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 … in 30 sec 
• Deep networks critically depend on hyperparameters, but 

training is expensive 

• To automate a heuristic that experts use, we built a 
probabilistic model to forecast the asymptotic accuracy of a 
given parameter setting and stop all but the most promising 
runs 

• Simulation resulted in a 2.7-fold reduction of overall runtime 

Motivation 
• It takes very few SGD iterations for a human expert to tell good from 

bad parameter settings 

• Yet in hyperparameter optimization every setting is run to the very end 

• Automating the prediction of performance could save a lot of time 
and speed up preliminary evaluations during development 

Model Search 
• Search over structure and hyperparameters of deep 

networks: 

• 81 parameters in total, namely 9 network parameters and 
12 parameters for each of up to 6 layers 

• Neural network software: Caffe [Jia 2013] 

• Bayesian optimization methods: 

 

 

 

 

• 5 runs of both SMAC and TPE 

• Evaluated a total of 800 networks 

• Dataset:  k-means features extracted from CIFAR10 
[Krizhevsky 2009; Coates 2011] 

 

Learning curves 
• Random subset of learning curves: 

Extrapolation 
Problem definition 
• Given data points 𝑦1:𝑛 we would to like to forecast the future 

performance 𝑦𝑙𝑎𝑠𝑡 probabilistically 

 

 

 

 

 

 

 

Approach 

• Selected 𝑘 = 𝟏𝟎 parametric model families 
that roughly match learning curves’ shape (typically increasing, 
saturating functions) 

 

 

 

 

 
 

 

 

 

• Representative power increased by convex combination of individual 
models: 

• 𝑓 𝑥 =  𝑤𝑖𝑓𝑖(𝑥|𝜽𝑖)
𝑘
𝑖=1 + 𝜖  with 𝜖 ~ 𝑁 0, 𝜎2  and  𝑤𝑖 = 1

𝑘
𝑖=1  

• Model uncertainty captured by MCMC 

• The prior encoded monotonicity assumption of each of the models 

• We obtained 𝑆 = 100000  samples from 100 parallel chains of length 
1500 with a burn-in of 500 

• Let 𝝃 be the model’s parameters 𝑤1, … , 𝑤𝑘 , 𝜽1, … , 𝜽𝑘 , 𝜎
2  

• Probability of improving over current best parameter setting: 

• 𝑃 𝑦𝑙𝑎𝑠𝑡 ≥ 𝑦𝑏𝑒𝑠𝑡 ∣ 𝑦1:𝑛 ≈ 
1

𝑆
 𝑃(𝑦𝑙𝑎𝑠𝑡 ≥ 𝑦𝑏𝑒𝑠𝑡 ∣ 𝝃

𝑠 , 𝑦1:𝑛)
𝑆
𝑠=1  

Experiments 
• Example extrapolation: 

 

 

 

 
• Example of model being misled by unusual shape of the learning curve: 

 

 

 

 
 

• Quality of predictions: 

• RMSE of residual 𝐸 𝑦𝑚 − 𝑦𝑙𝑎𝑠𝑡 : 

 

 
 

• 𝑦𝑙𝑎𝑠𝑡 in/over/under 90% interval: 

 

 

 

 

• Model tends to be overconfident based on little data, but rarely  
underpredict 

• Simulated early stopping in optimization 

• Replayed all 800 runs 

• Stopped a run when probability of improving  over current best got 
too small:  𝑃 𝑦𝑙𝑎𝑠𝑡 ≥ 𝑦𝑏𝑒𝑠𝑡 ∣ 𝑦1:𝑛  < 1% 

 

 
 

 

 

• Reached the same accuracy  

• 2.7-fold speedup 
 

 

 

 

 

SMAC (Sequential Model-based 
algorithm configuration) is based on 
random forests and can handle 
continuous, discrete and conditional 
hyperparameters. 
[Hutter, Hoos, and  Leyton-Brown, 
2011] 

TPE (Tree Parzen Estimator) is 
based on Gaussian Mixture Models. 
Supports conditional, continuous 
and discrete parameters and also 
priors over them. 
 

[Bergstra, Bardenet, Bengio, and 
Kégl, 2011] 

 

% train 10% 30% 50% 70% 90% 

RMSE 0.082 0.046 0.026 0.010 0.011 

% train 10% 30% 50% 70% 90% 

𝑦𝑙𝑎𝑠𝑡 in 42.54 % 48.51% 61.94 % 80.45 % 91.04 % 

𝑦𝑙𝑎𝑠𝑡 over 12.69 % 9.70 %  8.96 % 6.77 % 6.72% 

𝑦𝑙𝑎𝑠𝑡 under 44.77 % 41.79 % 29.10 % 12.78 % 2.24 % 

pow3:  𝑐 − 𝑎 𝑥−𝛼 pow4:  𝑐 − 𝑎 𝑥 + 𝑏 −𝛼 

ilog2:  𝑐 −  
𝑎

log 𝑥
 

DR-hill:  
𝑡 𝑥𝜂

𝜅𝜂+𝑥𝜂
 

Janoschek:  𝑎 − (𝑎 − 𝛽)𝑒−𝑘 𝑥
𝛿

 Exp4:  𝑐 − 𝑒−𝑎𝑥
𝛼+𝑏 

vap:  𝑒(𝑎+
𝑏

𝑥
+𝑐 log 𝑥) 

MMF:  𝛼 − 
𝛼 − 𝛽

1.+ 𝜅 𝑥 𝛿 

loglog linear: log(𝑎 log(𝑥) + 𝑏) 

Weibull:  𝛼 − (𝛼 − 𝛽) 𝑒−(𝜅𝑥)
𝛿  

Ongoing/Future Work 
• Use early stopping in model search 

• Control early stopping via Bayesian optimization 

𝑦𝑙𝑎𝑠𝑡 is evaluated at 𝑥𝑙𝑎𝑠𝑡, the 
maximum number of epochs;  
set to 300 epochs 

𝑦1:𝑛 
train 

𝑦𝑙𝑎𝑠𝑡 
test 


