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Hyperparameters of machine learning algorithms should be optimized
by automated methods, not by humans

We employ meta-learning to obtain promising configurations to
warmstart Bayesian Optimization

Bayesian Optimization is a powerful hyperparameter optimization tool

In contrast to human domain experts, Bayesian Optimization does not
use knowledge from previous runs on different datasets
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Initializing Bayesian Hyperparameter
Optimization via Meta-Learning
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- Meta-learning Initialized Sequential Model-based Bayesian
Optimization

*  Mimics human domain experts: uses configurations which are known to
work well on similar datasets

- Similarity Is defined by a distance between datasets based on

metafeatures

SMBO with Meta-Learning
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Standard Bayesian Optimization (black) together with meta-learning
Initialization (red).

Dataset Similarity

Similarity of datasets is defined by a distance function between dataset
metafeatures. Some examples of metafeatures for the Iris dataset:

Metafeatures for the Iris dataset

# training examples
# classes

# features

# numerical features
# categorical features
# categorical features
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We compared two distance functions:

L, norm:

dp(Dnews D) = ) [ml*e = m]|
[

Spearman correlation coefficient between known model performances:

Caveats:
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« This only works for a fixed set of hyperparameters

- Cannot be computed for a new dataset D,,,,,

Solution: compute dC(Di,Dj) forall 1 <I,j< N and use regression to learn a
mapping from (m!,m’) to d.(D;, D; ). We used a random forest for this mapping.

The iris pictures on the poster are from wikimedia commons and used under the following licenses:
Top left: Iris Versicolor is public domain. Bottom left: Iris setosa is licensed by Radomil under CC BY-SA 3.0 Right: Iris Virginica is licensed by C T Johansson under CC BY 3.0.

» Two experiments:

Setup

1. Tuned the hyperparameters of an SVM (see paper)

2. Combined algorithm selection and hyperparameter

optimization (CASH) for scikit-learn: AutoSklearn

Component Hyperparameter #Values
Main Classifier 3
Main Preprocessing 2
SVM log,(C) 21
SVM log,(y) 19
LinearSVM log,(C) 21
LinearSVM Penalty 1
RF Max features 5
RF Min splits 10
RF Criterion 2
PCA Variance to keep 2

Validated our approach on 57 datasets from
OpenML.org

Leave one dataset out: Ran MI-SMBO on one dataset and
assumed knowledge of performance on all other 56

Precomputed a dense grid of 1623 hyperparameter
configurations

Ran each optimization algorithm 10 times on each
dataset

Used 46 metafeatures from the literature
Tried 40 different instantiations of MI-SMAC

Experiments
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Average rank of different optimization algorithms. Since we
ran each algorithm ten times on each dataset, we drew a
bootstrap sample of 1000 joint runs and computed the
average across these runs. We then further averaged
these ranks across all 57 datasets.
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Average rank of MI-SMAC with different number of
initial configurations.
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Top: Percentage of datasets on which MI-SMAC performs statistically better than its competitors.
Bottom: As above, but percentage of losses.
This plot shows that MI-SMAC improves over vanilla SMAC on 36% of the datasets, while it is worse on only 8%. We
also observe that metalearning leads to a great performance boost in the beginning of SMBO.
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