
Automated Configuration of MIP solvers

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown

Department of Computer Science
University of British Columbia

Vancouver, Canada
{hutter,hoos,kevinlb}@cs.ubc.ca

CPAIOR 2010, June 16

Parameters in Algorithms

Most algorithms have parameters

I Decisions that are left open during algorithm design

– numerical parameters (e.g., real-valued thresholds)
– categorical parameters (e.g., which heuristic to use)

I Set to optimize empirical performance

Prominent parameters in MIP solvers

I Preprocessing

I Which type of cuts to apply

I MIP strategy parameters

I Details of underlying linear (or quadratic) programming solver

2

Parameters in Algorithms

Most algorithms have parameters

I Decisions that are left open during algorithm design

– numerical parameters (e.g., real-valued thresholds)
– categorical parameters (e.g., which heuristic to use)

I Set to optimize empirical performance

Prominent parameters in MIP solvers

I Preprocessing

I Which type of cuts to apply

I MIP strategy parameters

I Details of underlying linear (or quadratic) programming solver

2

Example: IBM ILOG CPLEX

I 76 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [Cplex 12.1 user manual, page 235]

I “Experiment with them”

– Perform manual optimization in 76-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that

I Cplex automated tuning tool (since version 11)

– Saves valuable human time
– Improves performance

3

Example: IBM ILOG CPLEX

I 76 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [Cplex 12.1 user manual, page 235]

I “Experiment with them”

– Perform manual optimization in 76-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that

I Cplex automated tuning tool (since version 11)

– Saves valuable human time
– Improves performance

3

Example: IBM ILOG CPLEX

I 76 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [Cplex 12.1 user manual, page 235]

I “Experiment with them”

– Perform manual optimization in 76-dimensional space
– Complex, unintuitive interactions between parameters

– Humans are not good at that

I Cplex automated tuning tool (since version 11)

– Saves valuable human time
– Improves performance

3

Example: IBM ILOG CPLEX

I 76 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [Cplex 12.1 user manual, page 235]

I “Experiment with them”

– Perform manual optimization in 76-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that

I Cplex automated tuning tool (since version 11)

– Saves valuable human time
– Improves performance

3

Example: IBM ILOG CPLEX

I 76 parameters that affect search trajectory

“Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with
them.” [Cplex 12.1 user manual, page 235]

I “Experiment with them”

– Perform manual optimization in 76-dimensional space
– Complex, unintuitive interactions between parameters
– Humans are not good at that

I Cplex automated tuning tool (since version 11)

– Saves valuable human time
– Improves performance

3

Our work: automated algorithm configuration

I Given:

– Runnable algorithm A, its parameters and their domains
– Benchmark set of instances Π
– Performance metric m

I Find:

– Parameter setting (“configuration”) of A optimizing m on Π

I First to handle this with many categorical parameters
– E.g. 51/76 Cplex parameters are categorical
– 1047 possible configurations algorithm configuration

This paper: application study for MIP solvers
I Use existing algorithm configuration tool (ParamILS)

I Use different MIP solvers (Cplex, Gurobi, lpsolve)

I Use six different MIP benchmark sets

I Optimize different objectives (runtime to optimality/MIP gap)

4

Our work: automated algorithm configuration

I Given:

– Runnable algorithm A, its parameters and their domains
– Benchmark set of instances Π
– Performance metric m

I Find:

– Parameter setting (“configuration”) of A optimizing m on Π

I First to handle this with many categorical parameters
– E.g. 51/76 Cplex parameters are categorical
– 1047 possible configurations algorithm configuration

This paper: application study for MIP solvers
I Use existing algorithm configuration tool (ParamILS)

I Use different MIP solvers (Cplex, Gurobi, lpsolve)

I Use six different MIP benchmark sets

I Optimize different objectives (runtime to optimality/MIP gap)

4

Our work: automated algorithm configuration

I Given:

– Runnable algorithm A, its parameters and their domains
– Benchmark set of instances Π
– Performance metric m

I Find:

– Parameter setting (“configuration”) of A optimizing m on Π

I First to handle this with many categorical parameters
– E.g. 51/76 Cplex parameters are categorical
– 1047 possible configurations algorithm configuration

This paper: application study for MIP solvers
I Use existing algorithm configuration tool (ParamILS)

I Use different MIP solvers (Cplex, Gurobi, lpsolve)

I Use six different MIP benchmark sets

I Optimize different objectives (runtime to optimality/MIP gap)

4

Our work: automated algorithm configuration

I Given:

– Runnable algorithm A, its parameters and their domains
– Benchmark set of instances Π
– Performance metric m

I Find:

– Parameter setting (“configuration”) of A optimizing m on Π

I First to handle this with many categorical parameters
– E.g. 51/76 Cplex parameters are categorical
– 1047 possible configurations algorithm configuration

This paper: application study for MIP solvers
I Use existing algorithm configuration tool (ParamILS)

I Use different MIP solvers (Cplex, Gurobi, lpsolve)

I Use six different MIP benchmark sets

I Optimize different objectives (runtime to optimality/MIP gap)

4

Outline

1. Related work

2. Details about this study

3. Results

4. Conclusions

5

Outline

1. Related work

2. Details about this study

3. Results

4. Conclusions

6

Parameter Optimization Tools and
Applications

I Composer [Gratch & Dejong, ’92; Gratch and Chien, ’96]

– Spacecraft communication scheduling

I Calibra [Diaz and Laguna, ’06]

– Optimized various metaheuristics

I F-Race [Birattari et al., ’04-present]

– Iterated Local Search and Ant Colony Optimization

I ParamILS [Hutter et al, ’07-present]

– SAT (tree & local search), time-tabling, protein folding, ...

I Stop [Baz, Hunsaker, Brooks & Gosavi, ’07 (Tech report)]

[Baz, Hunsaker & Prokopyev, Comput Optim Appl, ’09]

– Optimized MIP solvers, including Cplex
– We only found this work ≈ 1 month ago
– Main problem: only optimized performance for single instances
– Only used small subset of 10 Cplex parameters

7

Parameter Optimization Tools and
Applications

I Composer [Gratch & Dejong, ’92; Gratch and Chien, ’96]

– Spacecraft communication scheduling

I Calibra [Diaz and Laguna, ’06]

– Optimized various metaheuristics

I F-Race [Birattari et al., ’04-present]

– Iterated Local Search and Ant Colony Optimization

I ParamILS [Hutter et al, ’07-present]

– SAT (tree & local search), time-tabling, protein folding, ...

I Stop [Baz, Hunsaker, Brooks & Gosavi, ’07 (Tech report)]

[Baz, Hunsaker & Prokopyev, Comput Optim Appl, ’09]

– Optimized MIP solvers, including Cplex
– We only found this work ≈ 1 month ago

– Main problem: only optimized performance for single instances
– Only used small subset of 10 Cplex parameters

7

Parameter Optimization Tools and
Applications

I Composer [Gratch & Dejong, ’92; Gratch and Chien, ’96]

– Spacecraft communication scheduling

I Calibra [Diaz and Laguna, ’06]

– Optimized various metaheuristics

I F-Race [Birattari et al., ’04-present]

– Iterated Local Search and Ant Colony Optimization

I ParamILS [Hutter et al, ’07-present]

– SAT (tree & local search), time-tabling, protein folding, ...

I Stop [Baz, Hunsaker, Brooks & Gosavi, ’07 (Tech report)]

[Baz, Hunsaker & Prokopyev, Comput Optim Appl, ’09]

– Optimized MIP solvers, including Cplex
– We only found this work ≈ 1 month ago
– Main problem: only optimized performance for single instances
– Only used small subset of 10 Cplex parameters

7

Outline

1. Related work

2. Details about this study
The automated configuration tool: ParamILS
The MIP solvers: Cplex, Gurobi & lpsolve
Experimental Setup

3. Results

4. Conclusions

8

Outline

1. Related work

2. Details about this study
The automated configuration tool: ParamILS
The MIP solvers: Cplex, Gurobi & lpsolve
Experimental Setup

3. Results

4. Conclusions

9

Simple manual approach for configuration

Start with some parameter configuration

repeat
Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search

ParamILS [Hutter et al., AAAI’07 & ’09]:
Iterated local search: biased random walk over local optima

10

Simple manual approach for configuration

Start with some parameter configuration

repeat

Modify a single parameter

if results on benchmark set improve then
keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search

ParamILS [Hutter et al., AAAI’07 & ’09]:
Iterated local search: biased random walk over local optima

10

Simple manual approach for configuration

Start with some parameter configuration

repeat

Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search

ParamILS [Hutter et al., AAAI’07 & ’09]:
Iterated local search: biased random walk over local optima

10

Simple manual approach for configuration

Start with some parameter configuration
repeat

Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search

ParamILS [Hutter et al., AAAI’07 & ’09]:
Iterated local search: biased random walk over local optima

10

Simple manual approach for configuration

Start with some parameter configuration
repeat

Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search

ParamILS [Hutter et al., AAAI’07 & ’09]:
Iterated local search: biased random walk over local optima

10

Simple manual approach for configuration

Start with some parameter configuration
repeat

Modify a single parameter
if results on benchmark set improve then

keep new configuration

until no more improvement possible (or “good enough”)

 Manually-executed local search

ParamILS [Hutter et al., AAAI’07 & ’09]:
Iterated local search: biased random walk over local optima

10

Instantiations of ParamILS Framework

How to evaluate each configuration?

I BasicILS(N): perform fixed number of N runs to evaluate a
configuration θ

– Variance reduction: use same N instances & seeds for each θ

I FocusedILS: choose N(θ) adaptively

– small N(θ) for poor configurations θ
– large N(θ) only for good θ
– typically outperforms BasicILS
– used in this study

11

Instantiations of ParamILS Framework

How to evaluate each configuration?

I BasicILS(N): perform fixed number of N runs to evaluate a
configuration θ

– Variance reduction: use same N instances & seeds for each θ

I FocusedILS: choose N(θ) adaptively

– small N(θ) for poor configurations θ
– large N(θ) only for good θ

– typically outperforms BasicILS
– used in this study

11

Instantiations of ParamILS Framework

How to evaluate each configuration?

I BasicILS(N): perform fixed number of N runs to evaluate a
configuration θ

– Variance reduction: use same N instances & seeds for each θ

I FocusedILS: choose N(θ) adaptively

– small N(θ) for poor configurations θ
– large N(θ) only for good θ
– typically outperforms BasicILS
– used in this study

11

Adaptive Choice of Cutoff Time

I Evaluation of poor configurations takes especially long

I Can terminate evaluations early

– Incumbent solution provides bound
– Can stop evaluation once bound is reached

I Results

– Provably never hurts
– Sometimes substantial speedups

[Hutter et al., JAIR’09]

12

Adaptive Choice of Cutoff Time

I Evaluation of poor configurations takes especially long
I Can terminate evaluations early

– Incumbent solution provides bound
– Can stop evaluation once bound is reached

I Results

– Provably never hurts
– Sometimes substantial speedups

[Hutter et al., JAIR’09]

12

Adaptive Choice of Cutoff Time

I Evaluation of poor configurations takes especially long
I Can terminate evaluations early

– Incumbent solution provides bound
– Can stop evaluation once bound is reached

I Results

– Provably never hurts
– Sometimes substantial speedups

[Hutter et al., JAIR’09]

12

Outline

1. Related work

2. Details about this study
The automated configuration tool: ParamILS
The MIP solvers: Cplex, Gurobi & lpsolve
Experimental Setup

3. Results

4. Conclusions

13

MIP Solvers & their parameters
I Commercial solvers: Cplex 12.1 & Gurobi 2.0.1
I Open-source solver: lpsolve 5.5

Algorithm Parameter type # params # values Total # configurations
Boolean 6 2

Cplex
Categorical 45 3–7

1.90 · 1047
Integer 18 discretized: 5–7

Continuous 7 discretized: 5–8
Boolean 4 2

Gurobi
Categorical 16 3–5

3.84 · 1014
Integer 3 discretized: 5

Continuous 2 discretized: 5

lpsolve
Boolean 40 2

1.22 · 1015
Categorical 7 3–8

Problems with some parameter configurations
I Segmentation faults & wrong results
I Detect such runs online, give worst possible score

 Local search avoids problematic parameter configurations

I Concise bug reports helped to fix 2 bugs in Gurobi (!)

14

MIP Solvers & their parameters
I Commercial solvers: Cplex 12.1 & Gurobi 2.0.1
I Open-source solver: lpsolve 5.5

Algorithm Parameter type # params # values Total # configurations
Boolean 6 2

Cplex
Categorical 45 3–7

1.90 · 1047
Integer 18 discretized: 5–7

Continuous 7 discretized: 5–8

Boolean 4 2

Gurobi
Categorical 16 3–5

3.84 · 1014
Integer 3 discretized: 5

Continuous 2 discretized: 5

lpsolve
Boolean 40 2

1.22 · 1015
Categorical 7 3–8

Problems with some parameter configurations
I Segmentation faults & wrong results
I Detect such runs online, give worst possible score

 Local search avoids problematic parameter configurations

I Concise bug reports helped to fix 2 bugs in Gurobi (!)

14

MIP Solvers & their parameters
I Commercial solvers: Cplex 12.1 & Gurobi 2.0.1
I Open-source solver: lpsolve 5.5

Algorithm Parameter type # params # values Total # configurations
Boolean 6 2

Cplex
Categorical 45 3–7

1.90 · 1047
Integer 18 discretized: 5–7

Continuous 7 discretized: 5–8
Boolean 4 2

Gurobi
Categorical 16 3–5

3.84 · 1014
Integer 3 discretized: 5

Continuous 2 discretized: 5

lpsolve
Boolean 40 2

1.22 · 1015
Categorical 7 3–8

Problems with some parameter configurations
I Segmentation faults & wrong results
I Detect such runs online, give worst possible score

 Local search avoids problematic parameter configurations

I Concise bug reports helped to fix 2 bugs in Gurobi (!)

14

MIP Solvers & their parameters
I Commercial solvers: Cplex 12.1 & Gurobi 2.0.1
I Open-source solver: lpsolve 5.5

Algorithm Parameter type # params # values Total # configurations
Boolean 6 2

Cplex
Categorical 45 3–7

1.90 · 1047
Integer 18 discretized: 5–7

Continuous 7 discretized: 5–8
Boolean 4 2

Gurobi
Categorical 16 3–5

3.84 · 1014
Integer 3 discretized: 5

Continuous 2 discretized: 5

lpsolve
Boolean 40 2

1.22 · 1015
Categorical 7 3–8

Problems with some parameter configurations
I Segmentation faults & wrong results
I Detect such runs online, give worst possible score

 Local search avoids problematic parameter configurations

I Concise bug reports helped to fix 2 bugs in Gurobi (!)

14

MIP Solvers & their parameters
I Commercial solvers: Cplex 12.1 & Gurobi 2.0.1
I Open-source solver: lpsolve 5.5

Algorithm Parameter type # params # values Total # configurations
Boolean 6 2

Cplex
Categorical 45 3–7

1.90 · 1047
Integer 18 discretized: 5–7

Continuous 7 discretized: 5–8
Boolean 4 2

Gurobi
Categorical 16 3–5

3.84 · 1014
Integer 3 discretized: 5

Continuous 2 discretized: 5

lpsolve
Boolean 40 2

1.22 · 1015
Categorical 7 3–8

Problems with some parameter configurations
I Segmentation faults & wrong results

I Detect such runs online, give worst possible score

 Local search avoids problematic parameter configurations

I Concise bug reports helped to fix 2 bugs in Gurobi (!)

14

MIP Solvers & their parameters
I Commercial solvers: Cplex 12.1 & Gurobi 2.0.1
I Open-source solver: lpsolve 5.5

Algorithm Parameter type # params # values Total # configurations
Boolean 6 2

Cplex
Categorical 45 3–7

1.90 · 1047
Integer 18 discretized: 5–7

Continuous 7 discretized: 5–8
Boolean 4 2

Gurobi
Categorical 16 3–5

3.84 · 1014
Integer 3 discretized: 5

Continuous 2 discretized: 5

lpsolve
Boolean 40 2

1.22 · 1015
Categorical 7 3–8

Problems with some parameter configurations
I Segmentation faults & wrong results
I Detect such runs online, give worst possible score

 Local search avoids problematic parameter configurations

I Concise bug reports helped to fix 2 bugs in Gurobi (!)

14

MIP Solvers & their parameters
I Commercial solvers: Cplex 12.1 & Gurobi 2.0.1
I Open-source solver: lpsolve 5.5

Algorithm Parameter type # params # values Total # configurations
Boolean 6 2

Cplex
Categorical 45 3–7

1.90 · 1047
Integer 18 discretized: 5–7

Continuous 7 discretized: 5–8
Boolean 4 2

Gurobi
Categorical 16 3–5

3.84 · 1014
Integer 3 discretized: 5

Continuous 2 discretized: 5

lpsolve
Boolean 40 2

1.22 · 1015
Categorical 7 3–8

Problems with some parameter configurations
I Segmentation faults & wrong results
I Detect such runs online, give worst possible score

 Local search avoids problematic parameter configurations

I Concise bug reports helped to fix 2 bugs in Gurobi (!)
14

Outline

1. Related work

2. Details about this study
The automated configuration tool: ParamILS
The MIP solvers: Cplex, Gurobi & lpsolve
Experimental Setup

3. Results

4. Conclusions

15

Benchmark sets used

Domain Type #instances Citation
Comp. sustainability (SUST) MILP 2 000 [Gomes et al, ’08]

Combinatorial auctions (WDP) MILP 2 000 [Leyton-Brown et al., ’00]
Mixed integer knapsack (MIK) MILP 120 [Atamtürk, ’03]

and 3 more ...

Split benchmarks 50:50 into training and test sets

I Optimized parameters on the training set

I Reported performance on the test set

I Necessary to check for over-tuning

16

Benchmark sets used

Domain Type #instances Citation
Comp. sustainability (SUST) MILP 2 000 [Gomes et al, ’08]

Combinatorial auctions (WDP) MILP 2 000 [Leyton-Brown et al., ’00]
Mixed integer knapsack (MIK) MILP 120 [Atamtürk, ’03]

and 3 more ...

Split benchmarks 50:50 into training and test sets

I Optimized parameters on the training set

I Reported performance on the test set

I Necessary to check for over-tuning

16

Setup of configuration experiments

Perform 10 independent runs of ParamILS

I Select configuration θ̂∗ of run with best training performance

Compare test performance of:
I ParamILS’s configuration θ̂∗

I Default algorithm settings
I Cplex tuning tool

– Gurobi and lpsolve: no tuning tool available

17

Setup of configuration experiments

Perform 10 independent runs of ParamILS

I Select configuration θ̂∗ of run with best training performance

Compare test performance of:
I ParamILS’s configuration θ̂∗

I Default algorithm settings
I Cplex tuning tool

– Gurobi and lpsolve: no tuning tool available

17

Outline

1. Related work

2. Details about this study

3. Results

4. Conclusions

18

Minimization of Runtime to Optimal Solution
I “Optimal”: relative optimality gap of 0.0001

(Cplex and Gurobi default)

I Ran ParamILS for 2 days on 10 machines
I Mean speedup (on test instances)

– Cplex 2x to 50x
– lpsolve 1x (no speedup) to 150x
– Gurobi 1.2x to 2.3x

19

Minimization of Runtime to Optimal Solution
I “Optimal”: relative optimality gap of 0.0001

(Cplex and Gurobi default)

I Ran ParamILS for 2 days on 10 machines

I Mean speedup (on test instances)
– Cplex 2x to 50x
– lpsolve 1x (no speedup) to 150x
– Gurobi 1.2x to 2.3x

19

Minimization of Runtime to Optimal Solution

I “Optimal”: relative optimality gap of 0.0001
(Cplex and Gurobi default)

I Ran ParamILS for 2 days on 10 machines
I Mean speedup (on test instances)

– Cplex 2x to 50x

– lpsolve 1x (no speedup) to 150x
– Gurobi 1.2x to 2.3x

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Default [CPU s]

C
o
n
fig

.
fo

u
n
d
 b

y
P

a
ra

m
IL

S
 [
C

P
U

 s
]

Train

Test

Cplex on SUST instances (50x)
19

Minimization of Runtime to Optimal Solution

I “Optimal”: relative optimality gap of 0.0001
(Cplex and Gurobi default)

I Ran ParamILS for 2 days on 10 machines
I Mean speedup (on test instances)

– Cplex 2x to 50x
– lpsolve 1x (no speedup) to 150x

– Gurobi 1.2x to 2.3x

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Default [CPU s]

C
o
n
fig

.
fo

u
n
d
 b

y
P

a
ra

m
IL

S
 [
C

P
U

 s
]

Train

Test

Cplex on SUST instances (50x)

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

Default [CPU s]

C
o
n
fig

.
fo

u
n
d
 b

y
P

a
ra

m
IL

S
 [
C

P
U

 s
]

Train

Train−timeout

Test

Test−timeout

lpsolve on WDP instances (150x)
19

Minimization of Runtime to Optimal Solution

I “Optimal”: relative optimality gap of 0.0001
(Cplex and Gurobi default)

I Ran ParamILS for 2 days on 10 machines
I Mean speedup (on test instances)

– Cplex 2x to 50x
– lpsolve 1x (no speedup) to 150x
– Gurobi 1.2x to 2.3x

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Default [CPU s]

C
o
n
fig

.
fo

u
n
d
 b

y
P

a
ra

m
IL

S
 [
C

P
U

 s
]

Train

Test

Cplex on SUST instances (50x)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Default [CPU s]

C
o
n
fig

.
fo

u
n
d
 b

y
P

a
ra

m
IL

S
 [
C

P
U

 s
]

Train

Train−timeout

Test

Test−timeout

Gurobi on SUST instances (2.3x)
19

Minimization of Runtime to Optimal Solution

I “Optimal”: relative optimality gap of 0.0001
(Cplex and Gurobi default)

I Ran ParamILS for 2 days on 10 machines
I Mean speedup (on test instances)

– Cplex 2x to 50x
– lpsolve 1x (no speedup) to 150x
– Gurobi 1.2x to 2.3x

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

Default [CPU s]

C
o
n
fig

.
fo

u
n
d
 b

y
P

a
ra

m
IL

S
 [
C

P
U

 s
]

Train

Test

Gurobi on MIK instances (1.2x)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Default [CPU s]

C
o
n
fig

.
fo

u
n
d
 b

y
P

a
ra

m
IL

S
 [
C

P
U

 s
]

Train

Train−timeout

Test

Test−timeout

Gurobi on SUST instances (2.3x)
19

Comparison to Cplex tuning tool

I Cplex tuning tool

– Evaluates predefined good configurations, returns best one
– Required runtime varies (from < 1h to weeks)

I ParamILS: anytime algorithm

– At each time step, keeps track of its incumbent

Cplex on MIK instances

10
4

10
5

10
6

10
1

10
2

10
3

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

Default
CPLEX tuning tool
ParamILS

Cplex on SUST instances

20

Comparison to Cplex tuning tool

I Cplex tuning tool

– Evaluates predefined good configurations, returns best one
– Required runtime varies (from < 1h to weeks)

I ParamILS: anytime algorithm

– At each time step, keeps track of its incumbent

Cplex on MIK instances

10
4

10
5

10
6

10
1

10
2

10
3

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

Default
CPLEX tuning tool
ParamILS

Cplex on SUST instances

20

Comparison to Cplex tuning tool

I Cplex tuning tool

– Evaluates predefined good configurations, returns best one
– Required runtime varies (from < 1h to weeks)

I ParamILS: anytime algorithm

– At each time step, keeps track of its incumbent

10
4

10
5

10
6

2

4

6

8

Configuration budget [CPU s]

P
e
rf

o
rm

a
n
c
e
 [
C

P
U

 s
]

Default
CPLEX tuning tool

Cplex on MIK instances

10
4

10
5

10
6

10
1

10
2

10
3

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

Default
CPLEX tuning tool
ParamILS

Cplex on SUST instances

20

Comparison to Cplex tuning tool

I Cplex tuning tool

– Evaluates predefined good configurations, returns best one
– Required runtime varies (from < 1h to weeks)

I ParamILS: anytime algorithm

– At each time step, keeps track of its incumbent

10
4

10
5

10
6

2

4

6

8

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

Default
CPLEX tuning tool
ParamILS

Cplex on MIK instances

10
4

10
5

10
6

10
1

10
2

10
3

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

Default
CPLEX tuning tool
ParamILS

Cplex on SUST instances

20

Comparison to Cplex tuning tool

I Cplex tuning tool

– Evaluates predefined good configurations, returns best one
– Required runtime varies (from < 1h to weeks)

I ParamILS: anytime algorithm

– At each time step, keeps track of its incumbent

10
4

10
5

10
6

2

4

6

8

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

Default
CPLEX tuning tool
ParamILS

Cplex on MIK instances

10
4

10
5

10
6

10
1

10
2

10
3

Configuration budget [CPU s]

P
e

rf
o

rm
a

n
c
e

 [
C

P
U

 s
]

Default
CPLEX tuning tool
ParamILS

Cplex on SUST instances

20

Minimization of Optimality Gap

I Objective: minimal optimality gap within 10 seconds runtime

I Ran ParamILS for 5 hours on 10 machines

I Reduction factors of average optimality gap (on test set)

– Cplex 1.3x to 8.6x
– lpsolve 1x (no reduction) to 46x
– Gurobi 1.1x to 2.2x

21

Minimization of Optimality Gap

I Objective: minimal optimality gap within 10 seconds runtime

I Ran ParamILS for 5 hours on 10 machines

I Reduction factors of average optimality gap (on test set)

– Cplex 1.3x to 8.6x
– lpsolve 1x (no reduction) to 46x
– Gurobi 1.1x to 2.2x

21

Minimization of Optimality Gap

I Objective: minimal optimality gap within 10 seconds runtime

I Ran ParamILS for 5 hours on 10 machines

I Reduction factors of average optimality gap (on test set)

– Cplex 1.3x to 8.6x
– lpsolve 1x (no reduction) to 46x
– Gurobi 1.1x to 2.2x

21

Outline

1. Related work

2. Details about this study

3. Results

4. Conclusions

22

Conclusions

MIP solvers can be configured automatically

I Configuration tool ParamILS available online:

– http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

– off-the-shelf tool (knows nothing about MIP or MIP solvers!)

I Sometimes substantial improvements

I Saves valuable human time

Requirements

I Representative instance set

– 100 instances sometimes not enough
– If you generate instances, please make more (e.g., 2000)!

I CPU time (here: 10 × 2 days per domain)

23

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

Conclusions

MIP solvers can be configured automatically

I Configuration tool ParamILS available online:

– http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

– off-the-shelf tool (knows nothing about MIP or MIP solvers!)

I Sometimes substantial improvements

I Saves valuable human time

Requirements

I Representative instance set

– 100 instances sometimes not enough
– If you generate instances, please make more (e.g., 2000)!

I CPU time (here: 10 × 2 days per domain)

23

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

Conclusions

MIP solvers can be configured automatically

I Configuration tool ParamILS available online:

– http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

– off-the-shelf tool (knows nothing about MIP or MIP solvers!)

I Sometimes substantial improvements

I Saves valuable human time

Requirements

I Representative instance set

– 100 instances sometimes not enough
– If you generate instances, please make more (e.g., 2000)!

I CPU time (here: 10 × 2 days per domain)

23

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

Future Work

I Model-based techniques

– Fit a model that predicts performance of a given configuration
on a given instance

– Use that model to quantify

+ Importance of each parameter
+ Interaction of parameters
+ Interaction of parameters and instance characteristics

I Per-instance approaches for heterogeneous benchmarks
– Given a new unseen instance:

+ Compute instance characteristics (fast)
+ Use parameter config. predicted to be best for the instance

24

Future Work

I Model-based techniques

– Fit a model that predicts performance of a given configuration
on a given instance

– Use that model to quantify

+ Importance of each parameter
+ Interaction of parameters
+ Interaction of parameters and instance characteristics

I Per-instance approaches for heterogeneous benchmarks
– Given a new unseen instance:

+ Compute instance characteristics (fast)
+ Use parameter config. predicted to be best for the instance

24

Future Work

I Model-based techniques

– Fit a model that predicts performance of a given configuration
on a given instance

– Use that model to quantify

+ Importance of each parameter
+ Interaction of parameters
+ Interaction of parameters and instance characteristics

I Per-instance approaches for heterogeneous benchmarks
– Given a new unseen instance:

+ Compute instance characteristics (fast)
+ Use parameter config. predicted to be best for the instance

24

Thanks to:

I Providers of instance benchmark sets

– Louis-Martin Rousseau
– Bistra Dilkina
– Berkeley Computational Optimization Lab

I Commercial MIP solvers for free full academic license

– IBM (Cplex)
– Gurobi

I lpsolve developers for their solver

I Compute clusters

– Westgrid
– CFI-funded arrow cluster

I Funding agencies

– Postdoc fellowship from CBIE
– MITACS
– NSERC

25

Backup slides

26

Differences to STOP [Baz et al, ’09]

Baz et al optimized for single instances

“In practice, users would typically be tuning for a family of
related instances rather than for an individual instance”

I Generalization to sets of instances is nontrivial

– Cannot afford to run all instances for each configuration
 FocusedILS adapts # runs per configuration

Further differences

I Baz et al used older Cplex version (9.0)

– defaults improved in newer Cplex versions

I Baz et al considered (only) 10 Cplex parameters

– and also not all possible values for each parameter
– in order to improve Stop’s performance
 requires domain knowledge

27

Configuration of MIP Solvers: Optimality Gap

I Objective: minimal optimality gap within 10 seconds runtime

I Ran ParamILS for 5 hours on 10 machines
I Reduction factors of average optimality gap (on test inst.)

– Cplex 1.3x to 8.6x
– lpsolve 1x (no reduction) to 46x
– Gurobi 1.1x to 2.2x

10
−2

10
−1

10
0

10
−2

10
−1

10
0

Default [% MIP gap]

A
u
to

−
co

n
fig

.
[%

 M
IP

 g
a
p
]

Train

Test

Cplex on MIK instances (8.6x)

10
1

10
2

10
3

10
1

10
2

10
3

Default [% MIP gap]

A
u
to

−
co

n
fig

.
[%

 M
IP

 g
a
p
]

Train

Test

lpsolve on MIK instances (46x)

28

Configuration of MIP Solvers: Optimality Gap

I Objective: minimal optimality gap within 10 seconds runtime
I Ran ParamILS for 5 hours on 10 machines

I Reduction factors of average optimality gap (on test inst.)
– Cplex 1.3x to 8.6x
– lpsolve 1x (no reduction) to 46x
– Gurobi 1.1x to 2.2x

10
−2

10
−1

10
0

10
−2

10
−1

10
0

Default [% MIP gap]

A
u
to

−
co

n
fig

.
[%

 M
IP

 g
a
p
]

Train

Test

Cplex on MIK instances (8.6x)

10
1

10
2

10
3

10
1

10
2

10
3

Default [% MIP gap]

A
u
to

−
co

n
fig

.
[%

 M
IP

 g
a
p
]

Train

Test

lpsolve on MIK instances (46x)

28

Configuration of MIP Solvers: Optimality Gap

I Objective: minimal optimality gap within 10 seconds runtime
I Ran ParamILS for 5 hours on 10 machines
I Reduction factors of average optimality gap (on test inst.)

– Cplex 1.3x to 8.6x
– lpsolve 1x (no reduction) to 46x
– Gurobi 1.1x to 2.2x

10
−2

10
−1

10
0

10
−2

10
−1

10
0

Default [% MIP gap]

A
u
to

−
co

n
fig

.
[%

 M
IP

 g
a
p
]

Train

Test

Cplex on MIK instances (8.6x)

10
1

10
2

10
3

10
1

10
2

10
3

Default [% MIP gap]

A
u
to

−
co

n
fig

.
[%

 M
IP

 g
a
p
]

Train

Test

lpsolve on MIK instances (46x)

28

Configuration of MIP Solvers: Optimality Gap

I Objective: minimal optimality gap within 10 seconds runtime
I Ran ParamILS for 5 hours on 10 machines
I Reduction factors of average optimality gap (on test inst.)

– Cplex 1.3x to 8.6x
– lpsolve 1x (no reduction) to 46x
– Gurobi 1.1x to 2.2x

10
−2

10
−1

10
0

10
−2

10
−1

10
0

Default [% MIP gap]

A
u
to

−
co

n
fig

.
[%

 M
IP

 g
a
p
]

Train

Test

Cplex on MIK instances (8.6x)

10
1

10
2

10
3

10
1

10
2

10
3

Default [% MIP gap]

A
u
to

−
co

n
fig

.
[%

 M
IP

 g
a
p
]

Train

Test

lpsolve on MIK instances (46x)
28

	Related work
	Details about this study
	Results
	Conclusions

