
Efficient Benchmarking of Hyperparameter Optimizers via Surrogates

Katharina Eggensperger and Frank Hutter University of Freiburg {eggenspk,fh}@cs.uni-freiburg.de

University of British Columbia

Configuration Space Λ

Benchmarking hyperparameter optimization methods is costly, as it requires many evaluations of the used benchmark problem.

...in 30 seconds

- We propose cheap, but realistic **surrogate** benchmarks based on predictive performance models.
- Our benchmarks are publicly available and allow extensive white-box tests and fast evaluation of optimization algorithms.

Our Approach

- 1. Collect < configuration, performance > pairs from different benchmarks
- Train Regression model
- Replace call to benchmark function with model 3. prediction

Question: How well does this work?

Problems with existing benchmark functions

Realistic benchmark problems:

- + Complex & interesting
- Expensive to evaluate
- Complicated to set up (libraries, dependencies, special hardware, etc.)

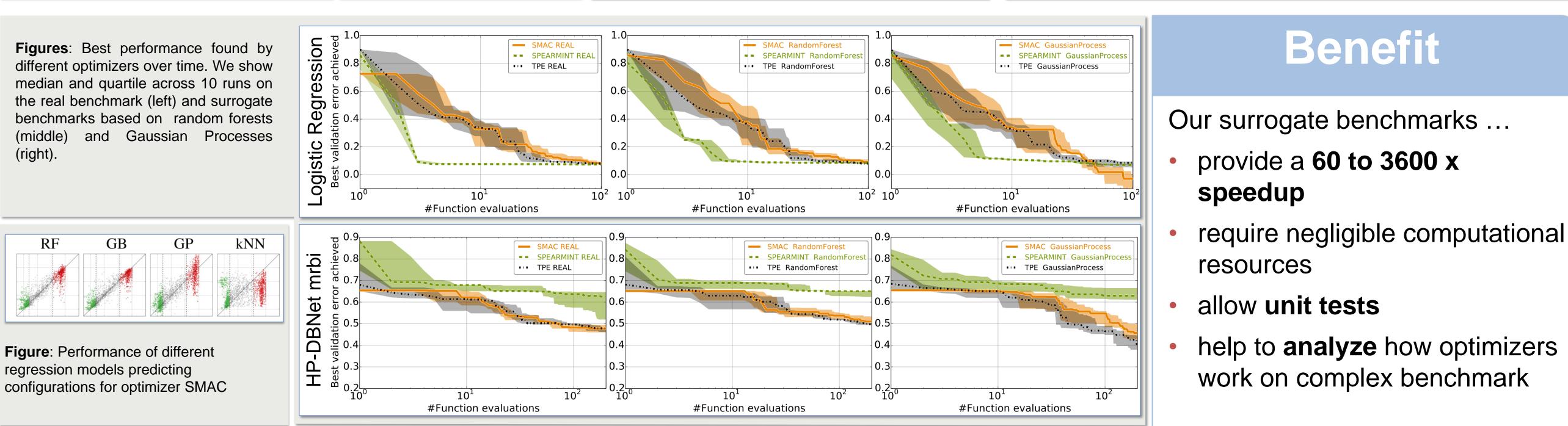
Examples: Deep Neural Networks, onlineLDA, AutoWEKA

Synthetic test functions:

- + Easy to set up
- + Cheap to evaluate
- Unrealistic shape & too smooth

Examples: BBOB, Table-Lookups, Branin

Setup


Experiments

Empirical Results

8 regression models

- **Tree-based models**
- **Gaussian Processes**
- Support Vector Regression
- K-Nearest Neighbour
- Linear Regression •
- 9 benchmark functions, e.g.
- Logistic Regression
- (Deep) Neural Networks
- onlineLDA
- Collect data by conducting optimization runs and random search
- Evaluate **quality** of regression models
- Compare optimizer performance on true vs. surrogate benchmark
- Almost perfect for low-dimensional benchmarks and still acceptable for higher dimensions
- Reduce benchmark overhead to <1 sec

Answer: Surrogates work well, especially based on Random Forests

	hyperparameter		One-hot dim.	#evals. per run	#data		Results obtained on real benchmark				Results obtained on RF-based surrogate			Results obtained on GP-based surrogate				
	$\#\lambda$ cond. cat. / cont.						SMAC	Spearmint	TPE		SMAC	Spearmint	TPE	SMAC	Spearmint	TPE		
onlineLDA	3	_	-/3	4	50	1 999	Experiment	#evals	Valid. loss	Valid. loss	Valid. loss		Valid. loss	Valid. loss	Valid. loss	Valid. loss	Valid. loss	Valid. loss
			15	-	50	1777	Log.Reg.	100	0.08 ± 0.00	0.07 ±0.00	0.08 ± 0.00		0.10 ± 0.02	0.08 ±0.00	0.08 ± 0.01	<u>-0.06</u> ±0.09	0.07 ± 0.00	0.08 ± 0.04
Log. Reg.	4	-	-/4	5	100	4 000	onlineLDA	50	1266.4 ± 4.4	1264.3 ± 4.9	1263.7± 3.0		1268.2 ± 2.0	1265.6± 3.6	1266.1 ± 2.0	1273.0 ± 7.6	1263.4± 4.5	1268.5 ± 5.3
Log. Reg. 5CV				9	500	20 000			<u> </u>	· · · · · · · · · · · · · · · · · · ·		-	 					
HP-NNET convex			_ / _	25	200	8 000	HP-NNET convex		0.19 ± 0.01	0.20 ± 0.01	0.19 ±0.01		<u>0.21</u> ±0.01	0.21 ± 0.00	0.21 ± 0.01	0.14 ± 0.03	0.14 ± 0.05	0.12 ±0.05
HP-NNET convex 5CV	14	4	7/7	29	500	19 998	HP-NNET mrbi	200	0.49 ± 0.01	0.51 ± 0.03	<u>0.48</u> ±0.01		0.51 ± 0.03	0.54 ± 0.04	<u>0.49</u> ±0.01	<u>0.47</u> ±0.02	0.52 ± 0.07	0.47 ± 0.01
HP-NNET mrbi				25	200	8 000	HP-DBNET convex	200	0.15 ± 0.01	0.23 ± 0.10	0.15±0.01		<u>0.18</u>±0.00	0.20 ± 0.06	0.18 ± 0.00	<u>0.11</u> ±0.02	0.12 ± 0.05	0.16 ± 0.02
HP-NNET mrbi 5CV	14	4	7/7	23 29	200 500	20 000	HP-DBNET mrbi		0.47 ±0.02	0.59 ± 0.08	0.47 ± 0.02	_	0.52 ± 0.02	0.63 ± 0.05	<u>0.50</u> ±0.01	0.45 ± 0.06	0.62 ± 0.06	0.41 ±0.05
HP-DBNET convex	36	27	19/17	82	200	7 997 7 916	Log.Reg 5CV		<u>0.08</u> ±0.00	0.08 ± 0.00	0.09 ± 0.01		0.08 ± 0.00	0.08 ±0.00	0.09 ± 0.01	<u>-0.04</u> ±0.07	0.08 ± 0.00	0.07 ± 0.01
HP-DBNET mrbi	50						HP-NNET convex 5CV	500	<u>0.19</u>± 0.01	0.23 ± 0.05	0.21 ± 0.01		<u>0.22</u>±0.01	0.24 ± 0.04	0.22 ± 0.01	0.17 ± 0.01	<u>0.15</u> ±0.05	0.18 ± 0.02
							HP-NNET mrbi 5CV		0.48 ±0.01	0.55 ± 0.03	0.51 ± 0.02		<u>0.51</u> ±0.01	0.59 ± 0.06	0.51 ± 0.02	0.38 ±0.05	0.57 ± 0.06	0.49 ± 0.01

Table: Properties of the benchmarks for which we
 provide surrogate benchmarks

Table: Empirical comparison of three optimizers on various real and surrogate-based benchmarks

SMAC: F. Hutter, H. Hoos, and K. Leyton-Brown, Sequential model-based optimization for general algorithm configuration, 2011 TPE: J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, Algorithms for hyper-parameter optimization, 2011 Spearmint: J. Snoek, H. Larochelle, and R. Adams, Practical Bayesian optimization of machine learning algorithms, 2012

HPOlib: K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown,

Towards an empirical foundation for assessing Bayesian optimization of hyperparameters, 2013

... and are **publicly** available:

For more information visit: www.automl.org/benchmarks.html

Implementation publicly available:

https://github.com/KEggensperger/SurrogateBenchmarks