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Parameters in Algorithms

Most algorithms have parameters

I Decisions that are left open during algorithm design

– numerical parameters (e.g., real-valued thresholds)
– categorical parameters (e.g., which heuristic to use)

I Set to optimize empirical performance

Prominent parameters in MIP solvers

I Preprocessing

I Which type of cuts to apply

I MIP strategy parameters

I Details of underlying linear (or quadratic) programming solver

2
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Example: IBM ILOG CPLEX

I 76 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [Cplex 12.1 user manual, page 235]

I “Experiment with them”

– Perform manual optimization in 76-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that

I Cplex automated tuning tool (since version 11)

– Saves valuable human time
– Improves performance
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Our work: automated algorithm configuration

I Given:

– Runnable algorithm A, its parameters and their domains
– Benchmark set of instances Π
– Performance metric m

I Find:

– Parameter setting (“configuration”) of A optimizing m on Π

I First to handle this with many categorical parameters
– E.g. 51/76 Cplex parameters are categorical
– 1047 possible configurations  algorithm configuration

This paper: application study for MIP solvers
I Use existing algorithm configuration tool (ParamILS)

I Use different MIP solvers (Cplex, Gurobi, lpsolve)

I Use six different MIP benchmark sets

I Optimize different objectives (runtime to optimality/MIP gap)
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Outline

1. Related work

2. Details about this study

3. Results

4. Conclusions
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Parameter Optimization Tools and
Applications

I Composer [Gratch & Dejong, ’92; Gratch and Chien, ’96]

– Spacecraft communication scheduling

I Calibra [Diaz and Laguna, ’06]

– Optimized various metaheuristics

I F-Race [Birattari et al., ’04-present]

– Iterated Local Search and Ant Colony Optimization

I ParamILS [Hutter et al, ’07-present]

– SAT (tree & local search), time-tabling, protein folding, ...

I Stop [Baz, Hunsaker, Brooks & Gosavi, ’07 (Tech report)]

[Baz, Hunsaker & Prokopyev, Comput Optim Appl, ’09]

– Optimized MIP solvers, including Cplex
– We only found this work ≈ 1 month ago
– Main problem: only optimized performance for single instances
– Only used small subset of 10 Cplex parameters
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Simple manual approach for configuration

Start with some parameter configuration

repeat
Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search

ParamILS [Hutter et al., AAAI’07 & ’09]:
Iterated local search: biased random walk over local optima
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Instantiations of ParamILS Framework

How to evaluate each configuration?

I BasicILS(N): perform fixed number of N runs to evaluate a
configuration θ

– Variance reduction: use same N instances & seeds for each θ

I FocusedILS: choose N(θ) adaptively

– small N(θ) for poor configurations θ
– large N(θ) only for good θ
– typically outperforms BasicILS
– used in this study
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Adaptive Choice of Cutoff Time

I Evaluation of poor configurations takes especially long

I Can terminate evaluations early

– Incumbent solution provides bound
– Can stop evaluation once bound is reached

I Results

– Provably never hurts
– Sometimes substantial speedups

[Hutter et al., JAIR’09]
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MIP Solvers & their parameters
I Commercial solvers: Cplex 12.1 & Gurobi 2.0.1
I Open-source solver: lpsolve 5.5

Algorithm Parameter type # params # values Total # configurations
Boolean 6 2

Cplex
Categorical 45 3–7

1.90 · 1047
Integer 18 discretized: 5–7

Continuous 7 discretized: 5–8
Boolean 4 2

Gurobi
Categorical 16 3–5

3.84 · 1014
Integer 3 discretized: 5

Continuous 2 discretized: 5

lpsolve
Boolean 40 2

1.22 · 1015
Categorical 7 3–8

Problems with some parameter configurations
I Segmentation faults & wrong results
I Detect such runs online, give worst possible score

 Local search avoids problematic parameter configurations

I Concise bug reports  helped to fix 2 bugs in Gurobi (!)
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Benchmark sets used

Domain Type #instances Citation
Comp. sustainability (SUST) MILP 2 000 [Gomes et al, ’08]

Combinatorial auctions (WDP) MILP 2 000 [Leyton-Brown et al., ’00]
Mixed integer knapsack (MIK) MILP 120 [Atamtürk, ’03]

and 3 more ...

Split benchmarks 50:50 into training and test sets

I Optimized parameters on the training set

I Reported performance on the test set

I Necessary to check for over-tuning
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Setup of configuration experiments

Perform 10 independent runs of ParamILS

I Select configuration θ̂∗ of run with best training performance

Compare test performance of:
I ParamILS’s configuration θ̂∗

I Default algorithm settings
I Cplex tuning tool

– Gurobi and lpsolve: no tuning tool available
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Minimization of Runtime to Optimal Solution
I “Optimal”: relative optimality gap of 0.0001

(Cplex and Gurobi default)

I Ran ParamILS for 2 days on 10 machines
I Mean speedup (on test instances)

– Cplex 2x to 50x
– lpsolve 1x (no speedup) to 150x
– Gurobi 1.2x to 2.3x

19
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Comparison to Cplex tuning tool

I Cplex tuning tool

– Evaluates predefined good configurations, returns best one
– Required runtime varies (from < 1h to weeks)

I ParamILS: anytime algorithm

– At each time step, keeps track of its incumbent

Cplex on MIK instances
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– Required runtime varies (from < 1h to weeks)

I ParamILS: anytime algorithm
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Minimization of Optimality Gap

I Objective: minimal optimality gap within 10 seconds runtime

I Ran ParamILS for 5 hours on 10 machines

I Reduction factors of average optimality gap (on test set)

– Cplex 1.3x to 8.6x
– lpsolve 1x (no reduction) to 46x
– Gurobi 1.1x to 2.2x
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Conclusions

MIP solvers can be configured automatically

I Configuration tool ParamILS available online:

– http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

– off-the-shelf tool (knows nothing about MIP or MIP solvers!)

I Sometimes substantial improvements

I Saves valuable human time

Requirements

I Representative instance set

– 100 instances sometimes not enough
– If you generate instances, please make more (e.g., 2000)!

I CPU time (here: 10 × 2 days per domain)

23

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/


Conclusions

MIP solvers can be configured automatically

I Configuration tool ParamILS available online:

– http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

– off-the-shelf tool (knows nothing about MIP or MIP solvers!)

I Sometimes substantial improvements

I Saves valuable human time

Requirements

I Representative instance set

– 100 instances sometimes not enough
– If you generate instances, please make more (e.g., 2000)!

I CPU time (here: 10 × 2 days per domain)

23

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/


Conclusions

MIP solvers can be configured automatically

I Configuration tool ParamILS available online:

– http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

– off-the-shelf tool (knows nothing about MIP or MIP solvers!)

I Sometimes substantial improvements

I Saves valuable human time

Requirements

I Representative instance set

– 100 instances sometimes not enough
– If you generate instances, please make more (e.g., 2000)!

I CPU time (here: 10 × 2 days per domain)

23

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/


Future Work

I Model-based techniques

– Fit a model that predicts performance of a given configuration
on a given instance

– Use that model to quantify

+ Importance of each parameter
+ Interaction of parameters
+ Interaction of parameters and instance characteristics

I Per-instance approaches for heterogeneous benchmarks
– Given a new unseen instance:

+ Compute instance characteristics (fast)
+ Use parameter config. predicted to be best for the instance
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Differences to STOP [Baz et al, ’09]

Baz et al optimized for single instances

“In practice, users would typically be tuning for a family of
related instances rather than for an individual instance”

I Generalization to sets of instances is nontrivial

– Cannot afford to run all instances for each configuration
 FocusedILS adapts # runs per configuration

Further differences

I Baz et al used older Cplex version (9.0)

– defaults improved in newer Cplex versions

I Baz et al considered (only) 10 Cplex parameters

– and also not all possible values for each parameter
– in order to improve Stop’s performance
 requires domain knowledge
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Configuration of MIP Solvers: Optimality Gap

I Objective: minimal optimality gap within 10 seconds runtime

I Ran ParamILS for 5 hours on 10 machines
I Reduction factors of average optimality gap (on test inst.)

– Cplex 1.3x to 8.6x
– lpsolve 1x (no reduction) to 46x
– Gurobi 1.1x to 2.2x
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