Matthias Feurer

feurerm@cs.uni-freiburg.de

Jost Tobias Springenberg

Albert-Ludwigs-Universitat Freiburg

... In 30 seconds

Hyperparameters of machine learning algorithms should be optimized
by automated methods, not by humans

We employ meta-learning to obtain promising configurations to
warmstart Bayesian Optimization

Bayesian Optimization is a powerful hyperparameter optimization tool

In contrast to human domain experts, Bayesian Optimization does not
use knowledge from previous runs on different datasets

springj@cs.uni-freiburg.de

Initializing Bayesian Hyperparameter
Optimization via Meta-Learning

Frank Hutter
fh@cs.uni-freiburg.de

- Meta-learning Initialized Sequential Model-based Bayesian
Optimization

* Mimics human domain experts: uses configurations which are known to
work well on similar datasets

- Similarity Is defined by a distance between datasets based on

metafeatures

SMBO with Meta-Learning

|

Find Datasets D;
similar to D,,cq

" TInitialize Search)

with AT,

ML Algorithm A

Configuration
Space A of A

Dataset D,,cq

m o mm emm e e e e e e e e e e e Emm e e e mm e mm o e e m— e e e o o e e m— — ey,

model on pairs of

Fit regression

h 4

()‘aAA(Dnew))

J

" Select promising
configuration

A€ A

— e e o e - e e e s s s o o s s s e e mms s Eme s s s

[Configuration A* j

A

Evaluate
A)\ (Dnew)

— e m— m— - m— — =

— — m— m— m— — e o e o e o e e e e e e e m—

Standard Bayesian Optimization (black) together with meta-learning
Initialization (red).

Dataset Similarity

Similarity of datasets is defined by a distance function between dataset
metafeatures. Some examples of metafeatures for the Iris dataset:

Metafeatures for the Iris dataset

training examples
classes

features

numerical features
categorical features
categorical features

150
3

4

4

0
No

We compared two distance functions:

L, norm:

dp(Dnews D) =) [ml*e = m]|
[

Spearman correlation coefficient between known model performances:

Caveats:

d.(D;,Dj) =1 — Co

([fD"(M), ---»fDiO\n)],>
Ir

[FPi(A), -, 27 ()]

« This only works for a fixed set of hyperparameters

- Cannot be computed for a new dataset D,,,,,

Solution: compute dC(Di,Dj) forall 1 <I,j< N and use regression to learn a
mapping from (m!,m’) to d.(D;, D;). We used a random forest for this mapping.

The iris pictures on the poster are from wikimedia commons and used under the following licenses:
Top left: Iris Versicolor is public domain. Bottom left: Iris setosa is licensed by Radomil under CC BY-SA 3.0 Right: Iris Virginica is licensed by C T Johansson under CC BY 3.0.

» Two experiments:

Setup

1. Tuned the hyperparameters of an SVM (see paper)

2. Combined algorithm selection and hyperparameter

optimization (CASH) for scikit-learn: AutoSklearn

Component Hyperparameter #Values
Main Classifier 3
Main Preprocessing 2
SVM log,(C) 21
SVM log,(y) 19
LinearSVM log,(C) 21
LinearSVM Penalty 1
RF Max features 5
RF Min splits 10
RF Criterion 2
PCA Variance to keep 2

Validated our approach on 57 datasets from
OpenML.org

Leave one dataset out: Ran MI-SMBO on one dataset and
assumed knowledge of performance on all other 56

Precomputed a dense grid of 1623 hyperparameter
configurations

Ran each optimization algorithm 10 times on each
dataset

Used 46 metafeatures from the literature
Tried 40 different instantiations of MI-SMAC

Experiments

L
o]

Results

3.6

[
(=3}
T

w
.

Average rank
n r w w
[#)] [# 2] [a] o]

pa
.

22

=l SVAC
@@ TPE

@ random 1] MI-SMAC(20.,d_p,All) |

MI-SMAC(20,d_c,All)

Average rank

w
o

26

10

20 30
#Function evaluations

Average rank of different optimization algorithms. Since we
ran each algorithm ten times on each dataset, we drew a
bootstrap sample of 1000 joint runs and computed the
average across these runs. We then further averaged
these ranks across all 57 datasets.

34+

w
()
T

281}

T —

B=l sVAC

MI-SMAC(10,d_c,All) [][] MI-SMAC(25,d_c,All)
@@ M-SMAC(5,d_c,All) MI-SMAC(20,d_c,All)

#Function evaluations

Average rank of MI-SMAC with different number of
initial configurations.

~ 60F o . .
| |

-%40- 0 O O ame
g 20}

5 10

2N

~ 0

;_I‘E F ’ | I I I

‘?-;10 O L O O ,#01-:-’0,{ A Q__:h C nel S GG A CEVNOR OO ORVEVIEIE O = ¢ o § 3§ 3x 2= @ M 3 OO WG -‘#0-4
o 20} ::-—-—--.‘“"'
Qo

L 3L i
5 40| =8 M-SMAC(20.d c,All)vs MI-SMAC(20,d pAll) A=a MI-SMAC(20,d_c,All) vs TPE
ESU- =9 MI-SMAC(20,d_c,All) vs SMAC &0 MI-SMAC(20,d_c,All) vs random
o 60 . .

O

10

20

30 40

#Function evaluations

Top: Percentage of datasets on which MI-SMAC performs statistically better than its competitors.
Bottom: As above, but percentage of losses.
This plot shows that MI-SMAC improves over vanilla SMAC on 36% of the datasets, while it is worse on only 8%. We
also observe that metalearning leads to a great performance boost in the beginning of SMBO.

50

UNI

FREIBURG

