
Empirical Results 

• Almost perfect for low-dimensional 

benchmarks and still acceptable for higher 

dimensions 

• Reduce benchmark overhead to <1 sec 

Answer: Surrogates work well, 

especially based on Random 

Forests 
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What is Bayesian Optimization? 

…in 30 seconds  

• Benchmarking hyperparameter optimization 

methods is costly, as it requires many 

evaluations of the used benchmark problem. 

• We propose cheap, but realistic surrogate 

benchmarks based on predictive performance 

models. 

• Our benchmarks are publicly available and 

allow extensive white-box tests and fast 

evaluation of optimization algorithms. 

Experiments 

• Collect data by conducting 

optimization runs and 

random search 

• Evaluate quality of 

regression models 

• Compare optimizer 

performance on true vs. 

surrogate benchmark 

Regression Model 

Evaluate different regression models with respect to 

time needed to predict/train and prediction 

quality and select promising models: 

• Tree-based model 

• Gaussian Processes 

• Support Vector Regression 

• K-Nearest Neighbour 

• Linear Regression 

Surrogate Benchmarks 

• Train regression model  

• Replace call to true 

benchmark function with 

surrogate prediction 

• Evaluate surrogate 

benchmark and compare to 

optimizer performance on 

real benchmark 

Problems with existing benchmark functions  
Realistic benchmark 

problems: 

+ Complex & interesting 

- Expensive to evaluate 

- Complicated  to set up (libraries, 

dependencies, special hardware, etc. ) 
 

Examples: Deep Neural Networks, 

onlineLDA, AutoWEKA 

Synthetic test functions: 
 

+ Easy to set up  

+ Cheap to evaluate 

- Unrealistic shape &         

too smooth 
 

Examples: BBOB, Table-Lookups, 

Branin 

Figures: Best performance found by different 

optimizers over time on the logistic regression 

benchmark. We show median and quartile across 10 

runs on the real benchmark (top) and surrogate 

benchmarks based on  random forests (left, top) and 

Gaussian Processes  (left, bottom). 

Benefit 

Our surrogate benchmarks … 

• provide a 60 to 3600 x 

speedup 

• require negligible computational 

resources 

• allow unit tests 

• help to analyze how optimizers 

work on complex benchmark 

 

… and are publicly available: 

 

 

 

 

 

 

 

For more information visit: 
www.automl.org/benchmarks.html 
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10 × 10 × 3 × 1 

Example usage: Comparing three optimizers on a 

single benchmark. Running each optimizer 10 times 

with a budget of 100 configuration evaluations: 

3 × 10 × 100 × time(𝑓 𝜆 ) 

 

↑  True benchmark: 

3000 × 1min 

 ← Surrogate benchmarks: 

3000 × 1sec 

 

https://github.com/KEggensperger/SurrogateBenchmarks 
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Surrogate Benchmarks 

• Train regression model  

• Replace call to true benchmark 

function with surrogate prediction 

• Evaluate surrogate benchmark 

and compare to optimizer 

performance on real benchmark 

…in 15 sec  
Hyperparameter optimization is essential and there 

exists a wide range of automating this process. 

However, empirically comparing these different 

hyperparameter optimization methods can be very 

costly due to many evaluations of the considered 

benchmark problem.  

To speed up benchmarking we propose a new option, 

surrogate benchmark, that feature the complexity of 

expensive benchmark functions , but require 

negligible computational resources. 

 

Figure: Performance of different 

regression models predicting 

configurations for optimizer SMAC 

Our Approach 

1. Collect <configuration, performance> pairs from 
different benchmarks 

2. Train Regression model 

3. Replace call to benchmark function with model 
prediction 

Question: How well does this work? 

Setup 

8 regression models 
 

• Tree-based models 

• Gaussian Processes 

• Support Vector Regression  

• K-Nearest Neighbour 

• Linear Regression 

 

 

 

9 benchmark 

functions, e.g. 

• Logistic 

Regression 

• (Deep) Neural 

Networks 

• onlineLDA 

 

Data 

Collect data from by conducting 

optimization runs and random 

search on  actual benchmark 

functions: 

• Logistic Regression 

• (Deep) Neural Network 

• onlineLDA 

 

 

Figures: Best performance found by 

different optimizers over time. We show 

median and quartile across 10 runs on 

the real benchmark (left) and surrogate 

benchmarks based on  random forests 

(middle) and Gaussian Processes  

(right). 
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Table: Properties of the benchmarks for which we 

provide surrogate benchmarks Table: Empirical comparison of three optimizers on various real and surrogate-based benchmarks 

SMAC: F. Hutter, H. Hoos, and K. Leyton-Brown, Sequential model-based optimization for general algorithm configuration, 2011  

TPE: J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, Algorithms for hyper-parameter optimization, 2011 

Spearmint: J. Snoek, H. Larochelle, and R. Adams, Practical Bayesian optimization of machine learning algorithms, 2012 
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  Towards an empirical foundation for assessing Bayesian optimization of hyperparameters, 2013 


