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Abstract. A distinguishing feature of Answer Set Programming is its versatility.
In addition to satisfiability testing, it offers various forms of model enumeration,
intersection or unioning, as well as optimization. Moreover, there is an increasing
interest in incremental and reactive solving due to their applicability to dynamic
domains. However, so far no comparative studies have been conducted, contrast-
ing the respective modeling capacities and their computational impact. To as-
sess the variety of different forms of ASP solving, we propose Alex Randolph’s
board game Ricochet Robots as a transverse benchmark problem that allows us
to compare various approaches in a uniform setting. To begin with, we consider
alternative ways of encoding ASP planning problems and discuss the underlying
modeling techniques. In turn, we conduct an empirical analysis contrasting tra-
ditional solving, optimization, incremental, and reactive approaches. In addition,
we study the impact of some boosting techniques in the realm of our case study.

1 Introduction

A distinguishing feature of Answer Set Programming (ASP; [1]) is its versatility. Its
modeling language and solving technology support various forms of (Boolean) con-
straint solving that are otherwise restricted to dedicated paradigms. For example, op-
timization is not supported by standard Satisfiability solvers, and one has to resort to
Maximum Satisfiability solvers to obtain this functionality (cf. [2]). Unlike this, ASP
solvers offer, in addition to satisfiability testing, various forms of model enumeration,
intersection or unioning, as well as (multi-criteria) optimization. Moreover, there is an
increasing interest in incremental and reactive solving due to their applicability to dy-
namic domains, such as assisted living and cognitive robotics. However, so far no com-
parative studies have been conducted, contrasting the respective modeling capacities
and their computational impact.

To assess the variety of different forms of ASP solving, we propose the popular
board game Ricochet Robots as a transverse benchmark problem that allows us to com-
pare various approaches in a uniform setting. Ricochet Robots is a board game for mul-
tiple players designed by Alex Randolph.1 A board consists of 16×16 fields arranged
in a grid structure having barriers between various neighboring fields. Four differently
colored robots roam across the board along either horizontally or vertically accessible
fields, respectively. In principle, each robot can thus move in four directions. A robot
cannot stop its move until it hits either a barrier or another robot. Finally, the goal is to

1 http://en.wikipedia.org/wiki/Ricochet_Robot



place a particular robot on a target location with a shortest sequence of moves. Often this
involves moving several robots to establish temporary barriers. For illustration, consider
the reduced board in Figure 1.2 The red robot can be moved onto the red icon in four
steps: down, right, up, and left. The game box offers 96 distinct boards, each of which
has sixteen (plus one special) target locations. The overall game is won by the player
who wins the majority of individual rounds. (Note that the skill of human players tends
to improve over the rounds because they gather knowledge about the board at hand.)
Ricochet Robots has been studied from the viewpoint of human problem solving [3]
and analyzed from a theoretical perspective [4–6]. Moreover, it has a large community
providing various resources on the web. Among them, there is a collection of fifty-six
extensions of the game.3

Alex Randolph’s Ricochet Robots represent a challenging planning problem involv-
ing several actors. As such, it allows us to elaborate upon various aspects of ASP. We
begin by addressing the corresponding decision problem of whether there is a plan of
length smaller or equal than a given horizon. Starting from a plain encoding following
traditional ASP planning (cf. [7]), we elaborate upon an alternative encoding featuring
several advanced modeling techniques. We further adapt encodings for applying opti-
mization, incremental, and reactive ASP solving techniques. While optimization allows
for computing a shortest plan smaller or equal than a given horizon, the incremental and
reactive variants do not impose such an upper bound. We use the devised encodings to
conduct a comparative empirical analysis addressing the following questions. How do
modeling techniques affect the grounding and solving performance of ASP systems?
Second, to what extent can algorithm configuration as well as multi-threaded solving
speed up the search for an arbitrary or a shortest plan, respectively? Furthermore, how
does (bounded) optimization with standard solving techniques compare to (unbounded)
optimization using incremental solving? Finally, does reactive ASP solving benefit from
proceeding over a series of rounds, rather than tackling them independently?

Last but not least, we provide the visualization tool robotviz that, given a stable
model, allows us to inspect the corresponding Ricochet Robots board on the screen and
to interactively trace a plan described by the stable model.

2 Encoding Ricochet Robots

In what follows, we present our fact format and two alternative encodings in the input
language of the ASP grounder gringo 3 [8, 9].

2.1 Fact format

For illustration, consider the reduced board of 8×8 fields in Figure 1 (corresponding to
a quarter of an authentic board). Its representation in terms of facts is given in Listing 1.
The board size is fixed via the constant dimension; its origin (1,1) is in the upper left cor-
ner. Barriers are indicated by atoms with predicate barrier/4. The first two arguments

2 The enclosed yellow robot is an artifact, given that we took a quarter of an authentic board.
3 http://www.boardgamegeek.com/boardgame/51/ricochet-robots



Fig. 1. Visualization of solving board8.lp through robotviz

Listing 1. Example problem instance (board8.lp)
#const dimension=8.

barrier(2,1,1,0). barrier(5,1,0,1).
barrier(2,3,1,0). barrier(2,2,0,1).
barrier(3,7,1,0). barrier(7,4,0,1).
barrier(4,2,1,0). barrier(1,6,0,1).
barrier(7,4,1,0). barrier(4,7,0,1).
barrier(7,8,1,0). barrier(8,7,0,1).

position(red,1,1). position(yellow,dimension,dimension).
position(blue,1,dimension). position(green,dimension,1).
robot(R) :- position(R,_,_). target(red,5,2).

give the field position and the last two the orientation of the barrier, which is either east
(1,0) or south (0,1). For instance, barrier(2,1,1,0) represents the vertical wall be-
tween the fields (2,1) and (3,1), and barrier(5,1,0,1) stands for the horizontal wall
separating (5,1) from (5,2). As specified by atoms with predicate position/3, the four
robots start from board corners. Since each robot has (exactly one) initial position, the
projection robot/1 captures available robots. Finally, target(red,5,2) expresses
that the goal is to move the red robot on the red icon, as displayed in Figure 1.

2.2 Plain encoding

In Listing 2, we provide an encoding following common practice in ASP planning [7].
That is, sequences of actions are guessed via choice rules (in Line 10), and the respective
successor states are derived via direct effect and frame axioms (in Line 20–22).

In more detail, the first three lines in Listing 2 furnish domain definitions, fixing
the sequence of time steps (time/1),4 the coordinates of board fields (dim/1), and
two-dimensional representations of the four possible directions (dir/2). The constant
horizon, used to define time/1, is expected to be provided via gringo’s command line
option -c (e.g. ‘-c horizon=10’). Predicate stop/4, which is the symmetric version of

4 The initial time point 0 is handled explicitly.



Listing 2. Plain encoding of ricocheting robots
1 time(1..horizon).
2 dim(1..dimension).
3 dir(-1,0;;1,0;;0,-1;;0,1).

5 stop( DX, DY,X, Y ) :- barrier(X,Y,DX,DY).
6 stop(-DX,-DY,X+DX,Y+DY) :- stop(DX,DY,X,Y).

8 position(R,X,Y,0) :- position(R,X,Y).

10 1 { move(R,DX,DY,T) : robot(R) : dir(DX,DY) } 1 :- time(T).
11 move(R,T) :- move(R,_,_,T).

13 halt(DX,DY,X-DX,Y-DY,T) :- position(_,X,Y,T), dir(DX,DY), dim(X-DX;Y-DY),
14 not stop(-DX,-DY,X,Y), T < horizon.

16 goto(R,DX,DY,X, Y, T) :- position(R,X,Y,T), dir(DX,DY), T < horizon.
17 goto(R,DX,DY,X+DX,Y+DY,T) :- goto(R,DX,DY,X,Y,T), dim(X+DX;Y+DY),
18 not stop(DX,DY,X,Y), not halt(DX,DY,X,Y,T).

20 position(R,X,Y,T) :- move(R,DX,DY,T), goto(R,DX,DY,X,Y,T-1),
21 not goto(R,DX,DY,X+DX,Y+DY,T-1).
22 position(R,X,Y,T) :- position(R,X,Y,T-1), time(T), not move(R,T).

24 :- target(R,X,Y), not position(R,X,Y,horizon).

Listing 3. Encoding part for optimization
24 goon(T) :- target(R,X,Y), T := 0..horizon, not position(R,X,Y,T).
25 :- goon(horizon).

27 :- move(R,DX,DY,T-1), time(T), not goon(T-1), not move(R,DX,DY,T).

29 #minimize{ goon(_) }.

barrier/4 from a problem instance, identifies all blocked field transitions. The initial
robot positions are fixed in Line 8.

At each time step, some robot is moved in a direction (cf. Line 10). Such a move can
be regarded as the composition of successive field transitions, captured by goto/6 (in
Line 16–18). To this end, predicate halt/5 provides temporary barriers due to robots’
positions before the move. To be more precise, a robot moving in direction (DX,DY)

must halt at field (X-DX,Y-DY) when some (other) robot is located at (X,Y), and an in-
stance of halt(DX,DY,X-DX,Y-DY,T) may provide information relevant to the move
at step T+1 if there is no barrier between (X-DX,Y-DY) and (X,Y). Given this, the
definition of goto/6 starts at a robot’s position (in Line 16) and continues in direction
(DX,DY) (in Line 17–18) unless a barrier, a robot, or the board’s border is encountered.
As this definition tolerates board traversals of length zero, goto/6 yields a successor
position for any move of a robot R in direction (DX,DY), so that the rule in Line 20–21
captures the effect of move(R,DX,DY,T). Moreover, the frame axiom in Line 22 pre-
serves the positions of unmoved robots, relying on the projection move/2 (cf. Line 11).

Finally, we stipulate in Line 24 that a robot R must be at its target position (X,Y)

at the last time point horizon. Adding directives ‘#hide. #show move/4.’ further
allows for projecting stable models onto the extension of the move/4 predicate.

The encoding in Listing 2 allows us to decide whether a plan of length horizon

exists. For computing a shortest plan, we have two options resting on extended ASP



systems. The first alternative is to augment our decision encoding with an optimization
directive. This can be accomplished by replacing the integrity constraint in Line 24 in
Listing 2 by the encoding part in Listing 3. The new rule in Line 24 indicates whether
some goal condition is (not) established at a time point, and compliance with target po-
sition(s) at the last time point horizon is checked by the integrity constraint in Line 25.
Once the goal is established, the additional integrity constraint in Line 27 ensures that
it remains satisfied by enforcing that the goal-achieving move is repeated at later steps
(without altering robots’ positions). Note that the #minimize directive in Line 29 aims
at few instances of goon/1, corresponding to an early establishment of the goal, while
further repetitions of the goal-achieving move are ignored. Our extended encoding al-
lows for computing a shortest plan of length bounded by horizon. If there is no such
plan, the problem can be posed again with an enlarged horizon.

For computing a shortest plan in an unbounded fashion, we can take advantage of
incremental ASP solving. This allows us to successively explore all bounds from 1
on until a plan is found. An incremental ASP encoding consists of three types of
rules: static, cumulative, and volatile ones. Static rules, indicated by #base, describe
step-independent knowledge. Rules that are accumulated over steps are declared with
#cumulative (along with a constant standing for the step number), whereas the ones
stated as #volatile are specific to each time step and discarded upon incrementing
the step counter.5 An incremental ASP encoding is obtained from the one in Listing 2 as
follows. First, delete Line 1 and all occurrences of time(T). Second, insert ‘#base.’
in Line 1, ‘#cumulative t.’ in Line 9, and ‘#volatile t.’ in Line 23. Third, re-
place all occurrences of variable T by the constant t or by t-1 in Line 13–18, respec-
tively. Finally, replace horizon in Line 24 by constant t. In doing so, we declare the
rules in Line 2–8 to be static, those in Line 10–22 to be cumulative, and Line 24 to be
volatile. Given this, an incremental ASP system first grounds the static part, and then it
successively grounds (replacing constant t by the current step number) and solves the
cumulative and volatile rules, incrementing the step counter until the first plan is found.

The incremental variant of Listing 2 can also be used in a reactive setting [12]. In
fact, the only change concerns the way we deal with consecutive target positions. For
this purpose, it is sufficient to replace the static target in each problem instance, for
example ‘target(red,5,2).’ in Listing 1, by the following choice rule:
1 { target(R,X,Y) : robot(R) : dim(X;Y) } 1.

This rule leaves the concrete target position open. Consecutive queries are then posed
to a reactive ASP system via a sequence of #volatile integrity constraints, like
‘:- not target(red,5,2).’ The volatile nature of each query guarantees that it
vanishes after it has been addressed. Note that, for the sake of comparability, we refrain
from modifying the initial robot positions. We discuss an experiment that simulates
“playing in rounds” in Section 3.

2.3 Advanced encoding

Next, we present an advanced encoding that differs from the above in two salient ways.
Its basic ideas are to guess states rather than actions and to split robots’ positions into

5 For a detailed introduction to incremental ASP, the interested reader is referred to [10, 11].



Listing 4. Advanced encoding of ricocheting robots
1 time(1..horizon).
2 dim(1..dimension).
3 dir(-1,0;;1,0;;0,-1;;0,1). aux(-1;1).

5 stop( DX, 0,Y,X ) :- barrier(X,Y,DX,0).
6 stop( 0, DY,X,Y ) :- barrier(X,Y,0,DY).
7 stop(-DX,-DY,F,L+DX+DY) :- stop(DX,DY,F,L).

9 spot(R, 1,X,0) :- position(R,X,_).
10 spot(R,-1,Y,0) :- position(R,_,Y).

12 same(R,A,RR,T) :- spot(R;RR,A,L,T), R != RR, T < horizon.

14 halt(R,DX,DY,L, T) :- spot(R,|DY|-|DX|,F,T), stop(DX,DY,F,L), T < horizon.
15 halt(R,DX,DY,L-DX-DY,T) :- same(R,|DY|-|DX|,RR,T), spot(RR,|DX|-|DY|,L,T),
16 dir(DX,DY), dim(L-DX-DY).

18 goto(R,DX,DY,L, T) :- spot(R,|DX|-|DY|,L,T), dir(DX,DY), T < horizon.
19 goto(R,DX,DY,L+DX+DY,T) :- goto(R,DX,DY,L,T), dim(L+DX+DY), not halt(R,DX,DY,L,T).

21 goto(R,|DX|-|DY|,L,T) :- goto(R,DX,DY,L,T).
22 halt(R,|DX|-|DY|,L,T) :- halt(R,DX,DY,L,T), dim(L-DX-DY).

24 1 { spot(R,A,L,T) : dim(L) } 1 :- robot(R), aux(A), time(T).
25 :- spot(R,A,L,T), time(T), not goto(R,A,L,T-1).

27 bump(R,A,L,T) :- spot(R,A,L,T), time(T), not spot(R,A,L,T-1).
28 bump(R,A,L,T) :- bump(R,A,L,T-1), time(T), not goon(T-1).
29 bump(R,A, T) :- bump(R,A,_,T).
30 :- bump(R,A,L,T), dim(L+D) : aux(D), not halt(R,A,L,T-1).
31 :- time(T), not #count{ bump(_,_,_,T) } 1.
32 :- time(T), not bump(R,A,T) : robot(R) : aux(A).
33 :- bump(R,A,T-1;T), goon(T-1).

35 goon(T) :- target(R,X,_), T := 0..horizon, not spot(R, 1,X,T).
36 goon(T) :- target(R,_,Y), T := 0..horizon, not spot(R,-1,Y,T).
37 :- goon(horizon).

39 move(R,DX,DY,T) :- bump(R,|DX|-|DY|,L,T), halt(R,DX,DY,L,T-1) : dim(L+1),
40 dir(DX,DY), 0 < DX+DY.
41 move(R,DX,DY,T) :- bump(R,|DX|-|DY|,T), not move(R,-DX,-DY,T),
42 dir(DX,DY), DX+DY < 0.

horizontal and vertical coordinates. The first idea is conceptually different from stan-
dard encodings in ASP planning, like the one above, and has the advantage that states
need not be constructed by effect and frame axioms. The second idea is well-known in
automated planning and leads to a significant reduction in the size of ground instantia-
tions. On the other hand, it makes the encoding more complex since robots’ positions
are not given directly anymore. Further modeling techniques are described on the fly.

Our advanced encoding is given in Listing 4. Apart from two auxiliary atoms,
aux(-1) and aux(1), to distinguish horizontal and vertical coordinates, Line 1–3 are
as in Listing 2. Moreover, the definition of stop/4 is analogous, except that its format is
lined up for one-dimensional movements. In particular, columns X and rows Y are trans-
posed in Line 5 to let stop(DX,DY,F,L) represent that (F,L+DX+DY) is inaccessible
from (F,L) (cf. Line 7), where F is a fixed row or column, respectively.

The one-dimensional layout is continued with predicate spot/4 in Line 9, 10,
and 24, where atoms spot(R,1,X,T) and spot(R,-1,Y,T) provide the column X



and row Y of robot R at time point T. Note that such coordinates are guessed, rather than
derived from moves, in Line 24. In order to compensate for the split positions, the rule
in Line 12 defines same(R,A,RR,T) (for all but the last time point horizon) to express
that distinct robots R and RR are in a common column (A = 1) or row (A = -1).

The one-dimensional counterparts halt/5 and goto/5 of corresponding predicates
in Listing 2 capture the effect of moving a robot R in direction (DX,DY) at step T+1,
possibly altering its column (|DX|-|DY| = 1) or row (|DX|-|DY| = -1). In fact, bar-
riers and other robots RR sharing the coordinate of R on the orthogonal axis |DY|-|DX|
block transitions in direction (DX,DY). This is captured by the definition of halt coor-
dinates for R in direction (DX,DY) in Line 14–16. In turn, starting from its coordinate L
on axis |DX|-|DY| (in Line 18), a robot R continues in direction (DX,DY) (in Line 19)
unless a halt coordinate or the board’s border is encountered.

Given halt/5 and goto/5, the rules in Line 21 and 22 provide the abstractions
halt/4 and goto/4, which summarize coordinates affected by horizontal or vertical
moves by collapsing directions (DX,DY) to |DX|-|DY|. As a minor optimization, we
drop coordinates at the board’s border in halt/4 because moves may always halt there.

With predicates providing properties of the predecessor state at hand, we can now
constrain successor states guessed in Line 24. First of all, the reachability of successor
coordinates along axes is checked by the integrity constraint in Line 25; that is, no robot
is allowed to cross barriers or other robots’ positions. A new coordinate L for a robot R
on axis A at time step T is indicated by deriving bump(R,A,L,T) in Line 27; such
atoms point to moves, and the integrity constraint in Line 31 restricts their number to
(at most) one per time step. Moreover, the integrity constraint in Line 30 checks that
halting at a new coordinate is admissible, which is trivially the case for coordinates
at the board’s border. The second possibility of deriving bump(R,A,L,T) in Line 28,
by which a goal-achieving move at T-1 is (necessarily) repeated at time step T, relies
on the absence of goon(T-1) (defined in Line 35–36) for indicating that some goal
condition is not yet established. Along with the integrity constraint in Line 31, the rule
in Line 28 suppresses any further move after establishing the goal, while still supplying
the projection bump/3 (cf. Line 29). The latter is investigated by the integrity constraint
in Line 32, stipulating some instance of bump/3 to hold at each time step.6 Finally, the
integrity constraint in Line 33 discards redundant successive moves of a robot R on the
same axis A at time steps T-1 and T unless the goal is established at T-1.

As in Listing 3, the integrity constraint in Line 37 checks compliance with tar-
get position(s) at the last time point horizon. Moreover, the definition of move/4 in
Line 39–42 provides the same format for moves as obtained with the plain encoding
in Listing 2, while not carrying relevant information regarding the existence of a plan.
Furthermore, note that our advanced encoding can be customized to compute shortest
plans, either by adding the #minimize directive in Line 29 in Listing 3 or by devising
an incremental ASP encoding according to the scheme described in Section 2.2.

6 W.l.o.g., we assume that the goal is not readily established at the initial time point 0.



2.4 Output format and visualization

The Ricochet Robots visualization tool robotviz allows for displaying the board with
barriers, robots, and targets as well as for animating robot moves in a stepwise fashion.
robotviz is written in C++ and uses clasp’s textual output as input. That is, stable models
are simply piped into robotviz, where they are parsed with a simple string parser. The
first stable model is used for interactive visualization. Also, depending on the input,
only board and barriers can be displayed or additional robots and a series of moves. For
an impression, note that Figure 1 shows a snapshot of robotviz. It allows us to visually
observe that the yellow robot is trapped in its corner. In addition, the plan of moving the
red robot down, right, up, and left is displayed below the board in terms of a sequence
of arrows in moved robots’ colors, and the steps can further be traced via cursor keys.

The input format is designed for multiple encodings. For this, it is sufficient that cer-
tain key atoms belong to the solver’s output and are thus declared via appropriate #show
statements. Barriers are extracted from atoms with predicate barrier/4. Analogously,
the robots’ target and starting positions as well as their moves have to be provided for
the interactive step-by-step visualization. If the input lacks position/3 or move/4, only
the board is displayed. Finally, the atom dim(dimension) must be shown to indicate
the board size (otherwise it would not be visible in the solver output).

3 Experimental case studies

Our benchmark set is based on an authentic board designed by Alex Randolph of size
16×16. The initial robot positions are in the corners of the board, and the red robot
must reach some target position. Given this setting, we obtain a collection of 256 bench-
mark instances by considering all available fields as target positions. With very few ex-
ceptions, the resulting instances are satisfiable when given enough steps, where about
twelve steps are required on average. In the following, we first focus on a comparison of
encodings as well as solving strategies for decision and optimization tasks. Afterwards,
we extend the scope to incremental and reactive ASP systems. All our experiments
were run on a Linux machine equipped with two Quad-Core Xeon E5520 2.27GHz
processors and 24GB memory, limiting each run to 600 seconds wall-clock time.

3.1 Encodings and configurations

In an ASP production mode, the most important factor is a scalable encoding. In fact,
our advanced encoding in Listing 4 has a clear edge on the plain one in Listing 2 as
regards grounding. This can roughly be quantified by a factor of five in terms of time
consumption and ground instantiation size. However, space savings due to split posi-
tions also incorporate some indirection in referring to the actual fields of robots. Hence,
it is interesting to compare search performance relative to encodings in solving decision
and optimization tasks. To this end, we fix the constant horizon to 20 steps, which (in
all but two cases) is sufficient to find plans for satisfiable instances.

In what follows, we investigate the impact of encodings and settings on solver per-
formance. To this end, we consider clasp (2.1.3) in its default configuration (including



Decision problem Optimization problem
Runtime Timeout PAR10 Runtime Timeout PAR10

plain

clasp w berkmin 144 25 671 334 99 2422
clasp w vsids 136 37 916 299 94 2281
clasp, manually configured 103 14 398 234 69 1689
clasp, automatically configured 150 28 741 259 84 2031
clasp, multi-threaded 62 4 146 173 50 1178

advanced

clasp w berkmin 207 63 1536 302 106 2537
clasp w vsids 140 48 1152 315 114 2720
clasp, manually configured 65 12 318 192 61 1478
clasp, automatically configured 44 9 234 136 35 874
clasp, multi-threaded 24 3 87 123 37 904

Table 1. Solving decision and optimization problems with different encodings and clasp settings

--heuristic=berkmin) and the variant with --heuristic=vsids, both serving as
points of reference. We further contrast these two settings with the following ones:

1. the clasp configuration used for the ASP competition in 2013; originally obtained
by manual tuning and extensive experimentation; now available via the option
--configuration=handy in clasp (2.1.3),

2. an automatically generated clasp configuration, obtained by means of the algorithm
configuration system smac (2.02.00; [13]), and

3. a multi-threaded clasp configuration using a portfolio of four competitively search-
ing threads (cf. [14]); originally obtained by manual tuning and extensive experi-
mentation; now available via the option --configuration=chatty.

Following common practice in automatic algorithm configuration, we selected the best
outcome from ten independent runs of smac on a training set of instances relying on a
different Ricochet Robots board than our benchmarks. Each smac run was allotted 100
hours for tuning 94 (discrete and continuous) parameters of clasp, using a cutoff of 600
seconds wall-clock time for clasp.

Table 1 provides average runtimes in seconds (accounting for timeouts by 600 sec-
onds), absolute numbers of timeouts, and average times in seconds while penalizing
timeouts by 6000 seconds (PAR10) over our 256 benchmark instances. We applied the
aforementioned clasp configurations to solve the decision problem of plan existence
as well as the optimization problem of shortest plan computation, relying on the plain
encoding in Listing 2 or the advanced encoding in Listing 4, respectively.

Interestingly, the reference configurations with berkmin or vsids, respectively,
perform significantly better with the plain than the advanced encoding. Analyzing the
search statistics reported by clasp, on the one hand, we observed that the five times
smaller ground instantiation size with the advanced encoding brings about the same
amount of higher raw speed but, on the other hand, leads to roughly one order of mag-
nitude more conflicts upon search. The trade-off between compactness and search ef-
forts shifts towards the advanced encoding for the manually or automatically configured



clasp w berkmin clasp w vsids
Runtime Timeout PAR10 Runtime Timeout PAR10

clasp (decision) 227 71 1725 86 27 655
clasp (optimization) 326 114 2731 224 77 1848
unclasp 574 245 5742 567 242 5671
iclingo 229 83 1980 186 66 1578
oclingo 216 80 1903 179 62 1487

Table 2. Solving Ricochet Robots with different ASP systems

clasp settings, although the plain encoding generally still yields fewer conflicts.7 Also
note that automatic configuration via smac was accomplished relative to the advanced
encoding. Thus, it performs worse than the manually selected configuration with the
plain encoding. With the advanced encoding for which it has been tuned, smac’s con-
figuration turns out as the best in single-threaded settings. In fact, it even surpasses
multi-threaded settings regarding the number of timeouts in optimization, while the
parallelism brought by multi-threading exhibits significantly improved robustness oth-
erwise. The success of smac (with the advanced encoding) confirms analogous results in
ASP [15, 16] and related areas [17, 18], showing that the burden of solver configuration
can and should be taken off the user. Comparing decision and optimization problems,
Table 1 further yields consistent relative performances of configurations, suggesting
that underlying problem characteristics are quite similar in solving either kind of task.

3.2 ASP solving technologies

This section is dedicated to the empirical comparison of different ASP solving tech-
nologies. To this end, we concentrate on the advanced encoding given in Section 2.3.
As points of reference, we consider clasp (1.3.10) for solving decision and optimization
problems with a fixed horizon of 20 steps.8 Running this version (rather than 2.1.3) is
motivated by its usage in the ASP systems we compare: the clasp derivative unclasp
(0.1; [19]), pursuing an unsatisfiability-based approach to optimization; the incremen-
tal ASP system iclingo (3.0.5; [10, 11]), performing iterative deepening by means of
stepwise grounding and solving; and the reactive ASP system oclingo (3.0.92; [12]),
extending iclingo with online capacities to solve sequences of queries. We benchmark
all ASP systems in two settings, performing search with clasp in its default configura-
tion (including --heuristic=berkmin) and the variant with --heuristic=vsids.

Table 2 shows experimental results, as before providing average runtimes, absolute
numbers of timeouts, and average times penalizing timeouts by 6000 seconds (PAR10).
Although unclasp’s approach to optimization can be highly effective (cf. [19]), it does

7 Ground instantiations induce about 800k constraints with the plain encoding and 140k con-
straints with the advanced encoding. The average number of conflicts reported by clasp in
its default configuration is 65k with the plain encoding and 510k with the advanced encod-
ing. The latter number reduces to 127k conflicts on average in smac’s configuration, while no
comparably substantial reductions are achieved with the plain encoding in any configuration.

8 Grounding times of gringo are negligible, i.e., less than 0.2 seconds for our 16×16 board.



not work well for Ricochet Robots. In fact, unclasp aims at localizing substructures of
a problem responsible for penalties within a #minimize statement. For the one in List-
ing 3, this means that atoms with predicate goon/1, indicating that some goal condition
is not established at a time point, are gradually admitted to hold. Given that the estab-
lishment of goals, as for instance expressed by target(red,5,2), relies on the whole
trajectory from the initial time point 0, reasons for penalties can hardly be subdivided
into (independent) local substructures. The inherent causal connection between states
in a planning problem thus undermines unclasp’s approach to optimization.

The incremental ASP system iclingo computes shortest plans in an unbounded
fashion by gradually extending the horizon. To be more precise, starting at 1, iclingo
grounds and solves (the incremental variant of) Listing 4 step by step until the first sta-
ble model, corresponding to a shortest plan, is obtained. Accordingly, the performance
of clasp in optimization constitutes the reference for assessing iclingo, and the reduc-
tion of timeouts (31 with --heuristic=berkmin and 11 with --heuristic=vsids)
shows the success of iclingo’s incremental approach. For one, this relies on the fact that
stepwise grounding avoids the instantiation of rules for “unnecessary” time points. For
another, recorded conflict information may be passed along between successive solving
steps given that the solving component of iclingo remains in place until a plan is found.
That is, grounding as well as solving efforts spent on unsatisfiable (decision) problems
with too small horizons still contribute to and potentially foster progress in the sequel.

Going further beyond iclingo, the reactive ASP system oclingo maintains its solv-
ing component for dealing with consecutive target positions. In this way, recorded con-
flict information can be shared among all benchmark instances, which enables oclingo
to exploit similarities in solving a series of planning problems. We thus obtain a re-
duction of timeouts in comparison to iclingo (3 with --heuristic=berkmin and 4
with --heuristic=vsids). However, note that oclingo does not decrease the plan-
ning horizon when a new target is entered since instantiations of rules for time points
remain in the system once they have been produced in view of a query. As a conse-
quence, a plan is not guaranteed to be shortest when its target position can be reached
without incrementing the step counter. We aim at overcoming this in the future by ex-
tending incremental and reactive ASP solving to optimization, via which shortest plans
could be addressed without withdrawing any formerly produced ground rules.

An alternative experiment performed with oclingo simulates “playing in rounds” by
taking robot positions after achieving a goal as initial positions for the next target. Using
the same sequence of targets as above, oclingo with --heuristic=vsids completed
250 instances in 26 seconds average runtime, thus exhibiting significant improvements
over the setting with fixed initial positions. This phenomenon is probably related to the
lexicographical order of our sequence of targets, and we aim at further experiments with
less regular target sequences in the near future.

4 Discussion

Alex Randolph’s board game Ricochet Robots offers a rich and versatile benchmark for
ASP. As it stands, it represents a simple multi-agent planning problem in which each
agent, i.e., robot, has limited sensing capacities (that is, only bumps are detected). This



setting leaves room for numerous interesting extensions. For example, we may con-
sider competing or collaborating robots, simultaneous moves, and conceive compelling
multi-agent scenarios. Also, the addition of resources like fuel or keys are conceptually
interesting extensions, not to mention the plenty variants of the board game available on
the web. Moreover, the potential of Ricochet Robots is even beyond ASP given that it
can be modeled in many other paradigms, like action and planning languages, constraint
languages, or in terms of Satisfiability testing.

In this paper, we started by elaborating upon two alternative encodings, one follow-
ing traditional approaches to ASP planning and another centered around states rather
than actions. More disparate encodings will result from the ASP competition in 2013,
where Ricochet Robots is included in the modeling track. In addition, we provided the
graphical tool robotviz for visualizing boards as well as solutions to the Ricochet Robots
problem. The goal of this is to ease acquaintance with the game and to increase its at-
tractiveness, also in view of teaching ASP. The visualization tool robotviz along with
encodings and instances of Ricochet Robots are available at [20].

We illustrated the versatility of the benchmark by conducting two transverse empir-
ical case studies. The first one aimed at assessing the impact of modeling techniques
on the performance of ASP systems. This was flanked by an investigation of algorithm
configuration and multi-threading as means to speed-up search, which demonstrated the
capabilities of automatic solver configuration and parallelism. The second part of our
study contrasted distinct ASP solving technologies in a uniform setting. Here, incre-
mental and reactive ASP solving showed to be effective for computing shortest plans.
Given that the original Ricochet Robots game proceeds in rounds, continuing from the
final configuration of the previous round with a new target, automated support of such
application scenarios in the future promises a rich source of reactive ASP benchmarks.

Our case studies are of course not sufficient for general claims but show the prospect
of having a benchmark for evaluating different aspects in a uniform setting. This is cer-
tainly important in view of establishing a production mode for ASP when faced with
singular real-world applications. In fact, the development of a robust ASP-based so-
lution to an application problem must account for several interdependent factors and
eventually converge to an integrated approach dealing with them. For one, the problem
encoding predetermines the prospects of solving methods on problem instances, and
its conception thus deserves careful consideration. Second, the application task desig-
nates appropriate solving methods, where decision and optimization as well as bounded
and unbounded approaches can be distinguished. Finally, algorithm configuration and
parallelism are powerful means to improve the efficiency of a solving method.
Acknowledgments. This work was partially funded by DFG grant SCHA 550/9-1.
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