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ABSTRACT
Many sciences have made significant breakthroughs by adopt-
ing online tools that help organize, structure and mine infor-
mation that is too detailed to be printed in journals. In this
paper, we introduce OpenML, a place for machine learning
researchers to share and organize data in fine detail, so that
they can work more effectively, be more visible, and collabo-
rate with others to tackle harder problems. We discuss how
OpenML relates to other examples of networked science and
what benefits it brings for machine learning research, indi-
vidual scientists, as well as students and practitioners.

1. INTRODUCTION
When Galileo Galilei discovered the rings of Saturn, he did
not write a scientific paper. Instead, he wrote his discovery
down, jumbled the letters into an anagram, and sent it to
his fellow astronomers. This was common practice among
respected scientists of the age, including Leonardo, Huygens
and Hooke.

The reason was not technological. The printing press was
well in use those days and the first scientific journals already
existed. Rather, there was little personal gain in letting your
rivals know what you were doing. The anagrams ensured
that the original discoverer alone could build on his ideas,
at least until someone else made the same discovery and the
solution to the anagram had to be published in order to
claim priority.

This behavior changed gradually in the late 17th century.
Members of the Royal Society realized that this secrecy was
holding them back, and that if they all agreed to publish
their findings openly, they would all do better [19]. Under
the motto “take nobody’s word for it”, they established that
scientists could only claim a discovery if they published it
first, if they detailed their experimental methods so that
results could be verified, and if they explicitly gave credit to
all prior work they built upon.

Moreover, wealthy patrons and governments increasingly
funded science as a profession, and required that findings be
published in journals, thus maximally benefiting the public,
as well as the public image of the patrons. This effectively
created an economy based on reputation [19; 28]. By pub-
lishing their findings, scientists were seen as trustworthy by
their peers and patrons, which in turn led to better collab-
oration, research funding, and scientific jobs. This new cul-
ture continues to this day and has created a body of shared

knowledge that is the basis for much of human progress.

Today, however, the ubiquity of the internet is allowing new,
more scalable forms of scientific collaboration. We can now
share detailed observations and methods (data and code) far
beyond what can be printed in journals, and interact in real
time with many people at once, all over the world.

As a result, many sciences have turned to online tools to
share, structure and analyse scientific data on a global scale.
Such networked science is dramatically speeding up discov-
ery because scientists are now capable to build directly on
each other’s observations and techniques, reuse them in un-
foreseen ways, mine all collected data for patterns, and scale
up collaborations to tackle much harder problems. Whereas
the journal system still serves as our collective long-term
memory, the internet increasingly serves as our collective
short-term working memory [29], collecting data and code
far too extensive and detailed to be comprehended by a sin-
gle person, but instead (re)used by many to drive much of
modern science.

Many challenges remain, however. In the spirit of the jour-
nal system, these online tools must also ensure that shared
data is trustworthy so that others can build on it, and that
it is in individual scientists’ best interest to share their data
and ideas.

In this paper, we discuss how other sciences have succeeded
in building successful networked science tools that led to
important discoveries, and build on these examples to in-
troduce OpenML, a collaboration platform through which
scientists can automatically share, organize and discuss ma-
chine learning experiments, data, and algorithms.

First, we explore how to design networked science tools in
Section 2. Next, we discuss why networked science would be
particularly useful in machine learning in Section 3, and de-
scribe OpenML in Section 4. In Section 5, we describe how
OpenML benefits individual scientists, students, and ma-
chine learning research as a whole, before discussing future
work in Section 6. Section 7 concludes.

2. NETWORKED SCIENCE
Networked science tools are changing the way we make dis-
coveries in several ways. They allow hundreds of scientists
to discuss complex ideas online, they structure information
from many scientists into a coherent whole, and allow any-
one to reuse all collected data in new and unexpected ways.
In this section we discuss how to design such online tools,
and how several sciences have used them to make important
breakthroughs.



2.1 Designing networked science
Nielsen [29] reviews many examples of networked science,
and explains their successes by the fact that, through the
interaction of many minds, there is a good chance that some-
one has just the right expertise to contribute at just the right
time:

Designed serendipity Because many scientists have com-
plementary expertise, any shared idea, question, ob-
servation, or tool may be noticed by someone who has
just the right (micro)expertise to spark new ideas, an-
swer questions, reinterpret observations, or reuse data
and tools in unexpected new ways. By scaling up col-
laborations, such ‘happy accidents’ become ever more
likely and frequent.

Dynamic division of labor Because each scientist is es-
pecially adept at certain research tasks, such as gener-
ating ideas, collecting data, mining data, or interpret-
ing results, any seemingly hard task may be routine
for someone with just the right skills, or the necessary
time or resources to do so. This dramatically speeds
up progress.

Designed serendipity and a dynamic division of labor occur
naturally when ideas, questions, data, or tools are broadcast
to a large group of people in a way that allows everyone in
the collaboration to discover what interests them, and react
to it easily and creatively. As such, for online collaborations
to scale, online tools must make it practical for anybody to
join and contribute any amount at any time. This can be
expressed in the following ‘design patterns’ [29]:

• Encourage small contributions, allowing scientists to
contribute in (quasi) real time. This allows many sci-
entists to contribute, increasing the cognitive diversity
and range of available expertise.

• Split up complex tasks into many small subtasks that
can be attacked (nearly) independently. This allows
many scientists to contribute individually and accord-
ing to their expertise.

• Construct a rich and structured information commons,
so that people can efficiently build on prior knowledge.
It should be easy to find previous work, and easy to
contribute new work to the existing body of knowledge.

• Human attention doesn’t scale infinitely. Scientists
only have a limited amount of attention to devote to
the collaboration, and should thus be able to focus on
their interests and filter out irrelevant contributions.

• Establish accepted methods for participants to interact
and resolve disputes. This can be an ‘honor code’ that
encourages respectable and respectful behavior, deters
academic dishonesty, and protects the contributions of
individual scientists.

Still, even if scientists have the right expertise or skill to
contribute at the right time, they typically also need the
right incentive to do so.

As discussed, scientists actually solved this problem cen-
turies ago by establishing a reputation system implemented
using the best medium for sharing information of the day,
the journal. Today, the internet and networked science tools
provide a much more powerful medium, but they also need
to make sure that sharing data, code and ideas online is in
scientists’ best interest.

The key to do this seems to lie in extending the reputation
system [29]. Online tools should allow everyone to see ex-
actly who contributed what, and link valuable contributions
to increased esteem amongst the users of the tools and the
scientific community at large. The traditional approach to
do this is to link useful online contributions to authorship
in ensuing papers, or to link the reuse of shared data to
citation of associated papers or DOI’s.1

Moreover, beyond bibliographic measures, online tools can
define new measures to demonstrate the scientific (and so-
cietal) impact of contributions. These are sometimes called
altmetrics [35] or article-level metrics2. An interesting ex-
ample is ArXiv3, an online archive of preprints (unpub-
lished manuscripts) with its own reference tracking system
(SPIRES). In physics, preprints that are referenced many
times have a high status among physicists. They are added
to resumes and used to evaluate candidates for scientific
jobs. This illustrates that what gets measured, gets re-
warded, and what gets rewarded, gets done [29; 30]. If
scholarly tools define useful new measures and track them
accurately, scientists will use them to assess their peers.

2.2 Massively collaborative science
Online tools can scale up scientific collaborations to any
number of participants. In mathematics, Fields medalist
Tim Gowers proposed4 to solve several problems that have
eluded mathematicians for decades by uniting many minds
in an online discussion. Each of these Polymath projects
state a specific, unsolved math problem, is hosted on a blog5

or wiki6, and invites anybody who has anything to say about
the problem to chip in by posting new ideas and partial
progress.

Designed serendipity plays an important role here. Each
idea, even if just a hunch, may spark daughter ideas with
those who happen to have just the right background. In-
deed, several polymaths “found themselves having thoughts
they would not have had without some chance remark of an-
other contributor”.7 There is also a clear dynamic division of
labor, with many mathematicians throwing out ideas, crit-
icizing them, synthesizing, coordinating, and reformulating
the problem to different subfields of mathematics.

Blogs and wikis are ideally suited as tools, because they are
designed to scale up conversations. They ensure that each
contribution is clearly visible, stored and indexed, so that
anybody can always see exactly what and how much you
contributed.8 Moreover, everyone can make quick, small
contributions by posting comments, all ideas are organized
into threads or pages, and new threads or pages can be
opened to focus on subproblems. In addition, anybody can
quickly scan or search the whole discussion for topics of in-
terest.

1Digital Object Identifiers can be cited in papers. See, for
instance, DataCite (http://www.datacite.org).
2http://article-level-metrics.plos.org/alm-info/
3http://arxiv.org
4http://gowers.wordpress.com/2009/01/27/is-massively-
collaborative-mathematics-possible
5http://polymathprojects.org
6http://michaelnielsen.org/polymath1
7http://gowers.wordpress.com/2009/03/10/polymath1-
and-open-collaborative-mathematics/
8Similarly, open source software development tools also al-
low anyone to see who contributed what to a project.



Protected by a set of ground rules, individual scientists also
receive rewards for sharing their ideas:

Authorship Each successful polymath project resulted in
several papers, linked to the original discussion. Via
a self-reporting process, participants put forward their
own names for authorship if they made important sci-
entific contributions, or to be mentioned in the ac-
knowledgements for smaller contributions.

Visibility Making many useful contributions may earn you
the respect of notable peers, which is valuable in future
collaborations or grant and job applications.

Productivity A scientist’s time and attention is limited. It
is profoundly enjoyable to contribute to many projects
where you have a special insight or advantage, while
the collaboration dynamically picks up other tasks.

Learning Online discussions are very engaging. Nascent
ideas are quickly developed, or discarded, often lead-
ing to new knowledge or insight into the thought pat-
terns of others.You are also encouraged to share an
idea before someone else gets the same idea.

2.3 Open data
Online tools also collect and organize massive amounts of
scientific data which can be mined for interesting patterns.
For instance, the Sloan Digital Sky Survey (SDSS) is a col-
laboration of astronomers operating a telescope that system-
atically maps the sky, producing a stream of photographs
and spectra that currently covers more than a quarter of
the sky and more than 930,000 galaxies.9 Although for a
limited time, the data is only available to members of the
collaboration, the SDSS decided to share it afterwards with
the entire worldwide community of astronomers through an
online interface [39].10 Since then, thousands of new and im-
portant discoveries have been made by analysing the data
in many new ways [7].

These discoveries are again driven by designed serendipity.
Whereas the Polymath projects broadcast a question hoping
that many minds may find a solution, the SDSS broadcasts
data in the belief that many minds will ask unanticipated
questions that lead to new discoveries. Indeed, because the
telescope collects more data than a single person can com-
prehend, it becomes more of a question of asking the right
questions than making a single ‘correct’ interpretation of
the data. Moreover, there is also a clear dynamic division
of labor: the astronomers who ask interesting questions, the
SDSS scientists who collect high quality observations, and
the astroinformaticians who mine the data all work together
doing what they know best.

Moreover, making the data publicly available is rewarding
for the SDSS scientists are well.

Citation Publishing data openly leads to more citation be-
cause other scientists can more easily build on them.
In this case, other astronomers will use it to answer
new questions, and credit the SDSS scientists. In fact,
each data release easily collects thousands of citations.

9http://skyserver.sdss3.org
10The data is also used in Microsoft’s WorldWide Tele-
scope (http://www.worldwidetelescope.org) and Google Sky
(http://www.google.com/sky).

Funding Sharing the data increases the value of the pro-
gram to the community as a whole, thus making it
easier to secure continued funding. Indeed, if the data
was not shared, reviewers may deem that the money is
better spent elsewhere [29]. In fact, journals and grant
agencies are increasingly expecting all data from pub-
licly funded science to be published after publication.

The evolution towards more open data is not at all limited to
astronomy. We are ‘mapping and mining’ just about every
complex phenomenon in nature, including the brain [21; 15],
the ocean [18], gene sequences, genetic variants in humans
[12], and gene functions [31]. In many of these projects, the
data is produced piece by piece by many different scientists,
and gathered in a central database which they all can access.

2.4 Citizen science
Online tools are also enhancing the relationship between sci-
ence and society. In citizen science [36], the public is actively
involved in scientific research. One example is Galaxy Zoo
[24], where citizen scientists are asked to classify the galax-
ies from the SDSS and other sources such as the Hubble
Space Telescope. Within a year, Galaxy Zoo received over
50 million classifications contributed by more than 150,000
people. These classifications led to many new discoveries,
and the public data releases are cited hundreds of times.

Once again, designed serendipity occurs naturally. Unex-
pected observations are reported and discussed on an online
forum, and have already resulted in the serendipitous dis-
covery of the previously unknown ‘green pea’ galaxies [9],
‘passive red spirals’ [26], and other objects such as ‘Hanny’s
Object’ [23], named after the volunteer who discovered it.
Moreover, in a dynamic division of labor, citizen scientists
take over tasks that are too time-consuming for professional
astronomers. In fact, the overall classifications proved more
accurate than the classifications made by a single astronomer,
and obtained much faster. More engaged volunteers also
participate in online discussions, or hunt for specific kinds
of objects.

Galaxy Zoo and similar tools are also designed for scala-
bility. The overall task is split up in many small, easy to
learn tasks, each volunteer classifies as many galaxies as she
wants, and classifications from different users are combined
and organized into a coherent whole.

Finally, there are many different reasons for citizen scien-
tists to dedicate their free time [36]. Many are excited to
contribute to scientific research. This can be out of a sense
of discovery, e.g., being the first to see a particular galaxy,
or because they believe in the goal of the project, such as
fighting cancer. Many others view it as a game, and find it
fun to classify many images. Some citizen science projects
explicitly include a gamification component [11], providing
leaderboards and immediate feedback to volunteers. Finally,
many volunteers simply enjoy learning more about a specific
subject, as well as meeting new people with similar interests.

Citizen science is being employed in many more scientific
endeavors11, including protein folding [11], planet hunting
[37], classifying plankton12, and fighting cancer13. Many of
them are collecting large amounts of valid scientific data,
and have yielded important discoveries.

11https://www.zooniverse.org/
12http://www.planktonportal.org/
13http://www.cellslider.net



3. MACHINE LEARNING
Machine learning is a field where a more networked approach
would be particularly valuable. Machine learning studies
typically involve large data sets, complex code, large-scale
evaluations and complex models, none of which can be ad-
equately represented in papers. Still, most work is only
published in papers, in highly summarized forms such as ta-
bles, graphs and pseudo-code. Oddly enough, while machine
learning has proven so crucial in analysing large amounts of
observations collected by other scientists, such as the SDSS
data discussed above, the outputs of machine learning re-
search are typically not collected and organized in any way
that allows others to reuse, reinterpret, or mine these results
to learn new things, e.g., which techniques are most useful
in a given application.

3.1 Reusability and reproducibility
This makes us duplicate a lot of effort, and ultimately slows
down the whole field of machine learning [43; 14]. Indeed,
without prior experiments to build on, each study has to
start from scratch and has to rerun many experiments. This
limits the depth of studies and the interpretability and gen-
eralizability of their results [1; 14]. It has been shown that
studies regularly contradict each other because they are bi-
ased toward different datasets [20], or because they don’t
take into account the effects of dataset size, parameter op-
timization and feature selection [33; 17]. This makes it very
hard, especially for other researchers, to correctly interpret
the results. Moreover, it is often not even possible to rerun
experiments because code and data are missing, or because
space restrictions imposed on publications make it practi-
cally infeasible to publish many details of the experiment
setup. This lack of reproducibility has been warned against
repeatedly [20; 38; 32], and has been highlighted as one of
the most important challenges in data mining research [16].

3.2 Prior work
Many machine learning researchers are well aware of these
issues, and have worked to alleviate them. To improve repro-
ducibility, there exist repositories to publicly share bench-
marking datasets, such as UCI [2], LDC14 and mldata15.
Moreover, software can be shared on the MLOSS website16.
There also exists an open source software track in the Jour-
nal for Machine Learning Research (JMLR) where short de-
scriptions of useful machine learning software can be sub-
mitted. Also, some major conferences have started checking
submissions for reproducibility [25], or issue open science
awards for submissions that are reproducible.17

Moreover, there also exist experiment repositories. First,
meta-learning projects such as StatLog [27] and MetaL [8],
and benchmarking services such as MLcomp18 run many
algorithms on many datasets on their servers. This makes
benchmarks comparable, and even allows the building of
meta-models, but it does require that code be rewritten to
run on their servers. Moreover, the results are not organized
to be easily queried and reused.

Second, data mining challenge platforms such as Kaggle [10]

14http://www.ldc.upenn.edu
15http://mldata.org
16http://mloss.org
17http://www.ecmlpkdd2013.org/open-science-award/
18http://www.mlcomp.org

and TunedIT [44] collect results obtained by different com-
petitors. While they do scale and offer monetary incentives,
they are adversarial rather than collaborative. For instance,
code is typically not shared during a competition.

Finally, we previously introduced the experiment database
for machine learning [6; 43], which organizes results from
different users and makes them queryable through an online
interface. Unfortunately, it doesn’t allow collaborations to
scale easily. It requires researchers to transcribe their exper-
iments into XML, and only covers classification experiments.

While all these tools are very valuable in their own right,
and we will build on them in this paper, they fail many of
the requirements for scalable collaboration discussed above.
It can be quite hard for scientists to contribute, there is
often no online discussion, and they are heavily focused on
benchmarking, not on sharing other results such as models.

4. OPENML
OpenML19 is a place where machine learning researchers
can automatically share data in fine detail and organize it
to work more effectively and collaborate on a global scale.

It allows anyone to challenge the community with new data
to analyze, and everyone able to mine that data to share
their code and results (e.g., models, predictions, and evalu-
ations).20 OpenML makes sure that each (sub)task is clearly
defined, and that all shared results are stored and organized
online for easy access, reuse and discussion.

Moreover, OpenML links to data available anywhere online,
and is being integrated [41] in popular data mining platforms
such as Weka [13], R [5; 40], MOA [4], RapidMiner [42]
and KNIME [3]. This means that anyone can easily import
the data into these tools, pick any algorithm or workflow
to run, and automatically share all obtained results. The
OpenML website provides easy access to all collected data
and code, compares all results obtained on the same data or
algorithms, builds data visualizations, and supports online
discussions.

Finally, it is an open source project, inviting scientists to
extend it in ways most useful to them.

4.1 How OpenML works
OpenML offers various services to share and find data sets,
to download or create scientific tasks, to share and find im-
plementations (called flows), and to share and organize re-
sults. These services are available through the OpenML
website, as well as through a REST API for integration with
software tools.21

4.1.1 Data sets
Anyone can challenge the community with new data sets
to analyze. Figure 1 shows how this is done through the
website. To be able to analyse the data, OpenML accepts
a limited number of formats. For instance, currently it re-
quires the ARFF22 format for tabular data, although more
formats will be added over time.

19OpenML is available on http://www.openml.org
20In this sense, OpenML is similar to data mining challenge
platforms, except that it allows users to work collaboratively,
building on each other’s work.

21In this paper, we only discuss the web interfaces. API
details can be found on http://www.openml.org/api

22http://www.cs.waikato.ac.nz/ml/weka/arff.html



Figure 1: Uploading data to OpenML.

The data can either be uploaded or referenced by a URL.
This URL may be a landing page with further information
or terms of use, or it may be an API call to large reposi-
tories of scientific data such as the SDSS.23 OpenML will
automatically version each newly added data set. Option-
ally, a user-defined version name can be added for reference.
Next, authors can state how the data should be attributed,
and which (creative commons) licence they wish to attach
to it. Authors can also add a reference for citation, and a
link to a paper. Finally, extra information can be added,
such as the (default) target attribute(s) in labeled data, or
the row-id attribute for data where instances are named.

For known data formats, OpenML will then compute an
array of data characteristics. For tabular data, OpenML
currently computes more than 70 characteristics24, includ-
ing simple measures (e.g., the number of features, instances,
classes, missing values), statistical and information-theoretic
measures (e.g., skewness, mutual information) and land-
markers [34]. Some characteristics are specific to subtypes of
data, such as data streams. These characteristics are useful
to link the performance of algorithms to data characteristics,
or for meta-learning [43] and algorithm selection [22].

OpenML indexes all data sets and allows them to be searched
through a standard keyword search and search filters. Each
data set has its own page with all known information.25

This includes the general description, attribution informa-
tion, and data characteristics, but also statistics of the data
distribution and, for each task defined on this data (see be-
low), all results obtained for that task. As will be discussed
below, this allows you to quickly see which algorithms (and
parameters) are best suited for analysing the data, and who
achieved these results. It also includes a discussion section
where the data set and results can be discussed.

23In some cases, such as Twitter feeds, data may be dynamic,
which means that results won’t be repeatable. However, in
such tasks, repeatability is not expected.

24A full list can be found on http://www.openml.org/a
25See, for instance, http://www.openml.org/d/1

Figure 2: An OpenML task (of task type classification).

4.1.2 Task types
Obviously, a data set alone does not constitute a scientific
challenge. We must first agree on what types of results are
expected to be shared. This is expressed in task types: they
define what types of inputs are given, which types of output
are expected to be returned, and what scientific protocols
should be used. For instance, classification tasks should in-
clude well-defined cross-validation procedures, labeled input
data, and require predictions as outputs.26

OpenML currently covers classification, regression, learning
curve analysis and data stream classification. Task types
are created by machine learning (sub)communities through
the website, and express what they think should ideally be
shared. In some cases, additional support may be required,
such as running server-side evaluations. Such support will
be provided upon request.

26Complete description: http://www.openml.org/t/type/1



Figure 3: Uploading flows to OpenML.

4.1.3 Tasks
If scientists want to perform, for instance, classification on a
given data set, they can create a new machine learning task
online. Tasks are instantiations of task types with specific
inputs (e.g., data sets). Tasks are created once, and then
downloaded and solved by anyone.

Such a task is shown in Figure 2. In this case, it is a clas-
sification task defined on data set ‘anneal’ version 1. Next
to the data set, the task includes the target attribute, the
evaluation procedure (here: 10-fold cross-validation) and a
file with the data splits for cross-validation. The latter en-
sures that results from different researchers can be objec-
tively compared. For researchers doing an (internal) hyper-
parameter optimization, it also states the evaluation mea-
sure to optimize for. The required outputs for this task
are the predictions for all test instances, and optionally, the
models built and evaluations calculated by the user. How-
ever, OpenML will also compute a large range of evaluation
measures on the server to ensure objective comparison.27

Finally, each task has its own numeric id, a machine-readable
XML description, as well as its own web page including all
runs uploaded for that task, see Figure 2.

4.1.4 Flows
Flows are implementations of single algorithms, workflows,
or scripts designed to solve a given task. They are uploaded
to OpenML as shown in Figure 3. Again, one can upload the
actual code, or reference it by URL. The latter is especially
useful if the code is hosted on an open source platform such
as GitHub or CRAN. Flows can be updated as often as
needed. OpenML will again version each uploaded flow,
while users can provide their own version name for reference.
Ideally, what is uploaded is software that takes a task id as

27The evaluation measures and the exact code can be found
on http://www.openml.org/a.

Figure 4: An OpenML run.

input and then produces the required outputs. This can be a
wrapper around a more general implementation. If not, the
description should include instructions detailing how users
can run an OpenML task (e.g., to verify submitted results).

Attribution information is similar to that provided for data
sets, although with a different set of licences. Finally, it is
encouraged to add descriptions for the (hyper)parameters of
the flow, and a range of recommended values.

It is also possible to annotate flows with characteristics, such
as whether it can handle missing attributes, (non)numeric
features and (non)numeric targets. As with data sets, each
flow has its own page which combines all known information
and all results obtained by running the flow on OpenML
tasks, as well as a discussion section.



Figure 5: Portion of the page for data set ‘anneal’. It com-
pares, for a classification task, the results obtained by differ-
ent flows on that data set, for multiple parameter settings.

4.1.5 Runs
Runs are applications of flows on a specific task. They are
submitted by uploading the required outputs (e.g. predic-
tions) together with the task id, the flow id, and any pa-
rameter settings. There is also a flag that indicates whether
these parameter settings are default values, part of a pa-
rameter sweep, or optimized internally. Each run also has
its own page with all details and results, shown partially
in Figure 4. In this case, it is a classification run. Note
that OpenML stores the distribution of evaluations per fold
(shown here as standard deviations), and details such as the
complete confusion matrix and per-class results. We plan to
soon add graphical measures such as ROC curves. Runtimes
and details on hardware are provided by the user.

Moreover, because each run is linked to a specific task, flow,
and author, OpenML will aggregate and visualize results
accordingly.

For instance, Figure 5 shows a comparison of results ob-
tained on a specific classification task. Each row represents
a flow and each dot represents the performance obtained in
a specific run (for different parameter settings). Hovering
over a dot reveals more information, while clicking on it will
pull up all information about the run. Users can also switch
between different performance metrics.

Conversely, Figure 6 shows a comparison of results obtained
by a specific flow on all tasks it has run on. Each row rep-
resents a task (and data set), and each dot the obtained
performance. Additionally, it is possible to color-code the
results with parameter values. Here, it shows the number
of trees used in a random forest classifier from small (blue,
left) to large (red, right). Again, clicking each dot brings up
all run details. As such, it is easy to find out when, how,
and by whom a certain result was obtained.

OpenML also provides several other task-specific visualiza-
tions such as learning curves. Moreover, it provides an SQL
endpoint so that users can (re)organize results as they wish
by writing their own queries. All results can be downloaded
from the website for further study, and all visualizations can
be exported. The database can also be queried programmat-
ically through the API.

Figure 6: Portion of the page for flow ‘weka.RandomForest’.
It compares, for classification tasks on different data sets,
the results obtained by this flow for different parameter set-
tings. Here, colored by the number of trees in the forest.

4.2 OpenML plugins
As stated above, OpenML features an API so that scientific
software tools can connect to it to download data or up-
load new results. However, existing tools can also connect
to OpenML by simply adding a few lines of code, and with-
out any knowledge of the API. Indeed, OpenML provides
language-specific libraries that take care of all server com-
munication. For instance, software written in Java would
use the OpenML Java interface to download tasks and up-
load results. More precisely, a method getTask(id) will re-
turn a Java object containing all data to run the task, and
a method submitRun(outputs) will take the obtained re-
sults and submit them to OpenML. We also aim to provide
command-line tools for connecting to OpenML.

On top of that, OpenML is being integrated in several popu-
lar machine learning environments, so that it can be used out
of the box. These plugins can be downloaded from the web-
site. Figure 7 shows how OpenML is integrated in WEKA’s
Experimenter [13]. After selecting OpenML as the result
destination and providing your login credentials, you can
add a number of tasks through a dialogue (or simply pro-
vide a list of task id’s), and add a number of WEKA algo-
rithms to run. Behind the scenes, the plugin will download
all data, run every algorithm on every task (if possible) and
automatically upload the results to OpenML. The results
will also be locally available in WEKA for further analysis.

For data stream mining, one can use the MOA [4] plugin
as shown in Figure 8. Similarly to WEKA, users can select
OpenML tasks, and then run any algorithm on them while
uploading all runs to OpenML in the background.

Finally, researchers that use R can use the openml package
as shown in Figure 9. One first downloads a task given a
task id, then runs the task by providing a learner, and finally
uploads the run by providing the task, learner, results and
user authentication. While we do plan to integrate OpenML
into other environments as well, at the time of writing these
are still in development.



Figure 7: WEKA integration of OpenML.

Figure 8: MOA integration of OpenML.

Figure 9: R integration of OpenML.

5. NETWORKED MACHINE LEARNING
Through OpenML, we can initiate a fully networked ap-
proach to machine learning. In this section we compare
OpenML to the networked science tools described before,
and describe how it helps scientists make new discoveries,
how it allows collaborations to scale, and how it benefits
individual scientists, students and a more general audience.

5.1 OpenML and networked science
By sharing and organizing machine learning data sets, code
and experimental results at scale, we can stimulate designed
serendipity and a dynamic division of labor.

5.1.1 Designed serendipity
Similar to the SDSS, by organizing and ‘broadcasting’ all
data, code and experiments, many minds may reuse them
in novel, unforeseen ways.

First, new discoveries could by made simply by querying
all combined experiments to answer interesting questions.
These question may have been nearly impossible to answer
before, but are easily answered if a lot of data is already
available. In addition, with readily available data, it be-
comes a routine part of research to answer questions such as
“What is the effect of data set size on runtime?” or “How
important is it to tune hyperparameter P?” With OpenML,
we can answer these questions in minutes, instead of having
to spend days setting up and running new experiments [43].
This means that more such questions will be asked, possibly
leading to more discoveries.

Second, we can mine all collected results and data charac-
teristics for patterns in algorithm performance. Such meta-
learning studies could yield insight into which techniques are
most suited for certain applications, or to better understand
and improve machine learning techniques [43].

Third, anyone could run into unexpected results by brows-
ing through all collected data. An example of this is shown
in Figure 10, which is a continuation of the results shown in
Figure 6: while the performance of a random forest classi-
fier should increase (or stagnate) when more trees are added
to the forest (red dots), it sometimes happens that it de-
creases. As in Galaxy Zoo, such serendipitous discoveries
can be discussed online, combining many minds to explore
several possible explanations.

Finally, beyond experiments, data sets and flows can also
be reused in novel ways. For instance, an existing technique
may prove extremely useful for analysing a new data set,
bringing about new applications.

5.1.2 Dynamic division of labor
OpenML also enables a dynamic division of labor: large-
scale studies could be undertaken as a team, or hard ques-
tions could be tackled collaboratively, with many scientists
contributing according to their specific skills, time or re-
sources.

Figure 10: An unexpected result: the performance of a ran-
dom forest descreases as more trees are added to the forest.



Scientists, possibly from other domains, can focus the atten-
tion of the community on an important problem. This can
be done by adding new data sets (and tasks) to OpenML
and collaborating with the machine learning community to
analyse it. Some may suggest techniques that would oth-
erwise not be considered, while others are especially skilled
at designing custom-built workflows, running large-scale ex-
periments, or improving code. Conversely, the scientists
that contributed the data can provide direct feedback on
the practical utility of suggested approaches, interpret the
generated models, and otherwise guide the collaboration to
the desired outcome. Such collaborations can scale to any
number of scientists. OpenML also helps to coordinate the
effort, e.g., by organizing all results per task (see Figure
6), so that everybody can track each other’s progress, and
discuss ideas and results online.

Another case is that of benchmark studies. While it is im-
portant that a new algorithm be compared against the state
of the art, it is often time-consuming to hunt down their
implementations and to figure out how to run them. On
OpenML, each researcher that invents a new algorithm can
focus on experimenting with that algorithm alone, knowing
best how to apply it on different tasks. Next, she can in-
stantly reuse the results from all other shared algorithms,
ran by their original authors. As such, a very complete
overview of the state of the art emerges spontaneously.

Finally, students and citizen scientists can also contribute to
research simply by using the OpenML plugins to experiment
while they learn about machine learning techniques.

5.2 Scaling up collaboration
As discussed in section 2.1, these benefits emerge faster if
online collaborations are allowed to scale.

First of all, it is easy to make small contributions to OpenML.
When using any of the OpenML plugins, you can easily
import a task, run any algorithm or workflow, and auto-
matically export the results to OpenML. You can just per-
form a single run, a few, or thousands without much ef-
fort. Moreover, scientists who know of new interesting data
sets or algorithms can easily add them through the website,
and watch how others start experimenting with them. It
is even easier to browse through the discussions running on
OpenML, and leave a comment or suggestion. Alternatively,
one can browse the results shared on the website, and draw
attention to unexpected results that are worth investigating.

Even contributing a single run, data set or comment can be
valuable to the community, and may stimulate more work in
that direction. More committed scientists can contribute in
many other ways, such as creating new tasks and task types,
adding new data characterizations or evaluation measures,
and integrating OpenML in new tools and environments.

Moreover, OpenML tasks naturally split up complex stud-
ies into tasks which can be run independently by many
scientsists according to their skills, as discussed in Section
5.1. Tasks also split the machine learning community into
smaller subcommunities (e.g., clustering) which focus on a
single task type, or subgroups focusing on a single task (e.g.
galaxy clustering). Designed serendipity and dynamic divi-
sion of labor also occur in small but active subcommunities.
They are not held back if other communities are less active.

Next, OpenML constructs a rich and structured information
commons, building a database of all data sets, flows, tasks,
runs, results, scientists, and discussions. OpenML also ag-

gregates results in different ways, e.g., visualizing results
per task and flow (see Figures 5 and 6). Keyword searches
and filters make it easy to find resources, and more complex
questions can be answered through the SQL interface, or by
downloading data and analysing it using other tools.

As a result, all information is also open but easily filtered.
The website organizes all results per task, data set and flow,
so that researchers can focus on what interests them most,
without being distracted by the activity of other scientists.
In future work, we also aim to filter results by their authors.

Finally, OpenML establishes, and in some cases enforces,
a scientific approach to sharing results. Indeed, OpenML
tasks set a certain standard of scientific quality and trust-
worthiness by defining how experiments must be run and
what must be reported. Because the code is shared when
uploading runs, it is possible for others to verify results, and
the server-side evaluations makes results objectively compa-
rable. OpenML also makes clear who contributed what (and
when), and how it is licenced. Every shared algorithm, flow,
run or comment can be attributed to a specific person, and
this information is always shown when someone views them
online.

5.3 Benefits for scientists
How do you, as an individual scientist, benefit from sharing
your experiments, data and code on OpenML?

5.3.1 More time
First, you gain more time. OpenML assists in most of the
routine and tedious duties in running experiments: finding
data sets, finding implementations, setting up experiments,
and organizing all experiments for further analysis. More-
over, when running benchmark experiments on OpenML,
you can directly compare them with the state of the art,
reusing other, comparable results. In addition, you can an-
swer routine research question in minutes by tapping into
all shared data, instead of losing days setting up new exper-
iments. Finally, having your experiments stored and orga-
nized online means they are available any place, any time,
through any browser (including mobile devices), so you can
access them when it is convenient.

5.3.2 More knowledge
Second, you gain more knowledge. Linking your results to
everybody else’s has a large potential for new discoveries.
This was discussed in Section 5.1: you can answer previously
impossible questions, mine all combined data, and run into
unexpected results. It also makes it easy to check whether
certain observations in your data are echoed in the observa-
tions of others. Next, with OpenML you can interact with
other minds on a global scale. Not only can you start discus-
sions to answer your own questions, you can also help others,
and in doing so, learn about other interesting studies, and
forge new collaborations. Finally, by reusing prior results,
you can launch larger, more generalizable studies that are
practically impossible to run on your own.

5.3.3 More reputation
Third, OpenML helps you build reputation by making your
work more visible to a wider group of people, by bringing
you closer to new collaborators, and by making sure that
others know how to credit you if they build on any of your
work.



Citation OpenML makes sure that all your contributions,
every data set, flow and run, are clearly attributed to
you. If others wish to reuse your results, OpenML will
tell them how you wish to be credited (e.g., through
citation). Moreover, OpenML makes your shared re-
sources easy to find, thus making frequent citations
more likely.

Altmetrics OpenML will also automatically track how of-
ten your data or code is reused in experiments (runs),
and how often your experiments are reused in studies
(see below). These are clear measures of the impact of
your work.

Productivity OpenML allows you to contribute efficiently
to many studies. This increases your scientific produc-
tivity, which translates to more publications.

Visibility You can increase your visibility by contributing
to many studies, thus earning the respect of new peers.
Also, if you design flows that outperform many others,
OpenML will show these at the top of each data set
page, as shown in Figure 5. You can also post links to
your online results in blogs or tweets.

Funding Open data sharing is increasingly becoming a re-
quirement in grant proposals, and uploading your re-
search to OpenML is a practical and convincing way
to share your data with others.

No publication bias Most journals have a publication bias:
even if the findings are valuable, it is hard to pub-
lish them if the outcome is not positive. Through
OpenML, you can still share such results and receive
credit for them.

5.4 Benefits for students
OpenML can also substantially help students in gaining a
better understanding of machine learning. Browsing through
organized results online is much more accessible than brows-
ing through hundreds of papers. It provides a clear overview
of the state of the art, interesting new techniques and open
problems. As discussed before, students can contribute in
small or big ways to ongoing research, and in doing so, learn
more about how to become a machine learning researcher.
Online discussions may point to new ideas or point out mis-
takes, so they can learn to do it better next time. In short,
it gives students and young scientists a large playground
to learn more quickly about machine learning and discover
where they can make important contributions.

6. FUTURE WORK
In this section, we briefly discuss some of the key sugges-
tions that have been offered to improve OpenML, and we
aim to implement these changes as soon as possible. In fact,
as OpenML is an open source project, everyone is welcome
to help extend it, or post new suggestions through the web-
site.

6.1 OpenML studies
One typically runs experiments as part of a study, which
ideally leads to a publication. Scientists should therefore be
able to create online studies on OpenML, that combine all

relevant info on one page. Such studies reference all runs
of interest, either generated for this study or imported from
other OpenML studies, and all data sets and flows under-
lying these runs. Additionally, textual descriptions can be
added to explain what the study is about, and any sup-
plementary materials, such as figures, papers or additional
data, can be uploaded and attached to it.

If the study is published, a link to this online study can
be added in the paper, so that people can find the original
experiments, data sets and flows, and build on them. As
such, it becomes the online counterpart of a published paper,
and you could tell people to cite the published paper if they
reuse any of the data. An additional benefit of online studies
is that they can be extended after publication.

Moreover, based on the underlying runs, OpenML can au-
tomatically generate a list of references (citations) for all
underlying data sets, flows and other studies. This helps
authors to properly credit data that they reused from other
OpenML scientists. Similar to arXiv, OpenML can also au-
tomatically keep track of this so that authors can instantly
view in which studies their contributions are being reused.

Finally, similar to the polymath projects, such studies could
be massively collaborative studies, aimed at solving a hard
problem, and driven by many people providing ideas, ex-
periments, data or flows. As such, each study should have
a discussion section where questions can be asked, sugges-
tions can be made and progress can be discussed. Similar
to the polymath studies, it also makes sense if studies link
to other studies that tackle specific subproblems, and if the
study was linked to a wiki page for collaborative writing.

To keep focus on the results of a given study, it can act as a
filter, hiding all other results from the website so that only
the contents of that study are visible.

6.2 Visibility and social sharing
There may be cases where you want all of OpenML’s bene-
fits, but do not want to make your data public before pub-
lication. On the other hand, you may want to share that
data with trusted colleagues for collaboration or feedback,
or allow friends to edit your studies, e.g., to add new runs
to it. It therefore makes sense if, for a limited amount of
time, studies, data sets or flows can be flagged as private
or ‘friends only’. Still, scientists should agree that this is a
temporary situation. When you wish to be attributed for
your work, you must first make it publicly available.

In addition, in highly experimental settings, most results
may not be interesting as such. Scientists are always able
to delete those results or mark them as deprecated.

6.3 Collaborative leaderboards
When many scientists work together to design a flow for a
specific task, it is useful to show which flows are currently
performing best, so that others can build on and improve
those flows. However, it is also important to show which
contributions had the biggest impact while such a flow was
constructed collaboratively. In those cases, it is useful to
implement a leaderboard that does not only show the cur-
rent best solution, but instead credits the authors who con-
tributed solutions that were in, say, the top 3 at any point
in time. Alternatively, this can be visualized in a graph of
performance versus time, so that it is clear who caused the
bigger performance ‘jumps’. This is useful to later credit
the people who made the most important contributions.



6.4 Broader data support
To build a well-structured information space, OpenML needs
to be able to correctly interpret the uploaded data. For in-
stance, to calculate data characteristics and build train-test
splits, more information is needed about the structure of
data sets. Therefore, we have initially focused on ARFF
data. However, many types of data, such as graphs, can not
always be adequately expressed as ARFF, and we will add
support for new data types according to researchers’ needs.
Moreover, for some types of tasks, additional types of results
(run outputs) may need to be defined so that OpenML can
properly interpret them.

In the short term, we aim to add support for Graph Min-
ing, Clustering, Recommender Systems, Survival Analysis,
Multi-label Classification, Feature selection, Semi-Supervised
Learning, and Text Mining. Moreover, we will extend the
website to make it easy to propose and work collaboratively
on support for new task types.

7. CONCLUSIONS
In many sciences, networked science tools are allowing scien-
tists to make discoveries much faster than was ever possible
before. Hundreds of scientists are collaborating to tackle
hard problems, individual scientists are building directly on
the observations of all others, and students and citizen sci-
entists are effectively contributing to real science.

To bring these same benefits to machine learning researchers,
we introduce OpenML, an online service to share, organize
and reuse data, code and experiments. Following best prac-
tices observed in other sciences, OpenML allows collabora-
tions to scale effortlessly and rewards scientists for sharing
their data more openly.

We believe that this new, networked approach to machine
learning will allow scientists to work more productively, make
new discoveries faster, be more visible, forge many new col-
laborations, and start new types of studies that were prac-
tically impossible before.
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