

The Complexity of Rummikub Problems

Jan N. van Rijn Frank W. Takes Jonathan K. Vis

LIACS, Leiden University

BNAIC 2015 — November 5, 2015

Rummikub game

- Start with 14 tiles
- Pool of remaining tiles
- Two types of sets of at least three tiles:
 - Groups: same value, different suit
 - Runs: same suit, consecutive values
- Game ends when a player gets rid of all his tiles

Groups and runs

Figure : Two valid groups and two valid runs.

The Complexity of Rummikub Problems — BNAIC 2015 — November 5, 2015

Inspired by ...

Leiden BAPC 23:15

Benelux Algorithm Programming Contest Various Rummikub assignments

- 2006 Main contest
 - 50 teams
 - 19 submissions
 - 3 correct solutions
- 2015 Preliminaries
 - The "easy" problem

Rummikub puzzle

Tileset parameters

- Numbers n (default: 13)
- Suits/colors k (default: 4)
- Duplicates *m* (default: 2)

Set size constants

Minimal set size (3)

1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1)	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8		10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13

Problem statement

Rummikub puzzle

Given a subset of the Rummikub tile set of $n \times k \times m$ tiles with n values, k suits and m copies of each tile, form valid sets of runs and groups such that the score (sum of used tile values) is maximized.

Previous and related work

- Hand-making games
- ILP by den Hartog et al.
 - Mostly used for NP-hard problems
 - Complexity of Rummikub Puzzle undetermined
- Can we do something better?

Algorithm

- Backtracking algorithm
- From low tile values to high tile values
- For value v = 1 to v = n
 - Partition tiles with value v in runs and groups

1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1)	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7			10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13

Algorithm

First forming groups and then forming runs

- Colors (k) and duplicates (m)
- m = 1: 6 options
- *m* = 2: 27 options
- Exponential increase
- Memory size

Towards a polynomial algorithm

Number of groups for a given number of suits k and set size parameter s:

$$G(k,1) = 1 + \sum_{i=s}^{k} \binom{k}{i}$$

Adding the number of duplicates *m*:

$$G(k,m) \leq G(k,1)^m$$

Not polynomial ...

Towards a polynomial algorithm

Number of groups for a given number of suits k and set size parameter s:

$$G(k,1) = 1 + \sum_{i=s}^{k} \binom{k}{i}$$

Adding the number of duplicates *m*:

$$G(k,m) \leq G(k,1)^m$$

- Not polynomial . . .
- First forming runs and then forming groups (focus of the remainder of this talk)

Algorithm

Forming runs

- Decide for each tile which run to continue
- Try both and save the one with highest score

State space

- Only runs of length 0, 1, 2 and 3 or longer have to be distinguished
- For m = 2, the number of different configurations of runs for a particular suit is 10: {0,0}, {0,1}, {0,2}, {0,3}, {1,1}, {1,2}, {1,3}, {2,2}, {2,3}, and {3,3}.
- For any *m*, we use the multinomial coefficient:

$$f(m,s) = \binom{s+1}{m}_m$$

• With s = 3, this is equal to the tetrahedral numbers:

$$f(m) = \binom{4}{m}_m = \frac{(m+1)\cdot(m+2)\cdot(m+3)}{6}$$

State space is at most $n \times k \times f(m)$ (polynomial in *n*, *k*, and *m*).

Algorithm

- 1: input: value, $runs[k \times f(m)]$
- 2: output: maximum score
- 3: if value > n then
- 4: return 0
- 5: **end if**
- 6: if score[value, runs] $> -\infty$ then
- 7: return score[value, runs]
- 8: end if
- 9: for runs', runscores \in MAKERUNS(runs) do
- 10: groupscores \leftarrow TOTALGROUPSIZE(hand \ runs') \cdot value
- 11: $result \leftarrow groupscores + runscores + MAXSCORE(value + 1, runs')$
- 12: $score[value, runs] \leftarrow max(result, score[value, runs])$
- 13: end for
- 14: return score[value, runs]

(the state) (given the input state)

Complexity

- Traditional Rummikub puzzle with fixed m and k: solvable in O(n) time (polynomial in n).
- Rummikub state space is at most of size $O(n \cdot k \cdot m^4)$ (polynomial in all input parameters n, m and k).
- Rummikub puzzle is solvable in $O(n \cdot m^4)$ (polynomial with input parameters *n* and *m*).
- Our algorithm for solving Rummikub puzzle runs in $O(n \cdot (m^4)^k)$ time (not polynomial in all input parameters n, m and k).

From the puzzle to the Rummikub game 🥮

Table constraint

- Some tiles must be in the construction
- Jokers
 - Additional factor in memory
 - More options to make groups
- Multi-player aspect unaddressed

Universiteit

Leiden

- Aspects in human play
- Number of winning hands
- Decide when to get rid of tiles

Game finishes in one move

Number of deals:

$$h(n,m,k,t) = \binom{n \cdot k}{t}_m$$

- Where t is the number of tiles in hand
- For *m* = 2: Trinomial coefficient
- Real game (t = 14): 37,418,772,170,780
- How many of these games are winning?

Example:

- Roughly 10,000,000 hands are winning
- 0.0000273%

- Roughly 10,000,000 hands are winning
- 0.0000273%
- Hand of 15 tiles:
- Chances increase to 0.0000509%

- Roughly 10,000,000 hands are winning
- 0.0000273%
- Hand of 15 tiles:
- Chances increase to 0.0000509%
- Hand of 16 tiles: 0.0000302%
- Hand of 17 tiles: 0.0000137%
- Hand of 18 tiles: 0.0000198%
- Period of 3

Small instance of the game:

Conclusion

- Solving the standard Rummikub puzzle is easier than sorting an array.
- We proposed an algorithm for the Rummikub puzzle that is polynomial in the numbers *n* and duplicates *m*.
- Generalizing over the number of suits *k* may make the problem harder.
- Complexity of the generalized Rummikub puzzle with parameters n, m and k remains an open problem.
- Future work: multi-player game

Thank you for your attention!

Questions?

The Complexity of Rummikub Problems — BNAIC 2015 — November 5, 2015