makes
this technique planner-independent.

3 Experimental Analysis

Our experimental analysis aims to evaluate the impact that
domain model configuration, as described in the previous sec-
tion, has on state-of-the-art planning systems.

3.1 Settings

We selected 6 planners, based on their performance in the
Agile track of the international planning competition (IPC)
2014 and/or the use of different planning approaches: Jasper
[Xie et al., 2014], Lpg [Gerevini et al., 2003], Madagascar (in
the following abbreviated as Mp) [Rintanen, 2014], Mercury
[Katz and Hoffmann, 20141, Probe [LipovetzKy et al., 2014],
and Yahsp3 [Vidal, 2014].

No portfolio-based planners were included since so far
no portfolios exist yet that exploit different domain models.
Nevertheless, by opening up the design space of domain mod-
els and improving the best basic planners for particular do-
mains, we substantially increase the potential of future port-
folios.

We focused our study on domains that have been used in
IPCs and for which a randomised problem generator is avail-
able. The models we chose had at least four operators and,



possibly, a large number of predicates: Blocksworld (4 ops
version), Depots, Matching-Bw, Parking, Rovers, Tetris, and
ZenoTravel.

For each domain we study, we created approximately 550
random instances with the domain’s random instance genera-
tor. We split these instances into a training set (roughly 500
instances) and a test set (roughly 50 instances) in order to
obtain an unbiased estimate of generalisation performance
to previously unseen instances from the same distribution.
Throughout the paper, we only report results on these test
sets.

Configuration of domain models was done us-
ing SMAC version 2.08 (publicly available at
http://www.aclib.net/SMAC). The performance
metric we optimised trades off coverage (# instances for
which we find a plan) and runtime for successful instances;
specifically, we minimise Penalized Average Runtime (PAR),
counting runs that crash or do not find a plan as ten times the
cutoff time (PAR10).

We performed experiments on AMD Opteron™ machines
with 2.4 GHz, 8 GB of RAM and Linux operating system.
Each of our configuration runs was limited to a single core,
and was given an overall runtime and memory limits of 5
days and 8GB, respectively. As in the Agile track of the
IPC 2014, the cutoff time for each instance, both for train-
ing and testing purposes, was 300 seconds. We defined IPC
score as in the Agile track: let 7},(C) denote the time plan-
ner C requires to solve problem p and let 77 denote the
minimum time required by the compared planners to solve
the problem; then, Score(C,p) is 0 if C does not solve P
and 1/(1 + logy,(7,(C)/T,)) otherwise. The IPC score
of a planner C on a set of problems P is then given by

> pep Score(C,p).

3.2 Results

Table 1 compares the results of planners running on the orig-
inal domain model — the one that has been used in IPCs — and
the specifically configured domain model, obtained by run-
ning SMAC. These results indicate that the configuration of
the domain model has a substantial impact on the planners’
performance, with several substantial and statistically signifi-
cant improvements (as judged by a Wilcoxon signed rank test
[Wilcoxon, 1945]).

Figure 1 visualises the improvements for two cases. Figure
1(a) shows that Yahsp had mediocre performance on Depots
using the original domain configuration (e.g., timing out on
12% of the instances after 300 seconds), but that after do-
main configuration it could solve every single instance in less
than 10 seconds. Figure 1(b) shows that Probe benefited sub-
stantially from domain configuration on the Tetris domain,
with both its coverage tripling and its runtime decreasing on
solved instances.

Finally, of note is that in three domains domain configura-
tion changed what is the best planner (according to PAR10):

e In Blocksworld, LPG performed best on the origi-
nal domain model, but its penalized average runtime
was “only” halved by automatic domain configuration,
whereas Yahsp was sped up by a factor of 30, ending up
beating LPG.

PARI10 Solved IPC score
Planner C O C O C (0]
BlocksWorld
Jasper 307.3 470.1 90.9 854 | 49.0 45.0
Lpg 59 10.3 100.0 100.0 | 534 45.1
Mp 2896.0 2949.6 3.6 1.8 2.0 0.9

Mercury 90.6 90.3 98.2 98.2 | 535 538
Probe 293 30.4 100.0 100.0 | 54.7 539
Yahsp3 29 57.5 100.0 98.2 | 474 4738
Depots

Jasper 2295.0 22413 | 26.4 245 | 129 11.6
LPG 9.0 78.3 100.0 98.0 | 47.0 409
Mp 37 3.7 100.0 100.0 | 48.0 479
Mercury | 2883.4 28834 | 4.1 4.1 2.0 2.0
Probe 14.1 14.2 100.0 100.0 | 47.8 474
Yahsp3 1.1 3734 | 100.0 87.8 | 49.0 31.7
Matching-Bw

Jasper 524.1 532.1 84.0 84.0 | 387 379
LPG 6852 1278.0 | 78.0 58.0 | 35.8 229
Mp 3000.0  3000.0 0.0 0.0 - -

Mercury | 1695.3 1694.5 | 44.0 440 | 21.7 21.8
Probe 1464.0 1338.6 | 52.0 56.0 | 233 258

Yahsp3 18.5 185.7 | 100.0 94.0 | 349 442

Parking

Jasper 1446.2 1448.9 | 53.6 53.6 | 29.8 29.2
LPG 2047.0 2846.1 1.8 5.4 1.0 2.7
Mp 855.3 858.1 73.2 732 | 39.8 389
Mercury | 1446.2 14448 | 53.6 53.6 | 29.7 299
Probe 1268.0 1418.1 58.9 53.6 | 29.6 28.1
Yahsp3 2059.8 1955.1 | 32.1 35.7 16.8 19.6
Rovers

Jasper 2498.6 2544.1 18.3 16.7 11.0 9.9
Lpg 23.7 26.1 100.0 100.0 | 59.1 56.9
Mp 3000.0 3000.0 0.0 0.0 - -

Mercury | 1173.4 15369 | 66.7 533 | 40.0 31.7
Probe 3000.0 3000.0 0.0 0.0 - -

Yahsp3 7.5 7.5 100 100.0 | 599 59.8

Tetris
Jasper 1937.3  1944.1 | 37.0 37.0 | 19.5 189
LPG 1907.8 2723.1 | 37.0 9.3 198 3.6
Mp 1860.9 1863.3 | 38.9 389 | 21.0 203
Mercury | 1985.1 19834 | 352 352 | 18.6 189
Probe 1490.6 2520.5 | 51.9 16.7 | 28.0 4.5
Yahsp3 2615.8 2614.6 | 13.0 13.0 6.4 7.0
ZenoTravel

Jasper 174.9 2514 | 100.0 98.0 | 50.0 46.8
LPG 36.4 43.1 100.0 100.0 | 49.1 46.0
Mp 9.5 9.4 100.0 100.0 | 49.2 49.1
Mercury 84.6 82.4 100.0 100.0 | 494 499
Probe 138.9 143.1 100.0 100.0 | 49.1 483
Yahsp3 2.5 2.8 100.0 100.0 | 47.9 46.1

Table 1: Test set results in terms of PAR10, percentage of
solved problems and IPC score, of planners running on orig-
inal domain models (O) and SMAC-configured models (C).
Boldface indicates statistically significant improvements of
PAR10 performance. IPC score was calculated separately
for each planner, considering only the performance of its two
domain model configurations. The decrease in IPC score of
Yahsp3 on Matching-Bw by configuration is not a typo: even
though the optimisation objective (PAR10) substantially im-
proved, it did so at the cost of solving easy instances slower.



Planners PARI10

Js LPG Mp Me Pb Y3
Jasper 1293.2 1376.9 1318.2 1338.7 1360.7 1354.9
LPG 867.9 701.4 893.0 918.9 894.6 757.2
Mp 1833.3 1818.3 1802.6 1796.6  1781.1 1796.2
Mercury 1327.1 1341.8 1349.0 13127 1320.0 1319.9
Probe 672.4 593.3 707.6 588.3 578.9 619.8
Yahsp3 311.4 319.6 391.0 352.5 326.2 309.8
Planners % Solved Problems

Js LPG Mp Me Pb Y3
Jasper 59.1 56.1 583 57.5 56.7 57.0
LPG 71.7 713 70.9 70.1 70.9 754
Mp 39.3 39.8 40.4 40.6 41.2 40.6
Mercury 57.8 57.2 57.0 58.3 58.0 58.0
Probe 78.9 81.6 77.8 81.8 82.1 80.7
Yahsp3 90.1 89.8 87.4 88.8 89.6 90.1
Planners IPC score

Js LPG Mp Me Pb Y3
Jasper 90.6 89.0 87.8 88.6 86.8 86.5
LPG 170.3 192.6 167.2 164.8 167.5 183.9
Mp 100.1 100.4 104.4 102.7 103.3 102.2
Mercury 90.3 89.5 89.1 91.1 90.7 90.6
Probe 147.4 156.8 142.5 154.2 158.1 152.2
Yahsp3 285.6 285.9 272.0 259.6 285.0 292.3
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Figure 1: Scatter plots comparing runtime of planners us-
ing configured (y-axis) and original (x-axis) domain models;
timeouts at 300s are plotted separately, dashed lines indicate
5-fold and 25-fold speedups, respectively.

e In Depots, Mp performed best on the original domain
model, but since automatic domain configuration helped
Yahsp reduce its penalized average runtime by a factor of
more than 300 (and did not improve Mp), Yahsp clearly
performed best on this domain after configuration.

e In Tetris, a similar situation occurred: Mp performed
best on the original domain model, but since automatic
domain configuration helped Probe solve three times
more problems (and did not improve Mp), Probe clearly
performed best on this domain after configuration.

For providing a better overview of the impact of different
domain model configurations on the considered planners, we
ran all planners on all domain model configurations identi-
fied by SMAC. Table 2 shows the results of this comparison.
Generally speaking, performance of planners varied across
these domain models, but not substantially. This indicates

Table 2: Performance of each planner (one row per planner)
running on the domain configurations configured by SMAC
(each column represents the domain model configured for one
planner). Respectively, columns Js, LPG, Mp, Me, Pb and
Y3 indicate the domain-model configurations identified by
SMAC for the Jasper, LPG, Madagascar, Mercury, Probe and
Yahsp3 planner. Performance is given as cumulative across
all the test instances. IPC score is evaluated by considering
all the planners and all the domain model configurations at the
same time. Bold indicates best performance, also considering
hidden decimals, with respect to each planner.

that there possibly exists a single configuration that can boost
performance of all the considered planners. As could be ex-
pected, almost all the planners achieved slightly better perfor-
mance when using the domain model specifically configured
for them. The only exception is Mp, which usually performs
slightly better, in terms of PAR10 and solved problems, when
running on domain models configured for Probe. We hypoth-
esise this is due to the fact that Mp timed out on more than
half the training instances. This slows down the configura-
tion process, likely causing SMAC (in its fixed budget of five
CPU days) to only find configurations that are quite far from
optimal for this solver.

Next, in order to study how much average impact a change
of domain configuration can have across planners, for each
domain we identified the “best fixed configuration”, as the
configuration that most improved the IPC score of a specific
planner. (For instance, in Blocksworld the best fixed config-
uration is the one for LPG, which allows the planner to in-
crease its IPC score by 8.3 points, see Table 1). In Table 3
we report the performance of the six planners exploiting, for
each domain, the best fixed configuration. Interestingly, ex-
ploiting these configurations allows all the considered plan-
ners to achieve statistically significantly better performance
than when using the original configuration. This indicates
that the original domain models, i.e. the models which are
currently used when benchmarking planning systems, are not
in a “planner-friendly” shape. This supports the intuition



IPC score PAR10 Solved

Planner B O B (0] B (6]

Jasper 252.2 1959 | 9753 13759 | 694 56.3
LPG 261.2 1921 826.0 9262 | 729 69.7
Mp 2325 1679 | 11094 16375 | 63.8 46.1
Mercury | 236.8 1839 | 1126.6 1381.5 | 63.5 55.8
Probe 294.2 2055 | 602.3 1265.3 | 81.0 58.7
Yahsp3 3109 260.0 | 310.7 390.6 | 90.1 874

Pos Original Configured Best

1 Yahsp (297) Yahsp (303) Yahsp (306)
2 Lpg (168) Lpg (198) Lpg (189)

3 Mp (121) Probe (123) Probe (173)
4 Probe (112) Mp (117) Jasper (123)
5 Mercury (91) | Mercury (95) Mp (119)

6 Jasper (90) Jasper (94) | Mercury (105)

Table 3: Results on all the testing instances, in terms of IPC
score, PAR10 and percentage of solved problems, of planners
running on original domain models (O) and the best fixed
configured models (B). Bold indicates statistically different
performance.

that there are knowledge engineering policies for encoding
domain models that can lead to an average performance im-
provement of planning systems.

Finally, we selected the two domains in which the plan-
ners’ performance mostly improved by using configured do-
main models: Tetris and Depots (see Table 1). On these do-
mains, we also used SMAC for identifying a “bad” domain
configuration, i.e., the configuration that maximises PAR10.
Maximising PAR10 means identifying configurations that
slow down the planning process, in order to increase the num-
ber of timeouts. We assessed how such configurations affect
planners by comparing performance planners achieved when
exploiting them, with those they obtained on the Original and
Best models. We observed a noticeable —and statistically
significant— deterioration in performance both in terms IPC
score (—21.1 vs Original, —64.4 vs Best), solved problems
(—2.0% vs Original, —6.6% vs Best) and average runtime on
solved instances (44.4 vs Original, +16.3 vs Best) among all
the planners. Results are averages across both domains.

3.3 Discussion

In order to understand how the different models affect the
relative performance of planners, we simulate the execution
of three “planning competitions” between the six considered
planners on the 50 testing instances of the selected domains.
We used the same settings as for the Agile track of IPC-14.
In the first competition, planners ran on the original domain
models. In the second, all the planners ran on the best fixed
domain model configurations (Best), selected as described in
Section 3.2. Finally, in the third competition, every planner
ran on the specifically configured domain models (Config-
ured). Although the third competition is unusual, in the sense
that planners are actually running on different models, it can
provide some interesting insights. The results of the three
competitions are shown in Table 4. Interestingly, the IPC
score of all the planners increases when considering Config-
ured models, and it usually improves further on the Best pos-
sible model. This is possibly due to the fact that good config-
urations are similar among considered planners. Moreover,
for planners which did not solve many of the training prob-
lems, SMAC probably was not able to explore large areas of
the configuration space; therefore the specifically configured
domain models can be of lower quality than the best fixed
model. Finally, we notice that in Table 4, the relative perfor-

Table 4: Relative position of considered planners (IPC score)
on original domain models (Original), configured for each
planner (Configured) and the configuration that provides the
best improvements among all the considered (Best). Planners
are listed in decreasing order of IPC score.

mance of planners, i.e. their ordering, changed in the three
different settings of the competition.

Our intuition behind the substantial performance variations
we have reported with different domain models throughout
this paper is that a different ordering can influence tie break-
ing. For instance, in A* search, situations where several
nodes have the same best f-value are common. Intuitively, all
of these nodes are equally good and many implementations
thus select the node that came first or last. Therefore, a dif-
ferent order of operators/predicates can drastically change the
order in which nodes are considered, thus changing the be-
haviour of the search. Also, a smart ordering of preconditions
can lead to performance improvements in cases where some
preconditions are more likely to be unsatisfied than others;
having them as first in the checking list can avoid a possibly
large number of checks. A similar behaviour has been empir-
ically observed by Valenzano et al. (2014), who noticed that
changing the order in which operators are considered during
search significantly affects the performance of greedy best-
first-based planning systems. Moreover, we empirically ob-
served that differently-configured domain models can lead to
different SAS+ encodings.

In order to shed some light on the importance of elements’
order, thus providing some useful information for knowledge
engineers, we assessed the importance of parameters in two
domains: Depots and Tetris. They have a very different struc-
ture, and domain configuration substantially improved Yahsp
and Probe, respectively (compare Figure 1 above).

We used fANOVA, a general tool for assessing parameter
importance [Hutter er al., 2014a] after algorithm configura-
tion, to find that different parameters are indeed important
for these two domains. Although we believed that the order
of operators may have the strongest impact on performance,
the experimental analysis demonstrated that this is not always
true. In the two domain models, the order of operators had
different impact. In Depots, which has a strong directionality
(some actions are very likely to be executed in initial steps
and not in final steps, and vice-versa), ordering operators ac-
cording to this directionality clearly improves planning per-
formance. In particular, our analysis highlighted that two op-
erators have a very significant impact on performance: load
and drop. Figure 2 shows a clear pattern for Yahsp’s perfor-
mance as a function of two parameters in the domain model:
in order to achieve a low penalized average runtime, operator
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Figure 2: The average PAR10 performance of Yahsp in the
Depots domain, as a function of the values of the parameters
corresponding to the 1oad and drop operators. The lower
the PAR10 value, the better the performance. Best perfor-
mance is achieved when the 1oad operator is listed early in
the model (low parameter value), and the drop operator is
listed late (high parameter value).

load (which is mostly used in early steps for loading crates
on trucks) should be listed early in the model description and
operator drop should be listed late.

In the Tetris domain, where all the operators have poten-
tially the same probability to be executed in any part of the
plan, a good operators’ order follows the frequency of action
usage in the plan: most used first. Clearly, the frequency of
action usage depends, to some extent, on the planner. Nev-
ertheless, in domains such as Tetris, it is likely that the oper-
ators’ ordering has a less significant impact than in domains
with a strong directionality. In line with this explanation, the
performance improvements for Tetris arose not by a single
factor but as gains due to many of the configurable elements.

According to our observations in both Depots and Tetris
domains, preconditions of operators which are most likely to
be unsatisfied should be listed earlier. On the other hand, the
impact of ordering of post-condition predicates is not very
clear; our intuition is that the main effect for which an ac-
tion is usually executed should be presented earlier. Finally,
the configured order of predicate declarations tends to follow
their frequency as operators’ preconditions.

Since the results in Table 2 show that LPG tends to ben-
efit most from domain configuration, we studied its perfor-
mance in some more detail. In particular, we focused on the
Tetris domain, where its percentage of solved instance was
increased most. For gaining some insights, we qualitatively
compared the Tetris domain model configured for LPG, with
the models configured for other planners and with the afore-
mentioned “bad” configuration. In terms of predicates, we
notice that the connected predicate has a strong impact:
it is the static predicate that describes connections between
cells. Although static predicates are commonly used for de-

scribing aspects of the world that do not change, and are in-
cluded also in some of the other domains considered in our
empirical analysis, the connected used in Tetris is peculiar.
Every operator incorporates at least two preconditions that are
based on this predicate. LPG performance is improved when
connected is the last predicate to be defined, but it is listed
early as preconditions. In terms of operators, those which are
rarely used by LPG should be the listed last.

4 Conclusion and Future Work

In this paper we proposed an approach for automatically con-
figuring domain models. We considered PDDL domain mod-
els, configuring the order of predicate declarations, the order
of operators, and predicates within pre and post-conditions.
We investigated how configuring domain models affects the
performance of domain-independent planners.

The analysis we performed in this work: (i) demonstrates
that domain model configuration has a statistically significant
impact on planners’ performance; (ii) provides useful infor-
mation to help engineer more efficient planning domain mod-
els; and (iii) gives insights into how to view competitions re-
sults; in particular, we showed that IPC results are influenced,
in terms of the final ranking of participants, by the domain
model configuration that is selected.

Domain model configuration opens up many possibilities
for future work. Firstly, we plan to evaluate how it affects
the quality of plans, particularly for models that include ac-
tion costs. Moreover, we are interested in exploring the con-
figuration of models encoded in languages different from
PDDL, such as SAS+ and SAT. Such an analysis can also
shed some light on the different impact that domain model
configurations have on planning systems exploiting different
techniques. Along similar lines, we also plan to study how
domain configuration interacts with the configuration of plan-
ner parameters. We further plan to combine it with portfolio
approaches to automatically configure a portfolio of domain
models, for one or more planners. Finally, we would also like
to explore whether problem models can be configured online,
which could potentially lead to further performance improve-
ments and to useful insights on the obscure task of describing
and modelling problems.
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