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Motivation 
 

• Most heuristic algorithms have free parameters 
– E.g. IBM ILOG CPLEX: 76 parameters 

• Preprocessing, underlying LP solver & its parameters, types of cuts, … 
 

• Algorithm configuration aims to  
find good parameter settings automatically 
– Eliminates most tedious part of algorithm design and end use 
– Saves development time & improves performance 
– Produces more reproducible research 
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Mainstream Adoption of AC Methods 
• Many different types of algorithms 

– Tree search, local search, metaheuristics, machine learning, … 

• Large improvements to solvers for  
many hard combinatorial problems 
– SAT, MIP, TSP, ASP, time-tabling, AI planning, … 
– Competition winners for all of these rely on configuration tools 

 
 

• Increasingly popular (citation numbers from Google scholar) 
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ParamILS [Hutter et al.,'09] 

SMAC [Hutter et al., ‘11] 

Iterated F-Race [Birattari et al., ‘10] 

GGA [Ansotegui et al, '09] 



Benefits of an AC Benchmark Library 
 

• Comparability & reproducibility 
– Easy access  to broad range of standard benchmarks 
– Reduced effort for empirical evaluation 
– More meaningful results 
 

• Standardization of interfaces 
– Simplifies use of AC procedures 
– Speeds up development 
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The Algorithm Configuration Problem 
Definition 

– Given: 
• Runnable algorithm A with configuration space   
• Distribution D over problem instances Π 
• Performance metric   

– Find: 
 

 

Motivation 
 

     Customize versatile algorithms 
for different application domains 
– Fully automated improvements 
– Optimize speed, accuracy,  

memory, energy consumption, … 
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Very large space 
of configurations 



The Algorithm Configuration Process 
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Methods for Algorithm Configuration 
Work on numerical parameter optimization (e.g., BBOB) 

– Evolutionary algorithms community, e.g., CMA-ES [Hansen et al, '95-present] 

– Statistics & machine learning community, e.g., EGO [Jones et al, ‘98],  
SPO [Bartz-Beielstein et al, ’05-present] 
 

Early work on categorical parameters 
– Composer [Gratch et al, '92 & '93] 

– Multi-TAC [Minton, '93] 

– F-Race [Birattari et al, ‘02] 
 

General algorithm configuration methods 
– Iterated Local Search, ParamILS [Hutter et al., '07 & '09] 

– Genetic algorithm, GGA [Ansotegui et al, '09] 

– Iterated F-Race [Birattari et al., ‘07-present] 

– Model-based Algorithm Configuration, SMAC [Hutter et al., '09-present] 
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Algo. Configuration vs. Blackbox Optimization 
Parameter types   

– Continuous, integer, ordinal 
– Categorical: finite domain, unordered, e.g., {a,b,c} 
– Conditional: only active for some instantiations of other parameters 

 

Optimization across a distribution of problem instances 
 
 

– Stochastic Optimization 
– Instances often differ widely in hardness 

 

Budget: CPU/wall time  vs. # function evaluations 
– Overheads of configurator count! 
– Can exploit that fast function evaluations are cheaper 
– Can save time by cutting off slow runs early 

8 



AClib: Components 
• Configuration scenarios 

 
 
 
 
 
 
 

• For convenience, we also include configuration procedures 
– So far: ParamILS, SMAC, and Iterated F-Race 
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AClib: Design Criteria 
• Variety 

– Problems: decision & optimization problems, machine learning 
– Algorithm types: tree search, local search, machine learning 
– Number of parameters: 2 - 768  
– Parameter types: continuous / discrete / conditional 
– Objectives: runtime to optimality / solution quality 
– Degree of homogeneity of instances 

 

• Assessing different configurator components 
– Search: which configuration to try next? 
– Racing/intensification:  how many runs, which instances?  
– Capping: when to cut of a run? 

10 



 

• Unified way to wrap target algorithms 
– Built-in control of CPU time & memory 
– Reliable measurements of CPU & wall time 

• No more need to rely on target algorithm’s time measurements 
• Consistent use of wall time / CPU time 

 

• Identical invocations of a target algorithm 
– Callstrings are independent of the configurator 
– Otherwise systematic biases possible,  

leading to incomparable results in the literature 

 

AClib: Resolves Technical Challenges 
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AClib: Contribute 
 

• Contributing a benchmark scenario 
– Algorithm & its parameter description 
– Instances, Features, training/test split 
– CPU time & memory limits 
– Algoritm wrapper 

• Generates a call string given an instantiation of parameters 
• Parses the algorithm result 

 

• Contributing a configuration procedure 
– Accept scenarios in AClib format 
– Basically:  

call target algorithm on the command line and get results back 
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Future Work 
 
 

• For you: use AClib  ;-)         www.aclib.net 
 

• Ontology of algorithm configuration scenarios 
 

• Large-scale evaluation 
– Which configurator performs best on which types of problems? 

 

• Algorithm Configuration Evaluation 
– Planned as AAAI 2015 workshop (together with Yuri Malitsky) 
– Submit configuration scenarios! (same format as in AClib) 
– Submit configurators! 
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