Automated Configuration of MIP solvers

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown

Department of Computer Science University of British Columbia Vancouver, Canada {hutter,hoos,kevinlb}@ccs.ubc.ca

CPAIOR 2010, June 16

Most algorithms have parameters

- Decisions that are left open during algorithm design
 - numerical parameters (e.g., real-valued thresholds)
 - categorical parameters (e.g., which heuristic to use)
- Set to optimize empirical performance

Most algorithms have parameters

- Decisions that are left open during algorithm design
 - numerical parameters (e.g., real-valued thresholds)
 - categorical parameters (e.g., which heuristic to use)
- Set to optimize empirical performance

Prominent parameters in MIP solvers

- Preprocessing
- Which type of cuts to apply
- MIP strategy parameters
- Details of underlying linear (or quadratic) programming solver

76 parameters that affect search trajectory

▶ 76 parameters that affect search trajectory

76 parameters that affect search trajectory

- "Experiment with them"
 - Perform manual optimization in 76-dimensional space
 - Complex, unintuitive interactions between parameters

76 parameters that affect search trajectory

- "Experiment with them"
 - Perform manual optimization in 76-dimensional space
 - Complex, unintuitive interactions between parameters
 - Humans are not good at that

76 parameters that affect search trajectory

- "Experiment with them"
 - Perform manual optimization in 76-dimensional space
 - Complex, unintuitive interactions between parameters
 - Humans are not good at that
- CPLEX automated tuning tool (since version 11)
 - Saves valuable human time
 - Improves performance

- ► Given:
 - Runnable algorithm A, its parameters and their domains
 - Benchmark set of instances Π
 - Performance metric m

- ► Given:
 - Runnable algorithm A, its parameters and their domains
 - Benchmark set of instances Π
 - Performance metric m
- ► Find:

– Parameter setting ("configuration") of A optimizing m on Π

- ► Given:
 - Runnable algorithm A, its parameters and their domains
 - Benchmark set of instances Π
 - Performance metric m
- Find:
 - Parameter setting ("configuration") of A optimizing m on Π
- First to handle this with many categorical parameters
 - E.g. 51/76 CPLEX parameters are categorical
 - $-~10^{47}$ possible configurations \rightsquigarrow algorithm configuration

- ► Given:
 - Runnable algorithm A, its parameters and their domains
 - Benchmark set of instances Π
 - Performance metric m
- Find:
 - Parameter setting ("configuration") of A optimizing m on Π
- First to handle this with many categorical parameters
 - E.g. $51/76~\mathrm{CPLEX}$ parameters are categorical
 - $-~10^{47}$ possible configurations \rightsquigarrow algorithm configuration

This paper: application study for MIP solvers

- Use existing algorithm configuration tool (PARAMILS)
- ► Use different MIP solvers (CPLEX, GUROBI, LPSOLVE)
- Use six different MIP benchmark sets
- Optimize different objectives (runtime to optimality/MIP gap)

- 1. Related work
- 2. Details about this study
- 3. Results
- 4. Conclusions

1. Related work

- 2. Details about this study
- 3. Results
- 4. Conclusions

Parameter Optimization Tools and Applications

- COMPOSER [Gratch & Dejong, '92; Gratch and Chien, '96]
 - Spacecraft communication scheduling
- CALIBRA [Diaz and Laguna, '06]
 - Optimized various metaheuristics
- ► F-RACE [Birattari et al., '04-present]
 - Iterated Local Search and Ant Colony Optimization
- ► PARAMILS [Hutter et al, '07-present]
 - SAT (tree & local search), time-tabling, protein folding, ...

Parameter Optimization Tools and Applications

- COMPOSER [Gratch & Dejong, '92; Gratch and Chien, '96]
 - Spacecraft communication scheduling
- CALIBRA [Diaz and Laguna, '06]
 - Optimized various metaheuristics
- ► F-RACE [Birattari et al., '04-present]
 - Iterated Local Search and Ant Colony Optimization
- PARAMILS [Hutter et al, '07-present]
 - SAT (tree & local search), time-tabling, protein folding, \ldots
- STOP [Baz, Hunsaker, Brooks & Gosavi, '07 (Tech report)] [Baz, Hunsaker & Prokopyev, Comput Optim Appl, '09]
 - Optimized MIP solvers, including CPLEX
 - We only found this work ≈ 1 month ago

Parameter Optimization Tools and Applications

- COMPOSER [Gratch & Dejong, '92; Gratch and Chien, '96]
 - Spacecraft communication scheduling
- CALIBRA [Diaz and Laguna, '06]
 - Optimized various metaheuristics
- ► F-RACE [Birattari et al., '04-present]
 - Iterated Local Search and Ant Colony Optimization
- PARAMILS [Hutter et al, '07-present]
 - SAT (tree & local search), time-tabling, protein folding, ...
- STOP [Baz, Hunsaker, Brooks & Gosavi, '07 (Tech report)]
 [Baz, Hunsaker & Prokopyev, Comput Optim Appl, '09]
 - Optimized MIP solvers, including CPLEX
 - We only found this work ≈ 1 month ago
 - Main problem: only optimized performance for single instances
 - Only used small subset of 10 $\rm CPLEX$ parameters

1. Related work

2. Details about this study

The automated configuration tool: PARAMILS The MIP solvers: CPLEX, GUROBI & LPSOLVE Experimental Setup

3. Results

4. Conclusions

Outline

1. Related work

2. Details about this study The automated configuration tool: PARAMILS The MIP solvers: CPLEX, GUROBI & LPSOLVE Experimental Setup

3. Results

4. Conclusions

Start with some parameter configuration

Start with some parameter configuration

Modify a single parameter

Start with some parameter configuration

Start with some parameter configuration

repeat

Modify a single parameter

if results on benchmark set improve then _ keep new configuration

until no more improvement possible (or "good enough")

Start with some parameter configuration repeat Modify a single parameter if results on benchmark set improve then keep new configuration until no more improvement possible (or "good enough")

~ Manually-executed local search

Start with some parameter configuration repeat Modify a single parameter if results on benchmark set improve then keep new configuration until no more improvement possible (or "good enough")

~ Manually-executed local search

 $\label{eq:PARAMILS} PARAMILS \mbox{ [Hutter et al., AAAI'07 & '09]:} \\ \mbox{Iterated local search: biased random walk over local optima}$

How to evaluate each configuration?

- BASICILS(N): perform fixed number of N runs to evaluate a configuration θ
 - Variance reduction: use same N instances & seeds for each heta

How to evaluate each configuration?

- BASICILS(N): perform fixed number of N runs to evaluate a configuration θ
 - Variance reduction: use same N instances & seeds for each heta
- FOCUSEDILS: choose N(θ) adaptively
 - small N(heta) for poor configurations heta
 - large N(heta) only for good heta

How to evaluate each configuration?

- BASICILS(N): perform fixed number of N runs to evaluate a configuration θ
 - Variance reduction: use same N instances & seeds for each $m{ heta}$
- ▶ FOCUSEDILS: choose $N(\theta)$ adaptively
 - small N(heta) for poor configurations heta
 - large N(heta) only for good heta
 - typically outperforms $\operatorname{BasicILS}$
 - used in this study

Evaluation of poor configurations takes especially long

- Evaluation of poor configurations takes especially long
- Can terminate evaluations early
 - Incumbent solution provides bound
 - Can stop evaluation once bound is reached

- Evaluation of poor configurations takes especially long
- Can terminate evaluations early
 - Incumbent solution provides bound
 - Can stop evaluation once bound is reached
- Results
 - Provably never hurts
 - Sometimes substantial speedups

[Hutter et al., JAIR'09]

Outline

1. Related work

2. Details about this study

The automated configuration tool: PARAMILS The MIP solvers: CPLEX, GUROBI & LPSOLVE Experimental Setup

3. Results

4. Conclusions

- ► Commercial solvers: CPLEX 12.1 & GUROBI 2.0.1
- Open-source solver: LPSOLVE 5.5

- ► Commercial solvers: CPLEX 12.1 & GUROBI 2.0.1
- ► Open-source solver: LPSOLVE 5.5

Algorithm	Parameter type	# params	# values	Total # configurations
Cplex	Boolean	6	2	$1.90\cdot 10^{47}$
	Categorical	45	3–7	
	Integer	18	discretized: 5–7	
	Continuous	7	discretized: 5–8	

- ► Commercial solvers: CPLEX 12.1 & GUROBI 2.0.1
- ► Open-source solver: LPSOLVE 5.5

Algorithm	Parameter type	# params	# values	Total # configurations
Cplex	Boolean	6	2	
	Categorical	45	3–7	$1.90\cdot10^{47}$
	Integer	18	discretized: 5–7	
	Continuous	7	discretized: 5–8	
Gurobi	Boolean	4	2	
	Categorical	16	3–5	$3.84\cdot 10^{14}$
	Integer	3	discretized: 5	
	Continuous	2	discretized: 5	

- ► Commercial solvers: CPLEX 12.1 & GUROBI 2.0.1
- ► Open-source solver: LPSOLVE 5.5

Algorithm	Parameter type	# params	# values	Total # configurations
Cplex	Boolean	6	2	$1.90\cdot 10^{47}$
	Categorical	45	3–7	
	Integer	18	discretized: 5–7	
	Continuous	7	discretized: 5–8	
Gurobi	Boolean	4	2	$3.84\cdot10^{14}$
	Categorical	16	3–5	
	Integer	3	discretized: 5	
	Continuous	2	discretized: 5	
LPSOLVE	Boolean	40	2	$1.22\cdot 10^{15}$
	Categorical	7	3–8	
MIP Solvers & their parameters

- ► Commercial solvers: CPLEX 12.1 & GUROBI 2.0.1
- ► Open-source solver: LPSOLVE 5.5

Algorithm	Parameter type	# params	# values	Total # configurations	
Cplex	Boolean	6	2		
	Categorical	45	3–7	$1.90\cdot10^{47}$	
	Integer	18	discretized: 5–7		
	Continuous	7	discretized: 5–8		
Gurobi	Boolean	4	2		
	Categorical	16	3–5	2.04 1014	
	Integer	3	discretized: 5	3.84 · 10-	
	Continuous	2	discretized: 5		
LPSOLVE	Boolean	40	2	1.22, 1.015	
	Categorical	7	3–8	1.22 · 10-0	

Problems with some parameter configurations

Segmentation faults & wrong results

MIP Solvers & their parameters

- ► Commercial solvers: CPLEX 12.1 & GUROBI 2.0.1
- ► Open-source solver: LPSOLVE 5.5

Algorithm	Parameter type	# params	# values	Total # configurations	
Cplex	Boolean	6	2		
	Categorical	45	3–7	$1.90\cdot 10^{47}$	
	Integer	18	discretized: 5–7		
	Continuous	7	discretized: 5–8		
Gurobi	Boolean	4	2		
	Categorical	16	3–5	$3.84\cdot10^{14}$	
	Integer	3	discretized: 5		
	Continuous	2	discretized: 5		
LPSOLVE	Boolean	40	2	1.22, 1015	
	Categorical	7	3–8	1.22 · 10-*	

Problems with some parameter configurations

- Segmentation faults & wrong results
- Detect such runs online, give worst possible score

 \rightsquigarrow Local search avoids problematic parameter configurations

MIP Solvers & their parameters

- ► Commercial solvers: CPLEX 12.1 & GUROBI 2.0.1
- ► Open-source solver: LPSOLVE 5.5

Algorithm	Parameter type	# params	# values	Total # configurations	
Cplex	Boolean	6	2		
	Categorical	45	3–7	$1.90\cdot 10^{47}$	
	Integer	18	discretized: 5–7		
	Continuous	7	discretized: 5–8		
Gurobi	Boolean	4	2		
	Categorical	16	3–5	$3.84\cdot10^{14}$	
	Integer	3	discretized: 5		
	Continuous	2	discretized: 5		
LPSOLVE	Boolean	40	2	1.22, 1015	
	Categorical	7	3–8	1.22 · 10-*	

Problems with some parameter configurations

- Segmentation faults & wrong results
- Detect such runs online, give worst possible score

 — Local search avoids problematic parameter configurations
- ► Concise bug reports ~→ helped to fix 2 bugs in GUROBI (!)

Outline

1. Related work

2. Details about this study

The automated configuration tool: PARAMILS The MIP solvers: CPLEX, GUROBI & LPSOLVE Experimental Setup

3. Results

4. Conclusions

Domain	Туре	#instances	Citation
Comp. sustainability (SUST)	MILP	2 000	[Gomes et al, '08]
Combinatorial auctions (WDP)	MILP	2 000	[Leyton-Brown et al., '00]
Mixed integer knapsack (MIK)	MILP	120	[Atamtürk, '03]
and 3 more			

Domain	Туре	#instances	Citation
Comp. sustainability (SUST)	MILP	2 000	[Gomes et al, '08]
Combinatorial auctions (WDP)	MILP	2 000	[Leyton-Brown et al., '00]
Mixed integer knapsack (MIK)	MILP	120	[Atamtürk, '03]
and 3 more			

Split benchmarks 50:50 into training and test sets

- Optimized parameters on the training set
- Reported performance on the test set
- Necessary to check for over-tuning

Perform 10 independent runs of $\operatorname{PARAMILS}$

• Select configuration $\hat{\theta^*}$ of run with best *training* performance

Perform 10 independent runs of PARAMILS

• Select configuration $\hat{\theta^*}$ of run with best *training* performance

Compare test performance of:

- PARAMILS's configuration $\hat{\theta^*}$
- Default algorithm settings
- CPLEX tuning tool
 - GUROBI and $\operatorname{LPSOLVE:}$ no tuning tool available

- 1. Related work
- 2. Details about this study
- 3. Results
- 4. Conclusions

 "Optimal": relative optimality gap of 0.0001 (CPLEX and GUROBI default)

- "Optimal": relative optimality gap of 0.0001 (CPLEX and GUROBI default)
- Ran PARAMILS for 2 days on 10 machines

- "Optimal": relative optimality gap of 0.0001 (CPLEX and GUROBI default)
- ► Ran PARAMILS for 2 days on 10 machines
- Mean speedup (on test instances)
 - CPLEX 2x to 50x

- "Optimal": relative optimality gap of 0.0001 (CPLEX and GUROBI default)
- ► Ran PARAMILS for 2 days on 10 machines
- Mean speedup (on test instances)
 - CPLEX 2x to 50x
 - LPSOLVE 1x (no speedup) to 150x

LPSOLVE on WDP instances (150x)

- "Optimal": relative optimality gap of 0.0001 (CPLEX and GUROBI default)
- ► Ran PARAMILS for 2 days on 10 machines
- Mean speedup (on test instances)
 - CPLEX 2x to 50x
 - LPSOLVE 1x (no speedup) to 150x
 - GUROBI 1.2x to 2.3x

- "Optimal": relative optimality gap of 0.0001 (CPLEX and GUROBI default)
- ► Ran PARAMILS for 2 days on 10 machines
- Mean speedup (on test instances)
 - CPLEX 2x to 50x
 - LPSOLVE 1x (no speedup) to 150x
 - GUROBI 1.2x to 2.3x

- ► CPLEX tuning tool
 - Evaluates predefined good configurations, returns best one
 - Required runtime varies (from < 1h to weeks)

- ► CPLEX tuning tool
 - Evaluates predefined good configurations, returns best one
 - Required runtime varies (from < 1h to weeks)
- PARAMILS: anytime algorithm
 - At each time step, keeps track of its incumbent

- CPLEX tuning tool
 - Evaluates predefined good configurations, returns best one
 - Required runtime varies (from < 1h to weeks)
- PARAMILS: anytime algorithm
 - At each time step, keeps track of its incumbent

- CPLEX tuning tool
 - Evaluates predefined good configurations, returns best one
 - Required runtime varies (from < 1h to weeks)
- PARAMILS: anytime algorithm
 - At each time step, keeps track of its incumbent

- CPLEX tuning tool
 - Evaluates predefined good configurations, returns best one
 - Required runtime varies (from < 1h to weeks)
- PARAMILS: anytime algorithm
 - At each time step, keeps track of its incumbent

Minimization of Optimality Gap

Objective: minimal optimality gap within 10 seconds runtime

Minimization of Optimality Gap

- Objective: minimal optimality gap within 10 seconds runtime
- ▶ Ran PARAMILS for 5 hours on 10 machines

- Objective: minimal optimality gap within 10 seconds runtime
- ▶ Ran PARAMILS for 5 hours on 10 machines
- Reduction factors of average optimality gap (on test set)
 - CPLEX 1.3x to 8.6x
 - LPSOLVE 1x (no reduction) to 46x
 - GUROBI 1.1x to 2.2x

- 1. Related work
- 2. Details about this study
- 3. Results
- 4. Conclusions

MIP solvers can be configured automatically

- ► Configuration tool PARAMILS available online:
 - http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
 - off-the-shelf tool (knows nothing about MIP or MIP solvers!)
- Sometimes substantial improvements
- Saves valuable human time

MIP solvers can be configured automatically

- ► Configuration tool PARAMILS available online:
 - http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
 - off-the-shelf tool (knows nothing about MIP or MIP solvers!)
- Sometimes substantial improvements
- Saves valuable human time

Requirements

- Representative instance set
 - 100 instances sometimes not enough
 - If you generate instances, please make more (e.g., 2000)!

MIP solvers can be configured automatically

- ► Configuration tool PARAMILS available online:
 - http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
 - off-the-shelf tool (knows nothing about MIP or MIP solvers!)
- Sometimes substantial improvements
- Saves valuable human time

Requirements

- Representative instance set
 - 100 instances sometimes not enough
 - If you generate instances, please make more (e.g., 2000)!
- CPU time (here: 10 × 2 days per domain)

Model-based techniques

- Fit a model that predicts performance of a given configuration on a given instance

Model-based techniques

- Fit a model that predicts performance of a given configuration on a given instance
- Use that model to quantify
 - + Importance of each parameter
 - + Interaction of parameters
 - + Interaction of parameters and instance characteristics

Model-based techniques

- Fit a model that predicts performance of a given configuration on a given instance
- Use that model to quantify
 - + Importance of each parameter
 - + Interaction of parameters
 - + Interaction of parameters and instance characteristics
- Per-instance approaches for heterogeneous benchmarks
 - Given a new unseen instance:
 - + Compute instance characteristics (fast)
 - $+\,$ Use parameter config. predicted to be best for the instance

Thanks to:

- Providers of instance benchmark sets
 - Louis-Martin Rousseau
 - Bistra Dilkina
 - Berkeley Computational Optimization Lab
- Commercial MIP solvers for free full academic license
 - IBM (CPLEX)
 - Gurobi
- LPSOLVE developers for their solver
- Compute clusters
 - Westgrid
 - CFI-funded arrow cluster
- Funding agencies
 - Postdoc fellowship from CBIE
 - MITACS
 - NSERC

Backup slides

Baz et al optimized for single instances

"In practice, users would typically be tuning for a family of related instances rather than for an individual instance"

Generalization to sets of instances is nontrivial

- Cannot afford to run all instances for each configuration

 $\rightsquigarrow~FocuseDILS$ adapts # runs per configuration

Further differences

- ▶ Baz et al used older CPLEX version (9.0)
 - defaults improved in newer CPLEX versions
- ▶ Baz et al considered (only) 10 CPLEX parameters
 - and also not all possible values for each parameter
 - in order to improve $\operatorname{Stop}\nolimits\textsc{'s}$ performance
 - → requires domain knowledge

Configuration of MIP Solvers: Optimality Gap

▶ Objective: minimal optimality gap within 10 seconds runtime

Configuration of MIP Solvers: Optimality Gap

- Objective: minimal optimality gap within 10 seconds runtime
- ▶ Ran PARAMILS for 5 hours on 10 machines

Configuration of MIP Solvers: Optimality Gap

- Objective: minimal optimality gap within 10 seconds runtime
- Ran PARAMILS for 5 hours on 10 machines
- Reduction factors of average optimality gap (on test inst.)
 - Cplex 1.3x to 8.6x
 - LPSOLVE 1x (no reduction) to 46x
 - Gurobi 1.1x to 2.2x

Configuration of MIP Solvers: Optimality Gap

- Objective: minimal optimality gap within 10 seconds runtime
- ▶ Ran PARAMILS for 5 hours on 10 machines
- Reduction factors of average optimality gap (on test inst.)
 - Cplex 1.3x to 8.6x
 - LPSOLVE 1x (no reduction) to 46x
 - GUROBI 1.1x to 2.2x

