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Fast Downward SMAC uses the SMAC algorithm con-
figurator (Hutter, Hoos, and Leyton-Brown 2011) to find a
single configuration of Fast Downward (Helmert 2006) for a
given planning domain. It closely follows the methodology
used by Fawcett et al. (2011), but employs the newer model-
based algorithm configurator SMAC instead of ParamILS
(Hutter et al. 2009) to optimize Fast Downward for each do-
main of the IPC 2014 learning track. In the following we
will describe our configuration setup.

Benchmarks

The competition organizers chose 6 benchmark domains and
provided problem generators, parameter distributions and
the corresponding sample problems for each of them. We
chose to use the provided instances as our test set and gen-
erated our own training instances by running the problem
generators for the same parameter distributions again. Since
the generators are nondeterministic our training and test sets
(probably) do not intersect. For the domains for which only
very few parameter sets for the instance generator were pro-
vided (floortile, nomystery, parking and spanner), we gen-
erated some additional problems for our training sets (using
domain knowledge to choose parameter sets giving rise to
somewhat easier instances).

Configuration Space

The space of Fast Downward configurations SMAC could
choose from was the same as the one used by Fawcett et
al. (2011), the only exception being that we also included
an implementation of the YAHSP lookahead strategy (Vidal
2004).

Metric

Fawcett et al. (2011) submitted two versions of their Fast
Downward configuration procedure to the IPC 2011 learning
track (FD-Autotune.speed and FD-Autotune.quality). Since
the version that optimized for speed achieved a much higher
quality score in the competition, we only prepared one Fast
Downward SMAC version, optimizing for speed rather than
solution quality. In contrast to the quality variant, this vari-
ant can use adaptive capping (Hutter et al. 2009), allowing
SMAC to preemptively terminate Fast Downward runs dur-
ing the configuration process when it becomes clear that the
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tested configuration cannot be better than the current incum-
bent, thus greatly increasing the total number of tested con-
figurations. For each competition domain, we executed 5 in-
dependent SMAC runs in parallel with a time budget of 150
hours each and chose the configuration that performed best
on the respective training set. We only used the test set to
evaluate the performance of this selected configuration (and
not to select between the 5 configurations found in each of
the SMAC runs).

Differences to Fast Downward Cedalion

Instead of configuring a single configuration for each do-
main via SMAC, our second submission to the IPC 2014
learning track, Fast Downward Cedalion (Seipp, Sievers,
and Hutter 2014), uses SMAC as a subprocedure in the
Cedalion algorithm (Seipp, Sievers, and Hutter 2013) to find
a portfolio of Fast Downward configurations. We submitted
both approaches to facilitate a direct comparison between
the two in the learning setting.

We evaluated the configurations selected by SMAC, as
well as the portfolios constructed with Cedalion, on the test
set and found that each of them performed better in some
cases. In nomystery and spanner the two approaches ob-
tained the same quality score (neither approach solved any
of the 6 spanner test instances). SMAC fared better than
Cedalion for floortile and parking while the opposite was
true for elevators and transport. We offer two possible ex-
planations why SMAC by itself could perform better than
Cedalion in two domains. On the one hand, the single
SMAC runs were more powerful than the SMAC runs per-
formed inside Cedalion: Cedalion could not use adaptive
capping and also used SMAC runs of only 60 hours in each
of its iterations. On the other hand, it may be the case that in
the relatively homogeneous domains of the learning track,
not much can be gained by a portfolio over a single parame-
ter configuration.
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As of yet this code is not merged into the main Fast Down-
ward repository.
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Appendix — Fast Downward SMAC Configurations

We list the configurations found during the configuration processes of Fast Downward SMAC.

Elevators:

——landmarks 1lmg=lm_hm(reasonable_orders=false,only_causal_landmarks=false,
disjunctive_landmarks=true, conjunctive_landmarks=false,
no_orders=false,m=1, lm_cost_type=0,cost_type=1)

——heuristic hLM, hFF=1m_ff syn(lmg,admissible=false)

—-—-search lazy(alt ([single (hLM), single (hLM,pref_only=true), single (hFF),

single (hFF,pref_only=true)],
boost=106),
preferred=[hLM], reopen_closed=false, cost_type=0)

Floortile:

——heuristic hAdd=add (cost_type=0)
——-search eager (alt([single(sum([weight (g(),8),weight (hAdd,9)1]1)),
single (sum([weight (g (), 8),weight (hAdd,9)]1),pref_only=true)],
boost=4738),
preferred=[hAdd], reopen_closed=false,pathmax=false, cost_type=0)

Nomystery:

——landmarks 1lmg=1lm_rhw (reasonable_orders=false,only_causal_landmarks=false,
disjunctive_landmarks=false,conjunctive_landmarks=true,
no_orders=false, cost_type=1)

——heuristic hCg=cg(cost_type=1)

——heuristic hLM=lmcount (1lmg, admissible=false,pref=false, cost_type=1)

—-—-search lazy(alt ([tiebreaking([sum([weight (g(),8),weight (h1LM,9)1]1),h1M]),

tiebreaking ([sum([weight (g (), 8),weight (h1M, 9)1),h1lM],
pref_only=true),
tiebreaking ([sum([weight (g (), 8),weight (hCg,9)]1),hCqgl),
tiebreaking ([sum([weight (g (), 8),weight (hCg,9)1),hCgl,
pref_only=true)],
boost=4841),
preferred=[hCg], reopen_closed=false, cost_type=0)

Parking:

——heuristic hCg=cg(cost_type=1)
——-search lazy(alt ([single (sum([
single (sum([

boost=997),
preferred=[hCqg], reopen_closed=false, cost_type=0)

() ,weight (hCg,2) 1)),
() ,weight (hCg,2)1),pref_only=true)l],

Q Q

Spanner:

——heuristic hFF=ff (cost_type=1)
——heuristic hBlind=blind()

——-search eager(alt([single (sum([weight (g (),2),weight (hBlind,3)])),
single (sum([weight (g(),2),weight (hFF,3)]1))1,
boost=365),
preferred=[], reopen_closed=false,pathmax=false,

lookahead=true, la_greedy=true, la_repair=false, cost_type=1)
Transport:

——heuristic hGoalCount=goalcount (cost_type=0)
——heuristic hFF=ff (cost_type=1)

—-—-search eager (alt([single(sum([g(),hFF])),single(sum([g(),hGoalCount]))],
boost=2008),
preferred=[], reopen_closed=true, pathmax=true,

lookahead=true, la_greedy=true, la_repair=true, cost_type=0)



