The Complexity of Rummikub Problems

Jan N. van Rijn Frank W. Takes Jonathan K. Vis
LIACS, Leiden University

BNAIC 2015 — November 5, 2015

Rummikub game

- Start with 14 tiles
- Pool of remaining tiles
- Two types of sets of at least three tiles:
- Groups: same value, different suit
- Runs: same suit, consecutive values
- Game ends when a player gets rid of all his tiles

Groups and runs

Figure: Two valid groups and two valid runs.

Inspired by ...

Benelux Algorithm Programming Contest

 Various Rummikub assignments

- 2006 Main contest
- 50 teams
- 19 submissions
- 3 correct solutions
- 2015 Preliminaries
- The "easy" problem

Rummikub puzzle

Tileset parameters

- Numbers n (default: 13)
- Suits/colors k (default: 4)
- Duplicates m (default: 2)

Set size constants

- Minimal set size (3)

1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	11	12	13
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	13

Problem statement

- Rummikub puzzle

Given a subset of the Rummikub tile set of $n \times k \times m$ tiles with n values, k suits and m copies of each tile, form valid sets of runs and groups such that the score (sum of used tile values) is maximized.

Previous and related work

■ Hand-making games
■ ILP by den Hartog et al.

- Mostly used for NP-hard problems
- Complexity of Rummikub Puzzle undetermined
- Can we do something better?

Algorithm

- Backtracking algorithm
- From low tile values to high tile values
- For value $v=1$ to $v=n$
- Partition tiles with value v in runs and groups

1	2	3	4	5	6	7	8	9	10	11	12	13
$\mathbf{1}$	2	3	4	$\mathbf{5}$	6	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	12	13
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	11	12	13

Algorithm

First forming groups and then forming runs

- Colors (k) and duplicates (m)
- $m=1$: 6 options
- $m=2$ 2: 27 options

- Exponential increase
- Memory size

Towards a polynomial algorithm

- Number of groups for a given number of suits k and set size parameter s :

$$
G(k, 1)=1+\sum_{i=s}^{k}\binom{k}{i}
$$

- Adding the number of duplicates m :

$$
G(k, m) \leq G(k, 1)^{m}
$$

■ Not polynomial ...

Towards a polynomial algorithm

- Number of groups for a given number of suits k and set size parameter s :

$$
G(k, 1)=1+\sum_{i=s}^{k}\binom{k}{i}
$$

- Adding the number of duplicates m :

$$
G(k, m) \leq G(k, 1)^{m}
$$

■ Not polynomial ...

- First forming runs and then forming groups (focus of the remainder of this talk)

Algorithm

Forming runs

- Decide for each tile which run to continue
- Try both and save the one with highest score

State space

- Only runs of length $0,1,2$ and 3 or longer have to be distinguished
- For $m=2$, the number of different configurations of runs for a particular suit is $10:\{0,0\},\{0,1\},\{0,2\},\{0,3\},\{1,1\},\{1,2\}$, $\{1,3\},\{2,2\},\{2,3\}$, and $\{3,3\}$.
- For any m, we use the multinomial coefficient:

$$
f(m, s)=\binom{s+1}{m}_{m}
$$

- With $s=3$, this is equal to the tetrahedral numbers:

$$
f(m)=\binom{4}{m}_{m}=\frac{(m+1) \cdot(m+2) \cdot(m+3)}{6}
$$

- State space is at most $n \times k \times f(m)$ (polynomial in n, k, and m).

Algorithm

1: input: value, runs $[k \times f(m)]$
output: maximum score
if value $>n$ then return 0
end if
6: if score[value, runs] $>-\infty$ then
7: return score[value, runs]
8: end if
9: for runs', runscores \in MAKERUNS(runs) do
10: groupscores \leftarrow TotalGroupSize(hand \backslash runs') \cdot value
11: \quad result \leftarrow groupscores + runscores + MAXSCORE $($ value +1 , runs')
12: \quad score[value, runs] $\leftarrow \max ($ result, score[value, runs])
13: end for
14: return score[value, runs]

Complexity

- Traditional Rummikub puzzle with fixed m and k : solvable in $O(n)$ time (polynomial in n).
- Rummikub state space is at most of size $O\left(n \cdot k \cdot m^{4}\right)$ (polynomial in all input parameters n, m and k).
- Rummikub puzzle is solvable in $O\left(n \cdot m^{4}\right)$ (polynomial with input parameters n and m).
- Our algorithm for solving Rummikub puzzle runs in $O\left(n \cdot\left(m^{4}\right)^{k}\right)$ time (not polynomial in all input parameters n, m and k).

From the puzzle to the Rummikub game

- Table constraint
- Some tiles must be in the construction
- Jokers
- Additional factor in memory
- More options to make groups

■ Multi-player aspect unaddressed

Counting winning hands

- Aspects in human play
- Number of winning hands
- Decide when to get rid of tiles

Counting winning hands

Game finishes in one move

- Number of deals:

$$
h(n, m, k, t)=\binom{n \cdot k}{t}_{m}
$$

- Where t is the number of tiles in hand
- For $m=2$: Trinomial coefficient
- Real game $(t=14): 37,418,772,170,780$
- How many of these games are winning?

Counting winning hands

Example:

Counting winning hands

- Roughly 10,000,000 hands are winning
- 0.0000273\%

Counting winning hands

- Roughly 10,000,000 hands are winning
- 0.0000273\%
- Hand of 15 tiles:

■ Chances increase to 0.0000509%

Counting winning hands

- Roughly 10,000,000 hands are winning
- 0.0000273\%
- Hand of 15 tiles:

■ Chances increase to 0.0000509%

- Hand of 16 tiles: 0.0000302%

■ Hand of 17 tiles: 0.0000137\%

- Hand of 18 tiles: 0.0000198\%
- Period of 3

Counting winning hands

Small instance of the game:

Conclusion

- Solving the standard Rummikub puzzle is easier than sorting an array.
- We proposed an algorithm for the Rummikub puzzle that is polynomial in the numbers n and duplicates m.
- Generalizing over the number of suits k may make the problem harder.
- Complexity of the generalized Rummikub puzzle with parameters n, m and k remains an open problem.
- Future work: multi-player game

Thank you for your attention!

