
Case Study on Bagging Stable Classifiers for Data Streams

Jan N. van Rijn
jvrijn@liacs.nl

Geoffrey Holmes
geoff@waikato.ac.nz

Bernhard Pfahringer
bernhard@waikato.ac.nz

Joaquin Vanschoren
j.vanschoren@tue.nl

Abstract

Ensembles of classifiers are among the strongest classi-
fiers in most data mining applications. Bagging ensembles
exploit the instability of base-classifiers by training them
on different bootstrap replicates. It has been shown that
Bagging instable classifiers, such as decision trees, yield
generally good results, whereas bagging stable classifiers,
such as k-NN, makes little difference. However, recent work
suggests that this cognition applies to the classical batch
data mining setting rather than the data stream setting. We
present an empirical study that supports this observation.

1. Introduction

Ensembles of classifiers are among the strongest classi-
fiers in most data mining applications. By building multiple
different models and combining the predictions of those,
predictive accuracy typically improves over building just
one model. Some well known ensemble techniques are
Bagging [6], Boosting [18] and Stacking [10, 24]. Bagging
exploits the instability of classifiers. The base-classifiers
are trained on slightly different samples of the training set,
yielding diverse models. Common decision tree induction
algorithms are known to be instable, which makes them
appropriate to be used in a bagging ensemble. Classifiers
such as Naive Bayes and k-Nearest Neighbour are known
to be stable, slight changes in the training set do not in-
fluence predictions. Breiman already showed that Bagging
k-Nearest Neighbour does not yield accuracy improvement,
when used in a classical batch data mining setting.

However, it is unknown whether this observation holds
in the data stream setting. Data stream mining varies from
the batch classification setting in various ways [3, 4, 11, 17,
20]. In the conventional batch setting, a finite amount of sta-
tionary data is provided and the goal is to build a model that
fits the data as well as possible. When working with data
streams, we should expect an infinite amount of data, where
observations come in one by one and are being processed in
that order. Furthermore, the nature of the data can change
over time, known as concept drift. Classifiers should be able
to detect when a learned model becomes obsolete and up-

date it accordingly. All of these differences are not covered
by the original work on Bagging [6].

In [20] some observations were reported that suggest that
Bagging stable classifiers in the data stream setting actually
does improve accuracy, even though gains are small. In this
paper, we study the effect of bagging stable classifiers in the
data stream setting. Our contribution is empirical evidence
that suggests that bagging stable classifiers does improve
predictive performance on data streams. Although the per-
formance gains that can be obtained are small, this result
can be seen as a form of meta-knowledge. It adds to the
knowledge of how classifiers behave and what classifiers to
use on what data. All results are made publicly available in
OpenML [19, 22].

2. Related Work

The requirements for processing streams of data are:
process one example at a time (and inspect it only once), use
a limited amount of time and memory, and be ready to pre-
dict at any point in the stream [3, 17]. These requirements
inhibit the use of most batch data mining algorithms. How-
ever, some algorithms can trivially be used or adapted to be
used in a data stream setting, for example, NaiveBayes [15],
k Nearest Neighbour (k-NN) [1, 25], and Stochastic Gradi-
ent Descent [5]. Also, many algorithms have been created
specifically to operate on data streams. Most notably, the
Hoeffding Tree [9] is a tree based algorithm that splits the
data based on information gain, but uses only a small sam-
ple of the data determined by the Hoeffding bound. The
Hoeffding bound gives an upper bound on the difference
between the mean of a variable estimated after a number
of observations and the true mean, with a certain probabil-
ity [13].

Ensembles of classifiers are among the best performing
learning algorithms in the traditional batch setting. Mul-
tiple models are produced that all vote for the label of a
certain instance. The final prediction is made according to
a predefined voting schema, e.g., the class with the most
votes wins. In [12] it is proven that the error rate of an en-
semble in the limit converges to the Bayes error rate if two
conditions are met: first, the individual models must do bet-
ter than random guessing, and second, the individual mod-

1



els must be diverse, meaning that their errors should not be
correlated. For example, Bagging [6] exploits the instability
of classifiers by training them on different bootstrap repli-
cates: resamplings (with replacement) of the training set.
Effectively, the training sets for various classifiers differ by
the weights of their training examples. Two variants of Bag-
ging have been designed specifically for the data stream set-
ting. Online Bagging [16] draws the weight of each exam-
ple from a Poisson(1) distribution, which converges to the
behavior of the classical Bagging algorithm if the number of
examples is large. Leveraging Bagging draws the weights
of each example from a Poisson(λ) distribution, where λ is
a parameter under the user’s control (default value 6). Fur-
thermore, the ensemble is equipped with the ADWIN drift
detection method [2], making sure that obsolete ensemble
members are replaced with new ones. Although Leveraged
Bagging differs from classical Bagging techniques, it seems
to work very well in practise [4, 20].

3. Experimental Setup

We will compare the predictive accuracy of stable clas-
sifiers with their accuracy when used in a bagged ensemble.
We selected Naive Bayes and k-NN, as both are known to be
stable classifiers [21], and have implementations available
in the MOA framework [3]. k-NN seems to behave more
stable with a higher value for k. We set k = 10, since this
seems to be fairly stable. As for the Bagging techniques,
we include both Online Bagging and Leveraging Bagging.
Online Bagging is the most objective Bagging technique.
Leveraging Bagging also includes a change detector, hence
performance gains obtained by Leveraged Bagging schemas
can be due to the change detector. The differences in accu-
racy are tested for significance using a Paired T-Test and the
Wilcoxon Signed-Ranks Test, both explained in [8]. Note
that when comparing multiple classifiers with each other,
ideally a test suited for multiple classifiers should be used,
e.g., the Nemenyi test. However, in this case we are only
interested in the impact of bagging on the performance of
these classifiers.

We use all data streams that are available in
OpenML [22]. These cover both real world data streams
and synthetically generated data streams, as is common in
data stream literature [4, 17, 20]. We discuss a few of them
in more detail.

SEA Concepts The SEA Concepts Generator generates
three numeric attributes from a given distribution, of which
only the first two are relevant. The class that needs to be
predicted is whether these values exceed a certain thresh-
old. Several SEA Concept generated data streams based on
different data distributions can be joined together in order
to simulate concept drift.

STAGGER The STAGGER Concepts Generatorgener-
ates descriptions of geometrical objects. Each instance de-
scribes the size, shape and color of such object. A STAG-
GER concept is a binary classification rule distinguishing
between the two classes, e.g., all blue rectangles belong to
the positive class.

Rotating Hyperplanes The Rotating Hyperplane Gen-
erator [14] generates a high-dimensional hyperplane. In-
stances represent a point in this high-dimensional space.
The task is to predict whether such a point is within the hy-
perplane. Concept drift can be introduced by rotating and
moving the hyperplane.

LED The LED Generator [7] generates instances based
on a LED display. Attributes represent the various LED
lights, and the task is to predict which digit is represented.
In order to add noise, attributes can display the wrong value
with a certain probability. Furthermore, additional (irrele-
vant) attributes can be added.

Random RBF The Random RBF Generator generates a
number of centroids. Each has a random position in Eu-
clidean space, standard deviation, weight and class label.
Each example is defined by its coordinates in Euclidean
Space and a class label referring to a centroid close by. Cen-
troids move at a certain speed, generating gradual concept
drift.

Bayesian Network The Bayesian Network Genera-
tor [20] takes a batch data set as input, build a Bayesian
Network over it, and generates instances based on the prob-
ability tables. As the Bayesian Network does not change
over time, it is unlikely that a native form of concept drift
occurs in the data stream. The parameter set is the data set
that was taken as input.

Composed Data Streams Common batch datasets can be
appended to each other, forming one combined dataset cov-
ering all observations and attributes, containing small peri-
ods or abrupt concept drift. This is commonly done with
the Covertype, Pokerhand and Electricity dataset [4, 17].
We applied a similar merge to the Airlines, CodeRNA and
Adult dataset, forming “AirlinesCodernaAdult”. The origi-
nal datasets are normalized before this operation is applied.

IMDB.drama The IMDB dataset contains 120,919
movie plots. Each movie is represented by a bag of words of
the globally 1,000 most occurring words. Originally, it is a
multi-label dataset, with binary attributes whether it falls in
a given genre. We predict whether it is in the drama genre,
which is the most frequently occurring [17].

2



-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

Agraw
al1

BN
G
(ionosphere)

codrnaN
orm

BN
G
(labor)

AirlinesC
odrnaAdult

airlines

BN
G
(hepatitis)

BN
G
(segm

ent)

BN
G
(cm

c)

BN
G
(credit-a)

BN
G
(vote)

BN
G
(trains)

BN
G
(w

aveform
-5000)

R
andom

R
BF(50;0.001)

BN
G
(m

ushroom
)

BN
G
(soybean)

Stagger3

Stagger2

Stagger1

covertype

R
andom

R
BF(0;0)

R
andom

R
BF(10;0.0001)

BN
G
(anneal)

BN
G
(spam

base)

R
andom

R
BF(10;0.001)

BN
G
(page-blocks)

BN
G
(satim

age)

BN
G
(vow

el)

R
andom

R
BF(50;0.0001)

BN
G
(eucalyptus)

BN
G
(solar-flare)

IM
D
B.dram

a

BN
G
(zoo)

SEA(50)

BN
G
(derm

atology)

BN
G
(tic-tac-toe)

BN
G
(SPEC

T)

SEA(50000)

BN
G
(w

ine)

BN
G
(heart-statlog)

BN
G
(heart-c)

LED
(50000)

BN
G
(bridges_version1)

BN
G
(pendigits)

BN
G
(lym

ph)

BN
G
(credit-g)

BN
G
(JapaneseVow

els)

adult

BN
G
(optdigits)

H
yperplane(10;0.001)

H
yperplane(10;0.0001)

BN
G
(vehicle)

electricity

BN
G
(kr-vs-kp)

BN
G
(colic.O

R
IG

)

BN
G
(letter)

BN
G
(sonar)

20_new
sgroups.drift

vehicleN
orm

BN
G
(m

feat-fourier)

C
ovPokElec

pokerhand

A
c
c
u
ra

c
y
 D

if
fe

re
n
c
e

diff(Lev Bagging kNN,kNN)

(a) Leveraged Bagging k-NN Vs. k-NN

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

BN
G
(letter)

BN
G
(vow

el)

BN
G
(bridges_version1)

BN
G
(eucalyptus)

BN
G
(colic.O

R
IG

)

BN
G
(m

feat-fourier)

R
andom

R
BF(10;0.001)

Agraw
al1

BN
G
(page-blocks)

BN
G
(credit-g)

adult

BN
G
(optdigits)

BN
G
(solar-flare)

BN
G
(heart-statlog)

BN
G
(credit-a)

BN
G
(sonar)

BN
G
(hepatitis)

BN
G
(spam

base)

BN
G
(heart-c)

BN
G
(w

ine)

Stagger1

Stagger2

BN
G
(JapaneseVow

els)

BN
G
(derm

atology)

Stagger3

BN
G
(ionosphere)

BN
G
(trains)

BN
G
(labor)

BN
G
(w

aveform
-5000)

BN
G
(m

ushroom
)

BN
G
(soybean)

BN
G
(lym

ph)

BN
G
(zoo)

BN
G
(satim

age)

BN
G
(SPEC

T)

BN
G
(pendigits)

BN
G
(vote)

BN
G
(kr-vs-kp)

BN
G
(cm

c)

BN
G
(anneal)

vehicleN
orm

BN
G
(vehicle)

codrnaN
orm

BN
G
(segm

ent)

R
andom

R
BF(0;0)

BN
G
(tic-tac-toe)

R
andom

R
BF(10;0.0001)

IM
D
B.dram

a

H
yperplane(10;0.0001)

airlines

SEA(50)

SEA(50000)

AirlinesC
odrnaAdult

electricity

pokerhand

H
yperplane(10;0.001)

LED
(50000)

covertype

R
andom

R
BF(50;0.001)

R
andom

R
BF(50;0.0001)

20_new
sgroups.drift

C
ovPokElec

A
c
c
u
ra

c
y
 D

if
fe

re
n
c
e

diff(Lev Bagging NB,NaiveBayes)

(b) Leveraged Bagging Naive Bayes Vs. Naive Bayes

Figure 1. Performance differences between Leveraging Bagging ensemble and single classifiers.

20 Newsgroups The original 20 Newsgroup dataset con-
tains 19, 300 newsgroup messages, each represented as a
bag of words of the 1, 000 most occurring words. Each
instance is part of at least one newsgroup. This data set
is commonly converted into 20 binary classification prob-
lems, with the task to determine whether an instance be-
longs to a given newsgroup. We append these data sets to
each other, resulting in one large binary-class dataset con-
taining 386,000 records with 19 shifts in concept [17].

4. Results

Figure 1 and Figure 2 show the result of the experiments.
The x-axis shows the dataset, the y-axis shows the differ-
ence in performance between the bagging schema and the
single classifier. Note that the single classifier performed
better on datasets where the difference is below zero, and
vice versa for datasets where the difference is above zero.

Datasets are ordered by this difference. For full reference,
Table 3 contains all results.

Figure 1(a) shows a similar trend as seen in the figure
presented in [20]. There are few data streams on which k-
NN performs best, but many data streams on which Lever-
aging Bagging k-NN performs best. A similar trend can be
seen in the other figures.

One notable observation is the difference in scale be-
tween on one hand Figure 1(b) describing the effect of using
Naive Bayes in a Leveraging Bagging schema and the other
figures. In most cases, the effect of a Bagging schema can
attribute to performance gains of few percentages. How-
ever in the case of Leveraged Bagging Naive Bayes, the
performance gain can lead up to 50% (CovPokElec), but
also other data sets show eminent improvements.

Among the 15 data streams on which Leveraged Bag-
ging improves upon Naive Bayes the most, many presum-
ably contain concept drift (see Section 3). Compared to

3



-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

R
andom

R
BF(50;0.001)

electricity

C
ovPokElec

covertype

pokerhand

20_new
sgroups.drift

R
andom

R
BF(10;0.001)

BN
G
(ionosphere)

BN
G
(tic-tac-toe)

BN
G
(labor)

BN
G
(vote)

Stagger1

Stagger3

Stagger2

BN
G
(page-blocks)

BN
G
(m

ushroom
)

Agraw
al1

BN
G
(anneal)

BN
G
(hepatitis)

BN
G
(credit-a)

codrnaN
orm

IM
D
B.dram

a

BN
G
(satim

age)

R
andom

R
BF(50;0.0001)

BN
G
(zoo)

BN
G
(segm

ent)

R
andom

R
BF(10;0.0001)

BN
G
(spam

base)

R
andom

R
BF(0;0)

AirlinesC
odrnaAdult

BN
G
(trains)

BN
G
(solar-flare)

BN
G
(w

ine)

BN
G
(derm

atology)

airlines

BN
G
(SPEC

T)

SEA(50000)

SEA(50)

BN
G
(pendigits)

BN
G
(heart-c)

BN
G
(heart-statlog)

BN
G
(soybean)

adult

BN
G
(lym

ph)

BN
G
(credit-g)

BN
G
(eucalyptus)

BN
G
(optdigits)

BN
G
(bridges_version1)

BN
G
(cm

c)

BN
G
(w

aveform
-5000)

BN
G
(colic.O

R
IG

)

BN
G
(kr-vs-kp)

BN
G
(vehicle)

vehicleN
orm

BN
G
(JapaneseVow

els)

BN
G
(sonar)

H
yperplane(10;0.001)

H
yperplane(10;0.0001)

BN
G
(m

feat-fourier)

BN
G
(letter)

BN
G
(vow

el)

LED
(50000)

A
c
c
u
ra

c
y
 D

if
fe

re
n
c
e

diff(Online Bagging kNN,kNN)

(a) Online Bagging k-NN Vs. k-NN

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

20_new
sgroups.drift

Agraw
al1

BN
G
(page-blocks)

R
andom

R
BF(10;0.0001)

R
andom

R
BF(10;0.001)

BN
G
(solar-flare)

R
andom

R
BF(50;0.0001)

R
andom

R
BF(50;0.001)

BN
G
(eucalyptus)

BN
G
(m

feat-fourier)

BN
G
(segm

ent)

LED
(50000)

BN
G
(JapaneseVow

els)

BN
G
(vehicle)

BN
G
(heart-statlog)

BN
G
(optdigits)

H
yperplane(10;0.0001)

BN
G
(credit-a)

BN
G
(soybean)

BN
G
(m

ushroom
)

BN
G
(hepatitis)

BN
G
(bridges_version1)

BN
G
(ionosphere)

BN
G
(w

ine)

BN
G
(labor)

BN
G
(letter)

BN
G
(sonar)

BN
G
(trains)

BN
G
(colic.O

R
IG

)

Stagger2

Stagger1

Stagger3

BN
G
(heart-c)

adult

SEA(50)

BN
G
(spam

base)

BN
G
(derm

atology)

airlines

pokerhand

SEA(50000)

BN
G
(w

aveform
-5000)

BN
G
(pendigits)

AirlinesC
odrnaAdult

BN
G
(SPEC

T)

BN
G
(lym

ph)

BN
G
(zoo)

BN
G
(satim

age)

BN
G
(vote)

BN
G
(credit-g)

H
yperplane(10;0.001)

R
andom

R
BF(0;0)

BN
G
(anneal)

BN
G
(kr-vs-kp)

vehicleN
orm

BN
G
(vow

el)

covertype

codrnaN
orm

BN
G
(cm

c)

C
ovPokElec

electricity

IM
D
B.dram

a

BN
G
(tic-tac-toe)

A
c
c
u
ra

c
y
 D

if
fe

re
n
c
e

diff(Online Bagging NB,NaiveBayes)

(b) Online Bagging Naive Bayes Vs. Naive Bayes

Figure 2. Performance differences between Online Bagging ensemble and single classifiers.

k-NN, its performance is quite poor on these data streams
(see Table 3). Apparently, k-NN’s natural protection against
concept drift (it removes old instances as new ones come in)
makes it perform quite well. When using Naive Bayes in a
Leveraging Bagging schema, the change detector ensures
that Naive Bayes also obtains this performance increase.

Figure 2(b) shows what we would expect to see when ap-
plying Bagging to a stable classifier. The differences in ac-
curacy are small and the performance gains are equally di-
vided between the single classifier and the bagging schema.

Table 1 shows which of the ensemble approaches were
significantly better than the single classifiers according to
the Wilcoxon Signed-Ranks Test [8, 23]. For example, we
can see from this that Leveraging Bagging Naive Bayes is
significantly better than using Naive Bayes as single classi-
fier. Similarly, both Leveraging Bagging k-NN and Online
Bagging k-NN are significantly better than just using k-NN.

In contrast to this, the T-Test found neither of the differ-

Table 1. Wilcoxon Signed-Ranks Test results, 95% confidence.
Classifier Online Bag. Lev. Bag.
Naive Bayes no yes
k-NN yes yes

Table 2. T-Test results, 95% confidence.
Classifier Online Bag. Lev. Bag.
Naive Bayes no no
k-NN no no

ences between classifiers statistically significant. This can
be because the Wilcoxon Signed-Ranks Test bases its con-
clusion on the signs of a classifier; it only considers whether
one schema was better, equal or worse on a given data
stream. The T-Test bases its conclusion on actual scores.
The fact that the Wilcoxon test found statistical evidence

4



that bagging actually improves the performance of stable
classifiers in the data stream setting, but the T-Test not, leads
to the belief that improvements can be obtained, but these
are very limited.

5. Conclusions
We have performed a case study to establish empirically

whether bagging stable classifiers yield performance gains
in the data stream setting. Earlier work suggested that this
could very well be the case [20]. However, these sugges-
tions where based on the performance of a Leveraging Bag-
ging schema, and could also be due to the change detec-
tor. We have compared the performance of two classifiers
that are known to be stable using two bagging schemas. We
find that, indeed, performance gains obtained by Leveraging
Bagging schemas seem to be consistent, however they can
plausibly be attributed to the accompanying change detec-
tor. The results obtained by the Online Bagging approach,
which doesn’t include a change detector, seem more am-
biguous. Although its effect on Naive Bayes seems negligi-
ble, the difference of using Online Bagging with k-NN was
found significantly better by the Wilcoxon Signed Ranks
Test than just using k-NN. More research is required to give
a decisive answer to the original question.

Acknowledgments

This work is supported by grant 600.065.120.12N150 from
the Dutch Fund for Scientific Research (NWO).

References
[1] J. Beringer and E. Hüllermeier. Efficient instance-based

learning on data streams. Intelligent Data Analysis,
11(6):627–650, 2007.

[2] A. Bifet and R. Gavalda. Learning from Time-Changing
Data with Adaptive Windowing. In SDM, volume 7, pages
139–148. SIAM, 2007.

[3] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA:
Massive Online Analysis. Journal of Machine Learning Re-
search, 11:1601–1604, 2010.

[4] A. Bifet, G. Holmes, and B. Pfahringer. Leveraging Bag-
ging for Evolving Data Streams. In Machine Learning and
Knowledge Discovery in Databases, volume 6321 of Lecture
Notes in Computer Science, pages 135–150. Springer, 2010.

[5] L. Bottou. Stochastic Learning. In Advanced lectures on
machine learning, pages 146–168. Springer, 2004.

[6] L. Breiman. Bagging Predictors. Machine learning,
24(2):123–140, 1996.

[7] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and regression trees. Wadsworth, Belmont,
California, 1984.

[8] J. Demšar. Statistical Comparisons of Classifiers over Multi-
ple Data Sets. Journal of Machine Learning Research, 7:1–
30, 2006.

[9] P. Domingos and G. Hulten. Mining High-Speed Data
Streams. In Proceedings of the sixth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining,
pages 71–80, 2000.

[10] J. Gama and P. Brazdil. Cascade Generalization. Machine
Learning, 41(3):315–343, 2000.

[11] J. Gama, R. Sebastião, and P. P. Rodrigues. Issues in Evalu-
ation of Stream Learning Algorithms. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 329–338. ACM, 2009.

[12] L. Hansen and P. Salamon. Neural Network Ensembles. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on, 12(10):993–1001, 1990.

[13] W. Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American statistical asso-
ciation, 58(301):13–30, 1963.

[14] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. In Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 97–106, 2001.

[15] J. Z. Kolter and M. Maloof. Dynamic weighted majority:
A new ensemble method for tracking concept drift. In Data
Mining, 2003. ICDM 2003. Third IEEE International Con-
ference on, pages 123–130. IEEE, 2003.

[16] N. C. Oza. Online Bagging and Boosting. In Systems,
man and cybernetics, 2005 IEEE international conference
on, volume 3, pages 2340–2345. IEEE, 2005.

[17] J. Read, A. Bifet, B. Pfahringer, and G. Holmes. Batch-
Incremental versus Instance-Incremental Learning in Dy-
namic and Evolving Data. In Advances in Intelligent Data
Analysis XI, pages 313–323. Springer, 2012.

[18] R. E. Schapire. The Strength of Weak Learnability. Machine
learning, 5(2):197–227, 1990.

[19] J. N. van Rijn, B. Bischl, L. Torgo, B. Gao, V. Umaashankar,
S. Fischer, P. Winter, B. Wiswedel, M. R. Berthold, and
J. Vanschoren. OpenML: A Collaborative Science Plat-
form. In Machine Learning and Knowledge Discovery in
Databases, pages 645–649. Springer, 2013.

[20] J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren.
Algorithm Selection on Data Streams. In Discovery Science,
volume 8777 of Lecture Notes in Computer Science, pages
325–336. Springer, 2014.

[21] J. Vanschoren, H. Blockeel, B. Pfahringer, and G. Holmes.
Experiment databases. Machine Learning, 87(2):127–158,
2012.

[22] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo.
OpenML: networked science in machine learning. ACM
SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

[23] F. Wilcoxon. Individual comparisons by ranking methods.
Biometrics bulletin, pages 80–83, 1945.

[24] D. H. Wolpert. Stacked generalization. Neural networks,
5(2):241–259, 1992.

[25] P. Zhang, B. J. Gao, X. Zhu, and L. Guo. Enabling Fast
Lazy Learning for Data Streams. In Data Mining (ICDM),
2011 IEEE 11th International Conference on, pages 932–
941. IEEE, 2011.

5



Table 3. Accuracy per data stream, as obtained from OpenML [22].
Dataset k-NN Online Bag. k-NN Lev.Bag. k-NN NB Online Bag. NB Lev.Bag. NB
20 newsgroups.drift 0.987 0.981 0.989 0.702 0.698 0.983
adult 0.819 0.828 0.820 0.824 0.824 0.824
Agrawal(1) 0.642 0.643 0.639 0.885 0.884 0.885
airlines 0.672 0.678 0.671 0.646 0.646 0.665
AirlinesCodrnaAdult 0.775 0.780 0.775 0.659 0.659 0.707
BNG(anneal) 0.892 0.893 0.892 0.846 0.846 0.846
BNG(bridges version1) 0.692 0.704 0.692 0.743 0.743 0.706
BNG(cmc) 0.472 0.485 0.472 0.512 0.512 0.512
BNG(colic.ORIG) 0.715 0.729 0.717 0.814 0.814 0.795
BNG(credit-a) 0.860 0.862 0.860 0.831 0.831 0.831
BNG(credit-g) 0.729 0.738 0.729 0.766 0.766 0.766
BNG(dermatology) 0.964 0.969 0.964 0.986 0.986 0.986
BNG(eucalyptus) 0.483 0.495 0.483 0.514 0.514 0.489
BNG(heart-c) 0.848 0.856 0.849 0.868 0.868 0.868
BNG(heart-statlog) 0.845 0.852 0.845 0.867 0.867 0.867
BNG(hepatitis) 0.887 0.889 0.887 0.877 0.877 0.877
BNG(ionosphere) 0.859 0.856 0.857 0.795 0.795 0.795
BNG(JapaneseVowels) 0.768 0.790 0.769 0.761 0.761 0.761
BNG(kr-vs-kp) 0.859 0.877 0.861 0.851 0.851 0.851
BNG(labor) 0.922 0.921 0.922 0.905 0.905 0.905
BNG(letter) 0.353 0.394 0.355 0.439 0.439 0.326
BNG(lymph) 0.861 0.870 0.862 0.861 0.861 0.861
BNG(mfeat-fourier) 0.691 0.722 0.694 0.832 0.832 0.817
BNG(mushroom) 0.964 0.965 0.964 0.927 0.927 0.927
BNG(optdigits) 0.891 0.903 0.892 0.906 0.906 0.906
BNG(page-blocks) 0.901 0.902 0.901 0.790 0.789 0.790
BNG(pendigits) 0.787 0.795 0.788 0.767 0.767 0.767
BNG(satimage) 0.813 0.817 0.813 0.783 0.783 0.783
BNG(segment) 0.811 0.815 0.811 0.806 0.806 0.807
BNG(solar-flare) 0.746 0.751 0.746 0.768 0.767 0.768
BNG(sonar) 0.745 0.769 0.747 0.755 0.755 0.755
BNG(soybean) 0.822 0.830 0.822 0.902 0.902 0.902
BNG(spambase) 0.626 0.630 0.626 0.665 0.665 0.665
BNG(SPECT) 0.808 0.814 0.808 0.756 0.756 0.756
BNG(tic-tac-toe) 0.748 0.746 0.748 0.717 0.720 0.719
BNG(trains) 0.923 0.928 0.923 0.887 0.887 0.887
BNG(vehicle) 0.566 0.585 0.567 0.483 0.483 0.484
BNG(vote) 0.942 0.941 0.941 0.918 0.918 0.918
BNG(vowel) 0.357 0.397 0.357 0.370 0.370 0.293
BNG(waveform-5000) 0.830 0.844 0.830 0.846 0.846 0.846
BNG(wine) 0.917 0.923 0.918 0.920 0.920 0.920
BNG(zoo) 0.923 0.926 0.923 0.928 0.928 0.928
codrnaNorm 0.894 0.897 0.893 0.745 0.746 0.746
covertype 0.922 0.914 0.922 0.605 0.605 0.832
CovPokElec 0.784 0.776 0.789 0.242 0.243 0.770
electricity 0.784 0.774 0.785 0.734 0.735 0.789
Hyperplane(10;0.0001) 0.833 0.858 0.834 0.913 0.913 0.929
Hyperplane(10;0.001) 0.833 0.858 0.834 0.709 0.709 0.895
IMDB.drama 0.606 0.609 0.606 0.602 0.604 0.609
LED(50000) 0.642 0.683 0.642 0.540 0.540 0.739
pokerhand 0.693 0.686 0.701 0.596 0.596 0.731
RandomRBF(0;0) 0.890 0.895 0.890 0.512 0.512 0.513
RandomRBF(10;0.0001) 0.893 0.897 0.893 0.521 0.521 0.527
RandomRBF(10;0.001) 0.883 0.879 0.883 0.520 0.519 0.518
RandomRBF(50;0.0001) 0.894 0.897 0.894 0.310 0.310 0.568
RandomRBF(50;0.001) 0.840 0.793 0.840 0.291 0.291 0.531
SEA(50) 0.869 0.876 0.869 0.839 0.839 0.864
SEA(50000) 0.864 0.871 0.864 0.839 0.839 0.875
Stagger(1) 1.000 1.000 1.000 1.000 1.000 1.000
Stagger(2) 1.000 1.000 1.000 1.000 1.000 1.000
Stagger(3) 1.000 1.000 1.000 1.000 1.000 1.000
vehicleNorm 0.713 0.734 0.715 0.807 0.807 0.807

6


