
Algorithm Configuration in the Cloud:
A Feasibility Study

Daniel Geschwender1, Frank Hutter2, Lars Kotthoff3, Yuri Malitsky3,
Holger H. Hoos4, and Kevin Leyton-Brown4

1University of Nebraska-Lincoln, 2University of Freiburg, 3INSIGHT Centre for Data
Analytics, 4University of British Columbia

1 Introduction and Related Work

Configuring algorithms automatically to achieve high performance is becoming increas-
ingly relevant and important in many areas of academia and industry. Algorithm con-
figuration methods take a parameterized target algorithm, a performance metric and a
set of example data, and aim to find a parameter configuration that performs as well as
possible on a given data set. Algorithm configuration systems such as ParamILS [5],
GGA [1], irace [2], and SMAC [4] have achieved impressive performance improve-
ments in a broad range of applications. However, these systems often require substantial
computational resources to find good configurations. With the advent of cloud comput-
ing, these resources are available readily and at moderate cost, offering the promise
that these techniques can be applied even more widely. However, the use of cloud com-
puting for algorithm configuration raises two challenges. First, CPU time measurement
could be substantially less accurate on virtualized than on physical hardware, producing
potentially problematic noise in assessing the performance of target algorithm config-
urations (particularly relevant when the performance objective is to minimize runtime)
and in monitoring the runtime budget of the configuration procedure. Second, by the
very nature of the cloud, the physical hardware used for running virtual machines is
unknown to the user, and there is no guarantee that the hardware that was used for con-
figuring a target algorithm will also be used to run it, or even that the same hardware
will be used throughout the configuration process. Unlike many other applications of
cloud computation, algorithm configuration relies on reproducible CPU time measure-
ments; it furthermore involves two distinct phases in which a target algorithm is first
configured and then applied and relies on the assumption that performance as measured
in the first phase transfers to the second. Previous work has investigated the impact of
hardware virtualization on performance measurements (see, e.g., [6–8]). To the best of
our knowledge, what follows is the first investigation of the impact of virtualization
specifically on the efficacy and reliability of algorithm configuration.

2 Experimental Setup

Our experiments ranged over several algorithm configurators, configuration scenarios
and computing infrastructures. Specifically, we ran ParamILS [5] and SMAC [4] to
configure Spear [3] and Auto-WEKA [9]. For Spear, the objective was to minimize
the runtime on a set of SAT-encoded software verification instances (taken from [3],
with the same training/test split of 302 instances each). For Auto-WEKA, the objective

was to minimize misclassification rate on the Semeion dataset (taken from [9], with the
same training/test set split of 1116/447 data points). The time limit per target algorithm
run (executed during configuration and at test time) was 300 CPU seconds (Spear) and
3600 CPU seconds (Auto-WEKA), respectively. We used the following seven comput-
ing infrastructures:

– Desktop: a desktop computer with a quad-core Intel Xeon CPU and 6GB memory;
– UBC: a research compute cluster at the University of British Columbia, each of

whose nodes has two quad-core Intel Xeon CPUs and 16GB of memory;
– UCC: a research compute cluster at University College Cork, each of whose nodes

has two quad-core Intel Xeon CPUs and 12GB of memory
– Azure: the Microsoft Azure cloud, with virtual machine instance type medium

(2 cores, 3.5GB memory, $0.12/hour)
– EC2-c1: the Amazon EC2 cloud, with virtual machine instance type c1.xlarge

(8 cores, 7GB memory, $0.58/hour)
– EC2-m1: the Amazon EC2 cloud, with virtual machine instance type m1.medium

(1 core, 3.5GB memory, $0.12/hour)
– EC2-m3: the Amazon EC2 cloud, with virtual machine instance type m3.2xlarge

(8 cores, 30GB memory, $1.00/hour)
For each of our two configuration scenarios, we executed eight independent runs

(differing only in random seeds) of each of our two configurators on each of these
seven infrastructures. Each configuration run was allowed one day of compute time
and 2GB of memory (1GB for the configurator and 1GB for the target algorithm) and
returned a single configuration, which we then tested on all seven infrastructures. On
the larger EC2-c1 and EC2-m3 instances, we performed 4 and 8 independent parallel
configuration/test runs, respectively. Thus, compared to EC2-m1, we only had to rent
1/4 and 1/8 of the time on these instances, respectively. This almost canceled out with
the higher costs of these machines, leading to roughly identical total costs for each of
the machine types: roughly $100 for the 2 · 2 · 8 configuration runs of 24h each, and
about another $100 for the testing of configurations from all infrastructures.

3 Results

We first summarize the results for the Auto-WEKA scenarios, which are in a sense the
“easiest case” for automatic configuration in the cloud: in Auto-WEKA, the runtime
of a single target algorithm evaluation only factors into the measured performance if
it exceeds the target algorithm time limit of 3600 CPU seconds; i.e., target algorithm
evaluations that run faster yield identical results on different infrastructures. Our exper-
iments confirmed this robustness, showing that configurations resulting from config-
uring on infrastructure X yielded the same performance on other infrastructures Y as
on X . While SMAC yielded competitive Auto-WEKA configurations of similar perfor-
mance on all seven infrastructures (which turned out to test almost identically on other
infrastructures), the local search-based configurator ParamILS did not yield meaningful
improvements, since Auto-WEKA’s default (and its neighbourhood) consistently led to
timeouts without even returning a classifier.

We turn to the Spear configuration scenario, which we consider more interesting,
because its runtime minimization objective made it less certain whether performance
would generalize across different infrastructures. In Figure 1, we visually compare the

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

100

10 100
configuration performance [CPU s]

va
lid

at
io

n
pe

rf
or

m
an

ce
 [C

P
U

 s
]

●

●
●

●

Desktop
UBC
UCC
Azure
EC2−c1
EC2−m1
EC2−m3

(a) Configured on UCC

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
1

10

100

10 100
configuration performance [CPU s]

va
lid

at
io

n
pe

rf
or

m
an

ce
 [C

P
U

 s
]

●

●
●

●

Desktop
UBC
UCC
Azure
EC2−c1
EC2−m1
EC2−m3

(b) Configured on Azure

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

10

100

10 100
configuration performance [CPU s]

va
lid

at
io

n
pe

rf
or

m
an

ce
 [C

P
U

 s
]

●

●
●

●

Desktop
UBC
UCC
Azure
EC2−c1
EC2−m1
EC2−m3

(c) Configured on EC2-m3
Fig. 1. Test performance (log10 runtime) for Spear configurations found in 8 ParamILS runs with
different random seeds on 3 different infrastructures. The shapes/colours denote the infrastructure
the configuration was tested on.

Desktop UBC UCC Azure EC2-c1 EC2-m1 EC2-m3 median

Desktop 0.54 (0.67) 0.52 (0.76) 0.96 (0.46) 0.59 (0.68) 0.59 (0.57) 0.80 (0.62) 0.59 (0.54) 0.59 (0.62)
UBC 0.07 (0.21) 0.01 (0.11) 0.17 (0.21) 0.22 (0.45) 0.19 (0.18) 0.19 (0.16) 0.15 (0.31) 0.17 (0.21)
UCC 0.54 (0.51) 0.53 (0.52) 0.56 (0.09) 0.60 (0.07) 0.59 (0.61) 0.58 (0.42) 0.58 (0.42) 0.58 (0.42)
Azure 0.78 (1.14) 0.78 (1.11) 0.81 (1.03) 0.81 (1.02) 0.81 (1.00) 0.81 (1.01) 0.82 (0.99) 0.81 (1.02)
EC2-c1 0.53 (0.52) 0.16 (0.51) 0.59 (0.43) 0.58 (0.40) 0.26 (0.41) 0.22 (0.41) 0.55 (0.52) 0.53 (0.43)
EC2-m1 0.58 (0.99) 0.58 (1.01) 0.59 (0.93) 0.65 (0.92) 0.62 (0.85) 0.62 (0.88) 0.57 (0.89) 0.59 (0.92)
EC2-m3 0.00 (0.55) -0.02 (0.59) 0.56 (0.51) 0.18 (0.44) 0.30 (0.42) 0.16 (0.46) 0.16 (0.42) 0.16 (0.46)

Table 1. Test performance (median of log10 runtimes, and in parentheses, interquartile range) of
the 8 Spear-SWV configurations identified by SMAC on the infrastructure in the row, tested on
the infrastructure in the column. All numbers are medians of log10 runtimes over 8 runs, rounded
to two decimal places. For each test infrastructure, we bold-face the entry for the configuration
infrastructure yielding the best performance.

performance achieved by configurations found by ParamILS on three infrastructures.
We note that the variance across different seeds of ParamILS was much larger than the
variation across infrastructures, and that the performance of configurations found on
one infrastructure tended to generalize to others. This was true to a lesser degree when
using SMAC as a configurator (data not shown for brevity); SMAC’s performance was
quite consistent across seeds (and, in this case, better than the ParamILS runs).

Table 1 summarizes results for configuration with SMAC, for each of the 49 pairs
of configuration and test infrastructures. Considering the median performance results,
we note that configuring on some infrastructures yielded better results than on others,
regardless of the test infrastructure. For each pair (X ,Y) of configuration infrastruc-
tures, we tested whether it is statistically significantly better to configure on X or on Y ,
using a Wilcoxon signed-rank test on the 56 paired data points resulting from testing
the eight configurations found on X and Y on each of our seven infrastructures. Us-
ing a Bonferroni multiple testing correction, we found that UBC and EC2-m3 yielded
statistically significantly better performance than most other infrastructures, EC2-c1
performed well, Desktop and UCC performed relatively poorly, and Azure and EC2-
m1 were significantly worse than most other infrastructures. An equivalent table for
ParamILS (not shown for brevity) shows that it did not find configurations as good as
those of SMAC within our 1-day budget. Since the variation across configurations do-
minated the variation due to varying testing platforms, the relative differences across
test infrastructures tended to be smaller than in the case of SMAC.

A prime concern with running algorithm configuration in the cloud is the poten-
tially increased variance in algorithm runtimes. We therefore systematically analysed
this variance. For each pair of configuration and test infrastructure, we measured test
performances of the 8 configurations identified by SMAC and computed their 25% and
75% quantiles (in log10 space). We then took their difference as a measure of variation
for this particular pair of configuration and test infrastructure. As Table 1 (numbers in
parentheses) shows, configuring on the UBC cluster gave the lowest variation, followed
by UCC and the two bigger cloud instances, EC2-c1 and EC2-m3 (all with very sim-
ilar median variations). Configuring on the Desktop machine led to somewhat higher
variation, and configuring on Azure or EC2-m1 to much higher variation.

The fact that configuring on the two bigger cloud instances, EC2-c1 and EC2-m3,
yielded both strong configurations and relatively low variation suggests that bigger
cloud instances are well suited as configuration platforms. As described earlier, their
higher cost per hour (compared to smaller cloud instances) is offset by the fact that they
allow the parallel execution of several independent parallel configuration runs.

4 Conclusion

We have investigated the suitability of virtualized cloud infrastructure for algorithm
configuration. We also explored the related issue of whether configurations found on
one machine can be used on a different machine. Our results show that clouds (espe-
cially larger cloud instances) are indeed suitable for algorithm configuration, that this
approach is affordable (at a cost of about $3 per 1-day configuration run) and that of-
ten, configurations identified to perform well on one infrastructure can be used on other
infrastructures without significant loss of performance.

Acknowledgements The authors were supported by an Amazon Web Services research grant,
European Union FP7 grant 284715 (ICON), a DFG Emmy Noether Grant, and Compute Canada.

References
1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic

configuration of algorithms. In: CP. pp. 142–157 (2009)
2. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: In: Bartz-Beielstein, T., Chiarandini, M.,

Paquete, L., Preuss, M. (eds.) Empirical Methods for the Analysis of Optimization Algo-
rithms, chap. F-race and iterated F-race: An overview. Springer (2010)

3. Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic tuning of deci-
sion procedures. In: Formal Methods in Computer Aided Design. pp. 27–34 (2007)

4. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: LION-5. pp. 507–523 (2011)

5. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm con-
figuration framework. J. Artif. Int. Res. 36(1), 267–306 (2009)

6. Kotthoff, L.: Reliability of computational experiments on virtualised hardware. JETAI (2013)
7. Lampe, U., Kieselmann, M., Miede, A., Zöller, S., Steinmetz, R.: A tale of millis and nanos:

Time measurements in virtual and physical machines. In: Service-Oriented and Cloud Com-
puting. Lecture Notes in Computer Science, vol. 8135, pp. 172–179 (2013)

8. Schad, J., Dittrich, J., Quiané-Ruiz, J.A.: Runtime measurements in the cloud: Observing,
analyzing, and reducing variance. VLDB Endow. 3, 460–471 (Sep 2010)

9. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined selection
and hyperparameter optimization of classification algorithms. In: KDD. pp. 847–855 (2013)

