
Surviving Solver Sensitivity:
An ASP Practitioner’s Guide
BRYAN SILVERTHORN1, YULIYA LIERLER2, and MARIUS
SCHNEIDER3

1 Department of Computer Science
The University of Texas at Austin
Austin, TX, USA
bsilvert@cs.utexas.edu

2 Department of Computer Science
University of Kentucky
Lexington, KY, USA
yuliya@cs.uky.edu

3 Institute of Computer Science
University of Potsdam
Potsdam, Germany
manju@cs.uni-potsdam.de

Abstract
Answer set programming (ASP) is a declarative programming formalism that allows a practi-
tioner to specify a problem without describing an algorithm for solving it. In ASP, the tools for
processing problem specifications are called answer set solvers. Because specified problems are
often NP complete, these systems often require significant computational effort to succeed. Fur-
thermore, they offer different heuristics, expose numerous parameters, and their running time is
sensitive to the configuration used. Portfolio solvers and automatic algorithm configuration sys-
tems are recent attempts to automate the problem of manual parameter tuning, and to mitigate
the burden of identifying the right solver configuration. The approaches taken in portfolio solvers
and automatic algorithm configuration systems are orthogonal. This paper evaluates these ap-
proaches, separately and jointly, in the context of real-world ASP application development. It
outlines strategies for their use in such settings, identifies their respective strengths and weak-
nesses, and advocates for a methodology that would make them an integral part of developing
ASP applications.

1998 ACM Subject Classification I.2.2 Automatic analysis of algorithms

Keywords and phrases algorithm configuration, algorithm selection, portfolio solving, answer
set programming, algorithm portfolios

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Answer set programming (ASP) [19, 20] is a declarative programming formalism based on
the answer set semantics of logic programs [9]. Its origins go back to the observation that the
language of logic programs can be used to model difficult combinatorial search problems so
that answer sets correspond to the solutions of a problem. In the declarative programming
paradigm, a software engineer expresses the logic of a computation without describing its
control flow or algorithm. Thus a declarative program is a description of what should be
accomplished, rather than a description of how to go about accomplishing it. As a result,
Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Surviving Solver Sensitivity: An ASP Practitioner’s Guide

declarative programming requires tools that process given problem specifications and find
their solutions. In ASP such systems are called answer set solvers. They implement a difficult
computational task, since the problem of deciding whether a logic program has an answer
set is NP-complete. Despite the complexity of the task, ASP and its tools have proved to
be useful; ASP has been used to model and solve problems in many real-world domains,
including computational biology and linguistics.

The computational methods of top-performing answer set solvers such as cmodels [10]
and clasp [8, 5] are strongly related to those of satisfiability (SAT) solvers—software systems
designed to find satisfying assignments for propositional formulae [11]. It is well known that
modern SAT solvers are sensitive to parameter configuration. The same holds for answer
set solvers. These systems typically implement numerous heuristics and expose a variety of
parameters to specify the chosen configuration. For example, the command line

clasp --number=1 --trans-ext=no --eq=5 --sat-prepro=0 --lookahead=no
--heuristic=Berkmin --rand-freq=0.0 --rand-prob=no
--rand-watches=true --restarts=100,1.5 --shuffle=0,0
--deletion=3.0,1.1,3.0 --strengthen=yes
--loops=common --contraction=250 --verbose=1

represents the default configuration of answer set solver clasp (version 2.0.2). On one hand,
a rich set of heuristics implemented in clasp makes this solver successfully applicable to a
variety of problem domains. On the other hand, given an application at hand, it is unclear
how to go about picking the best configuration of the system. Gebser et al. [7] write:

In fact, we are unaware of any true application on which clasp is run in its
default settings. Rather, in applications, “black magic” is used to find suitable search
parameters.

We believe that black magic refers to manual tuning that relies on “rules of thumb”, solver
familiarity, and the user’s domain expertise. Unfortunately, it is unreasonable to expect
that a regular ASP application developer possesses enough knowledge about the internals
of answer set solvers and their heuristics to understand the full implications of picking a
particular configuration. Furthermore, requiring such extraordinary expertise would diminish
the idea of declarative programming itself.

In this paper we evaluate some of the tools available for addressing the black magic
problem—including portfolio solvers such as claspfolio [7] and borg [23], and automatic
algorithm configuration systems such as paramils [14]—in the context of specific problem
domains in ASP, highlighting real-world applications. Our goal is not to develop a novel
system, but to aid ASP application developers, especially those hoping to leverage existing
tools for portfolio solving and configuration tuning. We provide a case study that illustrates
and evaluates alternative methodologies in three practical domains: weighted sequence [18],
natural language parsing [17], and Riposte [2]. The struggle to deal with solver sensitivity
in the former two domains, in fact, triggered the research described in this paper. Our
hope is to identify a systematic way to remove haphazard manual tuning and performance
evaluation from the process of applying ASP tools to a new domain. We focus our attention
on tuning the ASP solver clasp (version 2.0.2). The configuration space of clasp consists
of 8 binary, 7 categorical, and 25 continuous parameters, which makes us believe that this
system alone is a good choice for evaluation. Nevertheless, all of the methods investigated
here may accommodate any other solver of interest, as well as multiple solvers.

Six candidate strategies are studied:



BRYAN SILVERTHORN, YULIYA LIERLER, and MARIUS SCHNEIDER 3

1. selecting the best single configuration from among the 25 representative clasp configura-
tions used by claspfolio (a clasp-based portfolio solver) for each domain;

2. constructing a “solver execution schedule” over those 25 configurations;
3. applying claspfolio, trained on its large set of ASP instances, to each domain without

further modification;
4. training a portfolio specifically on each application domain using the 25 clasp configura-

tions of claspfolio;
5. tuning a single clasp configuration specifically for each domain using paramils; and
6. training a portfolio specifically on each application domain using multiple configurations

produced by tuning clasp, using paramils, for individual instances of the domain.
We believe that these options are representative of modern approaches for dealing with solvers’
configuration sensitivity, able to illustrate the strengths and weaknesses of each approach.
Also, to the best of our knowledge, the evaluation of strategies 4 and 6 on individual problem
domains is unique to this paper.

We start by describing the domains used in the proposed case study. Section 3 gives an
overview of portfolio methods in general together with the details of the strategies 1, 2, 3,
and 4. Section 4 outlines the general principles behind the algorithm configuration system
paramils and describes the details of strategy 5. Strategy 6 is specified in Section 5. We
conclude with a thorough analysis of the methods’ performance in practice.

2 Review of Application Domains

In this work we compare and contrast several methodologies on three domains that stem
from different subareas of computer science. This section provides a brief overview of these
applications. We believe that these domains represent a broad spectrum of ASP applications,
and are thus well-suited for the case study proposed. The number of instances available for
each application ranged from several hundred to several thousand. The complexity of the
instances also varied. The diversity of the instances and their structure played an important
role in our choice of domains.

The weighted-sequence (wseq) domain is a handcrafted benchmark problem that was
used in the Third Answer Set Programming Competition1 (aspcomp) [3]. Its key features are
inspired by the important industrial problem of finding an optimal join order by cost-based
query optimizers in database systems. In our analysis we used 480 instances of the problem,
which were generated according to the metrics described by Lierler et al. [18].

The natural language parsing (nlp) domain formulates the task of parsing natural
language, i.e., recovering the internal structure of sentences, as a planning problem in ASP. In
particular, it considers the combinatory categorical grammar formalism for realizing parsing.
Lierler and Schüller [17] describe the procedure of acquiring instances of the problem using
CCGbank2, a corpus of parsed sentences from real world sources. In this work we study
1,861 instances produced from the CCGbank data.

Riposte (rip)3 is a project in computer aided verification, where ASP is used to generate
counterexamples for the FDL intermediate language of the spark program verification system.
These counterexamples point at the problematic areas of the analyzed code. We evaluate

1 https://www.mat.unical.it/aspcomp2011/OfficialProblemSuite. wseq was referred to as a bench-
mark number 28, Weight-Assignment Tree.

2 http://groups.inf.ed.ac.uk/ccg/ccgbank.html.
3 https://forge.open-do.org/projects/riposte

https://www.mat.unical.it/aspcomp2011/OfficialProblemSuite
http://groups.inf.ed.ac.uk/ccg/ccgbank.html
https://forge.open-do.org/projects/riposte


4 Surviving Solver Sensitivity: An ASP Practitioner’s Guide

instances created from the application of Riposte to a spark implementation of the Skein
hash function; these 3,133 instances were shared with us by Martin Brain in February 2012.

3 Algorithm Portfolio Methods

In portfolio solving, an “algorithm portfolio method” or “portfolio solver” automatically
divides computation time among a suite of solvers. SAT competitions4 have provided a rich
source of diverse solvers and benchmark instances, and have spurred the development of
portfolio solving. Several different types of portfolio solvers exist. These range from simple
methods that divide computational resources equally among a hand-selected suite of solvers,
to more complex systems that make informed decisions by analyzing the appearance of
instances. The development of the ASP portfolio solver claspfolio [7] was largely inspired
by the advances of this approach in SAT, and especially by the ideas championed by the
portfolio SAT solver satzilla [26].

Gebser et al. [6] suggest that portfolio solving in general and claspfolio in particular is
a step toward overcoming the sensitivity of modern answer set solvers to parameter settings.
Nevertheless, the extent to which existing portfolio solvers achieve this goal on individual
application domains is an open issue. In this paper, we shed light on two questions related to
it. First, how well does a general-purpose portfolio, trained on many different instance types,
perform when compared against the default clasp configuration on a particular domain?
Second, what benefits are gained from moving from general-purpose to application-driven
portfolios, by training a portfolio solver specifically for the application in question?

Two different portfolio systems are employed in considering these questions: the clasp-
folio algorithm-selection system is used as a general-purpose portfolio, and the borg
algorithm-portfolio toolkit is used to construct domain-specific portfolios based on the mapp
architecture [23]. Both of these approaches are described below.

3.1 Algorithm Selection and claspfolio

Systems for automatic algorithm selection, such as satzilla for SAT and claspfolio
for ASP, leverage the appearance of an instance to make decisions about which solver or
configuration to apply. An algorithm selection system typically involves two components:

a suite or portfolio of different solvers or solver configurations, and
a solver (or configuration) selector.

The selector is responsible for picking the best-performing solver for a particular instance.
The definition of “best-performing” is arbitrary, but expected run time is often used. The
efficiently computable properties of an instance on which these methods base their decisions
are called numerical features of that instance.

Techniques from supervised machine learning are used to build the selector component.
Thousands of runs are observed during a training phase, and each run is labeled with its
performance score and the features of its associated instance. These examples are then used
to learn a function that maps an instance, using its features, directly to a solver selection
decision. Using this architecture, algorithm-selection portfolios have been top performers at
the SAT and ASP competitions. For example, the portfolio answer set solver claspfolio
was the winner of the NP category in the system track of aspcomp.

4 http://www.satcompetition.org/.

http://www.satcompetition.org/


BRYAN SILVERTHORN, YULIYA LIERLER, and MARIUS SCHNEIDER 5

The claspfolio (version 1.0.1) solver employs 25 representative configurations of clasp
(version 2.0.2), and a feature set that includes properties of an ASP instance ranging from
the number of constraints to the length of clauses learned from short initial runs. The choice
of configurations of clasp that were used in building claspfolio relied on the expertise
of Benjamin Kaufmann, the main designer of clasp, and on black magic. claspfolio5

was trained on 1,901 instances from 60 different domains. It will be used to evaluate the
performance of general-purpose portfolio, one designed to operate on a wide variety of
instance types. A different system, but one that exhibits comparable performance, is used to
evaluate the performance of domain-specific portfolio solvers. It is described next.

3.2 Solver Scheduling, mapp, and borg
We utilize the borg toolkit6 as our experimental infrastructure. Like tools such as runsolver
[21], borg executes solvers while measuring and limiting their run time. It is also designed
to collect and analyze solver performance data over large collections of instances, to compute
instance feature information, and to construct different portfolio solvers.

To build domain-specific portfolios, borg instantiates the “modular architecture for
probabilistic portfolios” (mapp) [23]. Unlike an algorithm selection method, mapp computes
the complete solver execution schedule that approximately maximizes the probability of
solving the instance within the specified run time constraint. A solver execution schedule
consists of one or more sequential calls to possibly different solvers, where the last call is
allocated all remaining runtime.

Unlike an algorithm selection portfolio, then, mapp may run more than one solver on an
instance. This strategy has proved to be effective. Earlier versions of mapp [24], built for a
portfolio of pseudo-Boolean (PB) solvers, took first place in the main category of the 2010
and 2011 PB competitions.

Two different types of mapp portfolios are evaluated:
mapp−, which does not use instance features, and thus consistently executes a single
solver execution schedule computed over the run times of all training instances, and
mapp+, which uses instance features to tailor each execution schedule to a given instance.

We used the borg framework to create mapp portfolios using the same 25 configurations of
clasp employed by claspfolio. This will allow us to more fairly compare the effectiveness of
the application-driven portfolio-solving approach studied here to that of the general-purpose
claspfolio system. Furthermore, we use claspfolio itself to compute instance-specific
features for mapp+. As a result, mapp+ tailors a solver execution schedule to each instance
using the same features available to claspfolio.

We also use borg to select the “best single” (bestsingle) configuration of clasp, from
among those 25, that maximizes the probability of successfully solving an instance of the
training set.

Whether they employ pure algorithm selection or solver execution scheduling, portfolio
methods have repeatedly proved successful on collections of competition instances. Such
collections include instances of many different problems. Section 6 evaluates their behavior
instead on collections of instances drawn entirely from each of our representative domains.

The next section discusses an orthogonal methodology for handling solver sensitivity.
Instead of marshalling multiple fixed configurations, it follows a local search strategy through

5 http://potassco.sourceforge.net/#claspfolio
6 http://nn.cs.utexas.edu/pages/research/borg/.

http://potassco.sourceforge.net/#claspfolio
http://nn.cs.utexas.edu/pages/research/borg/


6 Surviving Solver Sensitivity: An ASP Practitioner’s Guide

the configuration space of a solver, attempting to identify the best-performing single configu-
ration on a domain.

4 Automatic Algorithm Configuration

The success of portfolio solving in competition demonstrates that selecting a solver’s configu-
ration is important. This success, however, leads to an obvious question: instead of focusing
on the selection of an existing configuration, can we obtain a new configuration that performs
better (or best) on a particular domain? This paper examines this possibility by applying a
tool for automatic algorithm configuration to clasp on our three application domains.

We take paramils7 [14] (version 2.3.5) as a representative of automatic algorithm
configuration tools. Other systems of this kind include smac [12, 13] and gga [1]. paramils
is based on iterative local search in the configuration space, and evaluates the investigated
configurations on a given training set of instances. Its focusedILS approach allows it to
focus the evaluation on a subset of the given instances, and thus to assess the quality of
a configuration more quickly. This subset is adaptively extended after each update of the
current suboptimal solution. The idea behind this approach is that a configuration that
performs well on a small subset is also a good choice for the entire instance set. We designed
our algorithm configuration experiments based on this observation.

In the experiments we tuned clasp, with the help of paramils, on a randomly sampled
subset of 50 instances for each of the domains. The maximal cutoff time of each clasp call
was 1,200 seconds, the tuning time was 120,000 seconds, and the minimization of the average
runtime was the optimization objective. Since paramils uses a local search approach, it (i)
is non-deterministic and (ii) can become trapped in a local optimum. Therefore, we ran the
paramils experiment ten times, independently, and afterwards chose the configuration with
the best performance.

For all experiments, we used a discretized configuration space of clasp selected by
Benjamin Kaufmann. It is similar to the parameter file used in the experiments of Gebser et
al. [7], and is available online at http://www.cs.uni-potsdam.de/wv/claspfolio/.

5 Domain-Specific Portfolio Synthesis

An automatic algorithm configuration system such as paramils generates a single configura-
tion tuned on a set of many instances. On the other hand, the assumption made by portfolio
methods is that multiple configurations exhibit complementary strengths on a distribution of
instances. If this assumption does not hold on some domain for a standard suite of solvers, is
it possible to use automatic algorithm configuration to generate a new suite of complementary
solvers? Systems such as Hydra have explored this possibility in SAT [25]. Here, we evaluate
a simple strategy for doing so in ASP, leveraging paramils. In this protocol, we
1. randomly sample a set of N instances from the domain,
2. use paramils to tune a configuration of clasp specifically for each instance,
3. collect training data for each configuration across the entire domain, and
4. construct a portfolio using those training data.
This methodology follows from the assumption that multiple distinct instance subtypes exist
in the domain, and that instances belonging to these subtypes will thus be present in the

7 http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

http://www.cs.uni-potsdam.de/wv/claspfolio/
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/


BRYAN SILVERTHORN, YULIYA LIERLER, and MARIUS SCHNEIDER 7

random sample. By tuning a configuration to each instance, and therefore to each subtype,
a portfolio of complementary solvers may emerge.

In our evaluations, we use N = 20 instances sampled from each domain to test this
possibility in the set of experiments described next. We applied the same paramils settings
as described in previous section, with the exception of running paramils only once, instead of
ten times, to tune clasp on each of the 20 instances. Afterwards, we selected 16 configurations
for wseq, 16 for nlp and 6 for rip, which were found on instances with runtimes longer than
0.2 seconds on average. Typically, all inspected clasp configurations performed comparably
for these easy instances. Once again we utilized the borg toolkit to build the kind of
portfolio solvers described in Section 3.2 for each of the studied domains, in this case using
the configurations found by paramils.

6 Experimental Results

The experiments in this section compare and contrast the approaches discussed for handling
solver sensitivity in ASP. To recap, we will compare strategies 1–6, summarized in the
introduction, by measuring the performance of the bestsingle, mapp, and paramils-based
solvers trained with various clasp configurations and on different training sets. In addition,
we will present the performance of:

claspfolio,
the default configuration of clasp, and
the oracle portfolio, also called the virtual best solver, which corresponds to the minimal
run time on each instance given a portfolio approach with perfect knowledge.

The configurations found by paramils are not included in the portfolios of bestsingle,
claspfolio, mapp and oracle. All solver runs were collected on a local cluster (Xeon
X5355 @ 2.66GHz) with a timeout set to 1,200 CPU seconds.

We use the standard technique of five-fold cross validation to get an unbiased evaluation.
Each collection of instances is split into pairs of training and test sets. In five-fold cross
validation, these pairs are generated by dividing the collection into five disjoint test sets of
equal size, with the instances left out of each test set used to form each training set.

First, to illustrate the potential effectiveness of portfolio methods, Table 1 presents the
performance of claspfolio and mapp (trained with the claspfolio configurations on the
claspfolio training set) on the aspcomp instances from the NP category in the system
track. Note that the performance of claspfolio and of the mapp+ solver appear quite
similar in this situation. This performance similarity allows us to take the mapp+ approach
as representative of portfolio methods in general in our evaluations. These results show
that portfolios are clearly effective on heterogeneous collections of instances that include
multiple qualitatively different problem domains. It is less clear, however, that multiple
complementary solver configurations exist across instances within a single problem domain.

To answer the question of whether portfolio solving provides any benefit on individual
problem domains, Figure 1 presents performance curves for experiments run on each domain
separately, under five-fold cross validation. bestsingle, the mapp portfolios, and oracle
were all trained on each specific domain (using the claspfolio configurations). paramils
denotes the clasp configuration found for each domain, as described in Section 4. On
a domain included in its training set (wseq, 5 instances), claspfolio performs well,
only slightly worse than a portfolio trained specifically on that domain. On domains
not included in its training set—nlp and rip—claspfolio is less effective, beating the



8 Surviving Solver Sensitivity: An ASP Practitioner’s Guide

aspcomp

Solver Solved MRT (s)

default 75 82.99
bestsingle 82 63.75
mapp− 82 63.75
mapp+ 84 75.41
claspfolio 85 97.47
oracle 91 48.84

Table 1 The number of instances solved and the mean run time (MRT) on those solved instances
for single-solver and portfolio strategies on the 125 aspcomp instances (with all portfolios trained
on the claspfolio training set.)

Number of Instances Solved

P
er

−
In

st
an

ce
 C

ut
of

f (
C

P
U

 S
ec

on
ds

)

0

200

400

600

800

1000

0

200

400

600

800

1000

0

200

400

600

800

1000

WSEQ

20 40 60 80

NLP

50 100 150 200 250 300 350

RIP

560 580 600 620

Solver

Best Single

MAPP−

MAPP+

Default

Claspfolio

Oracle

ParamILS

Figure 1 Cactus plots presenting the performance, under five-fold cross validation, of strategies
1-5 on the three application domains considered in this paper.



BRYAN SILVERTHORN, YULIYA LIERLER, and MARIUS SCHNEIDER 9

wseq nlp rip

Solver Solved MRT (s) Solved MRT (s) Solved MRT (s)

bestsingle (ILS) 93.40 163.95 343.80 95.27 626.20 1.39
mapp− (ILS) 93.40 163.95 343.80 95.26 626.00 1.95
mapp+ (ILS) 93.80 170.52 342.40 100.61 626.00 5.48
oracle (ILS) 94.80 72.27 349.40 80.66 626.20 1.13

Table 2 Results summarizing the performance of “paramils-based” portfolios, as described
in Section 5, according to the mean number of instances solved and the mean run time on those
instances. These scores were averaged over five-fold cross validation.

default configuration on nlp but losing to it on rip. Lacking domain-specific training, then,
claspfolio can struggle to identify good configurations. Portfolios trained for each domain
(mapp− and mapp+) consistently perform much better than default and claspfolio. This
improvement seems to be due to identifying a single good configuration: note that the mapp−

and bestsingle solvers are almost identical in their performance. This hypothesis was
confirmed by analyzing the solver execution schedule of mapp−: it turns out that mapp−, on
these domains, may practically be identified with the bestsingle solver approach. Comparing
mapp+ and mapp− performance, then, shows that feature-based prediction provides no
benefit in these experiments. The feature computation overhead incurred by mapp+ and
claspfolio on “easy” domains, such as rip, is also evident. In these single-problem domains,
in other words, the portfolio approach is useful for systematically identifying a good solver
configuration, but struggles to make useful performance predictions from feature information.

In contrast, configurations tuned via paramils perform very well. The performance of
paramils tracks that of the oracle portfolio. Both portfolios and algorithm configuration
improve on the performance of default by large margins.

Note also, however, that run time can be misleading. For example, default is faster
on some instances of the wseq domain, but solves fewer overall. These deceptive aspects
of solver performance strongly suggest that an ASP application developer should employ a
tool, such as a portfolio framework, to systematically collect and analyze solver performance.
Cursory approaches, such as manually experimenting with only a few instances, can lead to
the suboptimal selection of a configuration.

Since collecting training data from the entire domain incurs substantial cost, our recom-
mendation would be to collect such data on a modest randomly sampled subset of instances.
If configurations exhibit substantial differences in performance on that subset, and especially
if the performance gap between the bestsingle solver and the oracle portfolio is large, then
additional training data may enable a portfolio method to make up some of that difference.
Such decisions might also be made based on recently proposed formal definitions of instance
set homogeneity [22].

Configurations found by paramils provide substantial gains in performance on every
domain. It is interesting to see that they perform nearly the same as the oracle portfolio
of claspfolio configurations: if perfect algorithm selection were somehow available, we
would not need to tune the configuration. Conversely, it is impressive that the range of
configurations spanned by the claspfolio suite of solvers can be equaled by a single tuned
configuration on these domains.

Table 2 presents details of the performance of portfolios obtained under the methodology
described in Section 5. No further improvement in comparison to the paramils configuration



10 Surviving Solver Sensitivity: An ASP Practitioner’s Guide

could be obtained under this methodology. Either a single configuration is sufficient to
achieve maximum clasp-derived performance on these domains, or a more sophisticated
approach to portfolio construction must be used—the ISAC approach [15], for example,
which attempts to explicitly identify subgroups of instances within the domain, or the Hydra
system, which accounts for overall portfolio performance in making tuning decisions [25].
This question is left to future investigation.

7 Conclusions

The results of this experimental study strongly recommend two courses of action for ASP
application developers, one general and one specific. As a general recommendation, it is
clear that significant care must be paid to solver parameterization in order to accurately
characterize performance on a domain. Employing a portfolio toolkit to systematically
collect run time data and select the best claspfolio configuration is a reasonable and
straightforward first step. As a specific recommendation, however, the use of automatic
algorithm configuration can wring more performance from a domain. Preparing such a tool,
however, itself requires intimate knowledge of a specific solver. Solver authors could empower
the solver’s users by providing configuration files for paramils or a related tool.

One final observation made clear by this work is the importance of understanding the
desired solver performance objective. An ASP developer must carefully select an appropriate
run time budget for their task, and must carefully weigh their desires for efficiency and
consistent success. These desires may be in conflict, and the effectiveness of algorithm
portfolio and configuration methods both depend on a user understanding and accurately
specifying their own preferences.

The need for studies such as that conducted in this paper has also been expressed by
Karp [16]. By looking at worst-case asymptotic performance over the space of all possible
inputs, theoretical computer science typically predicts the intractability in general of the
computational tasks exemplified by ASP or SAT. In practice, however, these challenging
tasks can often be solved, thus driving the need for an experimental approach to the task of
finding and evaluating algorithms for difficult search problems on specific domains. Karp
writes:

A tuning strategy [searches] the space of concrete algorithms consistent with the
algorithmic strategy to find the one that performs best on the training set. Finally,
an evaluation method compares the chosen algorithm with its competitors on a
verification set of instances drawn from the same distribution as the training set.

The case study presented in this work, as well as the methodologies it explored, are steps
toward refining such an experimental approach—an approach that appears essential to
enabling a practitioner to evaluate and apply increasingly powerful, increasingly sensitive
parameterized solvers.

Acknowledgments

We are grateful to Vladimir Lifschitz, Peter Schüller, and Miroslaw Truszczynski for useful
discussions related to the topic of this work. Martin Brain, Peter Schüller, and Shaden Smith
assisted us with the instances used in this case study. Yuliya Lierler was supported by a
CRA/NSF 2010 Computing Innovation Fellowship.



BRYAN SILVERTHORN, YULIYA LIERLER, and MARIUS SCHNEIDER 11

References
1 C. Ansótegui, M. Sellmann, and K. Tierney. A Gender-Based Genetic Algorithm for the Au-

tomatic Configuration of Algorithms. In I. Gent, editor, Proceedings of the CP’09, volume
5732 of Lecture Notes in Computer Science, pages 142–157. Springer-Verlag, 2009.

2 M. Brain and F. Schanda. Riposte: Supporting development in spark using counter-
examples. Unpublished manuscript, 2012.

3 F. Calimeri, G. Ianni, F. Ricca, M. Alviano, A. Bria, G. Catalano, S. Cozza, W. Faber,
O. Febbraro, N. Leone, M. Manna, A. Martello, C. Panetta, S. Perri, K. Reale, M. Carmela
Santoro, M. Sirianni, G. Terracina, and P. Veltri. The third answer set programming
competition: Preliminary report of the system competition track. In Delgrande and Faber
[4], pages 388–403.

4 J. Delgrande and W. Faber, editors. Proceedings of the LPNMR’11, volume 6645 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2011.

5 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider.
Potassco: The Potsdam answer set solving collection. AI Communications, 24(2):105–124,
2011.

6 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Challenges in answer set solving.
In M. Balduccini and T. Son, editors, Logic Programming, Knowledge Representation, and
Nonmonotonic Reasoning: Essays in Honor of Michael Gelfond, volume 6565, pages 74–90.
Springer-Verlag, 2011.

7 M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. Schneider, and S. Ziller. A portfolio
solver for answer set programming: Preliminary report. In Delgrande and Faber [4], pages
352–357.

8 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In Proceedings of the IJCAI’07, pages 386–392. MIT Press, 2007.

9 M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Robert
Kowalski and Kenneth Bowen, editors, Proceedings of the ICLP’88, pages 1070–1080. MIT
Press, 1988.

10 E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning, 36:345–377, 2006.

11 C. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability solvers. In Frank van
Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge Represen-
tation, pages 89–134. Elsevier, 2008.

12 F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In Proceedings of LION’11, pages 507–523, 2011.

13 F. Hutter, H. Hoos, and K. Leyton-Brown. Parallel algorithm configuration. In Proceedings
of the LION’12, 2012. To appear.

14 F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: An automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306, 2009.

15 S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. ISAC—instance-specific algorithm
configuration. In Proceedings of the ECAI’10, 2010.

16 R. Karp. Heuristic algorithms in computational molecular biology. Journal of Computer
and System Sciences, 77(1):122–128, 2011.

17 Y. Lierler and P. Schüller. Parsing combinatory categorial grammar with answer set pro-
gramming: Preliminary report. In Workshop on Logic programming (WLP), 2011.

18 Y. Lierler, S. Smith, M. Truszczynski, and A. Westlund. Weighted-sequence problem: Asp
vs casp and declarative vs problem oriented solving. In Proceedings of the PADL’12), 2012.

19 V. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer Verlag, 1999.



12 Surviving Solver Sensitivity: An ASP Practitioner’s Guide

20 I. Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.

21 O. Roussel. Controlling a Solver Execution with the runsolver Tool. Journal on Satisfiability,
Boolean Modeling and Computation, 7(4):139–144, 2011.

22 M. Schneider and H. Hoos. Quantifying homogeneity of instance sets for algorithm con-
figuration. In Y. Hamadi and M. Schoenauer, editors, Proceedings of the LION’12, 2012.
Submitted for Post-Proceedings.

23 B. Silverthorn. A Probabilistic Architecture for Algorithm Portfolios. PhD thesis, The
University of Texas at Austin, 2012.

24 B. Silverthorn and R. Miikkulainen. Latent class models for algorithm portfolio methods.
In Proceedings of the AAAI’10, 2010.

25 L. Xu, H. Hoos, and K. Leyton-Brown. Hydra: Automatically configuring algorithms for
portfolio-based selection. In Proceedings of the AAAI’10, 2010.

26 L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research, 32:565–606, 2008.


	Introduction
	Review of Application Domains
	Algorithm Portfolio Methods
	Algorithm Selection and claspfolio
	Solver Scheduling, mapp, and borg

	Automatic Algorithm Configuration
	Domain-Specific Portfolio Synthesis
	Experimental Results
	Conclusions

