
AClib: a Benchmark Library
for Algorithm Configuration

Frank Hutter, Manuel López-Ibáñez,
Chris Fawcett, Marius Lindauer,

Holger Hoos, Kevin Leyton-Brown, and Thomas Stützle

18 February 2014

Motivation

• Most heuristic algorithms have free parameters
– E.g. IBM ILOG CPLEX: 76 parameters

• Preprocessing, underlying LP solver & its parameters, types of cuts, …

• Algorithm configuration aims to
find good parameter settings automatically
– Eliminates most tedious part of algorithm design and end use
– Saves development time & improves performance
– Produces more reproducible research

2

Mainstream Adoption of AC Methods
• Many different types of algorithms

– Tree search, local search, metaheuristics, machine learning, …

• Large improvements to solvers for
many hard combinatorial problems
– SAT, MIP, TSP, ASP, time-tabling, AI planning, …
– Competition winners for all of these rely on configuration tools

• Increasingly popular (citation numbers from Google scholar)

3

ParamILS [Hutter et al.,'09]

SMAC [Hutter et al., ‘11]

Iterated F-Race [Birattari et al., ‘10]

GGA [Ansotegui et al, '09]

Benefits of an AC Benchmark Library

• Comparability & reproducibility
– Easy access to broad range of standard benchmarks
– Reduced effort for empirical evaluation
– More meaningful results

• Standardization of interfaces
– Simplifies use of AC procedures
– Speeds up development

4

The Algorithm Configuration Problem
Definition

– Given:
• Runnable algorithm A with configuration space
• Distribution D over problem instances Π
• Performance metric

– Find:

Motivation

 Customize versatile algorithms
for different application domains
– Fully automated improvements
– Optimize speed, accuracy,

memory, energy consumption, …

5

Very large space
of configurations

The Algorithm Configuration Process

6

Methods for Algorithm Configuration
Work on numerical parameter optimization (e.g., BBOB)

– Evolutionary algorithms community, e.g., CMA-ES [Hansen et al, '95-present]

– Statistics & machine learning community, e.g., EGO [Jones et al, ‘98],
SPO [Bartz-Beielstein et al, ’05-present]

Early work on categorical parameters
– Composer [Gratch et al, '92 & '93]

– Multi-TAC [Minton, '93]

– F-Race [Birattari et al, ‘02]

General algorithm configuration methods
– Iterated Local Search, ParamILS [Hutter et al., '07 & '09]

– Genetic algorithm, GGA [Ansotegui et al, '09]

– Iterated F-Race [Birattari et al., ‘07-present]

– Model-based Algorithm Configuration, SMAC [Hutter et al., '09-present]

7

Algo. Configuration vs. Blackbox Optimization
Parameter types

– Continuous, integer, ordinal
– Categorical: finite domain, unordered, e.g., {a,b,c}
– Conditional: only active for some instantiations of other parameters

Optimization across a distribution of problem instances

– Stochastic Optimization
– Instances often differ widely in hardness

Budget: CPU/wall time vs. # function evaluations
– Overheads of configurator count!
– Can exploit that fast function evaluations are cheaper
– Can save time by cutting off slow runs early

8

AClib: Components
• Configuration scenarios

• For convenience, we also include configuration procedures
– So far: ParamILS, SMAC, and Iterated F-Race

9

AClib: Design Criteria
• Variety

– Problems: decision & optimization problems, machine learning
– Algorithm types: tree search, local search, machine learning
– Number of parameters: 2 - 768
– Parameter types: continuous / discrete / conditional
– Objectives: runtime to optimality / solution quality
– Degree of homogeneity of instances

• Assessing different configurator components
– Search: which configuration to try next?
– Racing/intensification: how many runs, which instances?
– Capping: when to cut of a run?

10

• Unified way to wrap target algorithms
– Built-in control of CPU time & memory
– Reliable measurements of CPU & wall time

• No more need to rely on target algorithm’s time measurements
• Consistent use of wall time / CPU time

• Identical invocations of a target algorithm
– Callstrings are independent of the configurator
– Otherwise systematic biases possible,

leading to incomparable results in the literature

AClib: Resolves Technical Challenges

11

AClib: Contribute

• Contributing a benchmark scenario
– Algorithm & its parameter description
– Instances, Features, training/test split
– CPU time & memory limits
– Algoritm wrapper

• Generates a call string given an instantiation of parameters
• Parses the algorithm result

• Contributing a configuration procedure
– Accept scenarios in AClib format
– Basically:

call target algorithm on the command line and get results back

12

Future Work

• For you: use AClib ;-) www.aclib.net

• Ontology of algorithm configuration scenarios

• Large-scale evaluation
– Which configurator performs best on which types of problems?

• Algorithm Configuration Evaluation
– Planned as AAAI 2015 workshop (together with Yuri Malitsky)
– Submit configuration scenarios! (same format as in AClib)
– Submit configurators!

13

	AClib: a Benchmark Library �for Algorithm Configuration��
	Motivation
	Mainstream Adoption of AC Methods
	Benefits of an AC Benchmark Library
	The Algorithm Configuration Problem
	The Algorithm Configuration Process
	Methods for Algorithm Configuration
	Algo. Configuration vs. Blackbox Optimization
	AClib: Components
	AClib: Design Criteria
	AClib: Resolves Technical Challenges
	AClib: Contribute
	Future Work

