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Preface

The second Doctoral Symposium on Engineering Stochastic Local
Search Algorithms (SLS-DS) was held at the Université Libre de Brux-
elles, Belgium on 4 September 2009 integrated into the SLS 2009 Work-
shop. SLS-DS consists of a series of short presentations followed by a poster
session. It thereby provides a forum for doctoral students to present their
work, obtain guidance from fellow researchers, and to network with other
students at a similar stage in their careers. The symposium exposes stu-
dents to helpful criticism and fosters discussions related to future career
perspectives.

The extended abstracts in these proceedings were selected based on rel-
evance, significance, quality, and clarity of presentation. They provide a
useful guide to emerging research and new trends in the stochastic local
search field. The topics covered include:

• Methodological developments for the implementation of SLS algo-
rithms.

• Automated procedures for selecting operators and tuning parameters
of SLS algorithms

• Multi-objective optimization

• In-depth experimental studies of SLS algorithms

• Studies of problem characteristics

We would like to thank everyone who has helped making SLS-DS 2009 a
success, in particular the members of the program committee, the additional
reviewers, and everyone involved in the local arrangements of SLS and SLS-
DS 2009.

Frank Hutter & Marco A. Montes de Oca

Program Chairs, SLS-DS 2009
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A Model Based Algorithm for

Evolutionary Design of Experiments

Matteo Borrotti

Ph. D. School of Statistics,

Faculty of Statistics, University of Bologna, Italy

matteo.borrotti@unibo.it

Abstract

In many optimization problems, such as vehicle routing and schedul-
ing, the large domain and the huge experimental space limit the ability
of classical approaches to reach the optimum of a given function. A
possible solution is the integration of advanced statistical techniques
with optimization algorithms, to avoid the need of assumptions on the
domain and to allow the methodology to scale to problems of large
scale. With this purpose, we combine approaches from Design of Ex-
periments and metaheuristic algorithms. To study the performance of
the proposed techniques, we compare different solutions on a simulated
case related to protein engineering in biochemistry.

1 Introduction

Problems in life sciences, such as biochemistry, or materials science, involve
a huge number of components that influence the behaviour of the experi-
ments. In real experiments we often have to handle a large set of compo-
nents; among them, one sometimes has to extract a subset of components
that, properly ordered and combined together, allow the experimenter to
find the best solutions for a specific problem. The process of selecting the
best subset and identifying the best ordering can be seen as an optimiza-
tion problem. The same problem arises in many different domains, such as:
routing, assignment, scheduling and others.
In our specific case, we are facing a class of discrete optimization problem
that is characterized by a large number of elements to be considered and a
huge experimental space to be tested. More precisely, starting from a set A
of |A| = n objects, one has to choose a first subset B from A of |B| = m
objects (m ≪ n). The final solution is then built by ordering the elements
in B. The objective function value of the final solution depends on the el-
ements that are chosen and their ordering. In this paper, we assume that
the objective function is a black-box function and that it is not explicitly
given. In fact, in the problems we tackle, the objective function value of a
candidate solution is usually obtained by running a simulation. Typically,
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computing the objective function value will be a time consuming task and,
hence, we will be strongly limited on the number of function evaluations.
A practical example of this problem is the optimization of co-rotating twin
screw extruders [7], used in the polymer compounding industry mainly due
to their good mixing capacity. In this example, all the objects are already
selected and the aim is only to choose the right ordering. In our more gen-
eral case, the set of objects has to be first extracted from a larger set of
elements and then ordered properly.
A practical example of this second case is the development of Synthetic Pro-
teins, an emerging and exciting field in biochemistry. Protein Engineering
and Design (PED) has been the object of many studies, due to its relevance
in the research of primordial catalysts of the Origin of Life and for their po-
tential applications in biotechnology for highly selective biotransformation
process. In this particular case, we want to assess through in silico simula-
tion the possibility of using Evolutionary Design of Experiments to identify
proteins sequences with defined properties. Automated de novo design of
Synthetic Proteins is one of the main goals of computational biochemistry
and we will focus our efforts in building a solution for this kind of problems
and, more generally, to find a methodology able to tackle the aforementioned
optimization problem.

2 Methods

The ultimate aim is to test the possibility of exploiting bio-inspired algo-
rithms combined with advanced statistical techniques to search a discrete
sequence space for a target structure.
The simulation consists in a number of test experiments on an artificially
generated dataset of 95 domains, that will be combinatorially recombined
to generate synthetic proteins composed of 200 amino acids (4 domains).
A protein domain is a part of protein sequence that folds autonomously
within a protein chain. Each domain forms a compact three-dimensional
structure and often can be independently stable and folded. Many proteins
consist of several structural domains. One domain may appear in a variety
of evolutionarily related proteins. Domains vary in length from between
about 25 amino acids up to 500 amino acids in length, in our case being 50
amino acids long. Because they are self-stable, domains can be ”swapped”
by genetic engineering between one protein and another to make synthetic
proteins. The dataset of domains will consist of 91 completely random pro-
tein domains and 4 natural protein domains. The latter, when recombined
in the proper order, generate a protein of know function and structure (i.e.
Protein Data Bank1: 1AGY). The ultimate goal is to identify the 4 natural

1The Protein Data Bank (PDB) archive contains information about experimentally-
determined structures of proteins, nucleic acids and complex assemblies.
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domains among the 95 domains and to order them appropriately, to gener-
ate the natural protein; the search space of possible sequences derived from
the dataset is rather large (954 = 8.1× 107). This approach is based on the
work of [5] and [8].
Each individual protein of 200 amino acids length, assembled using the 95
domains, will be evaluated, in a subsequent validation step, for its secondary
structure using the PSIPRED software [4]. PSIPRED output will be used
to compare the secondary structure of synthetic proteins against the target
protein (i.e. 1AGY). Synthetic proteins will be aligned against the target
protein and a score will be computed considering individual amino acid sec-
ondary structure identity, weighted for confidence of prediction.
The problem of selecting 4 domains among 95 and assigning to them the
correct ordering is then mapped to a binary optimization problem in 95× 4
dimensions. The optimization algorithm will exploit a statistical model to
score each solution and, after each run, will propose a set of candidate pro-
teins; the proteins will then be evaluated in the validation step and results
of the validation will be used to update the statistical model. The process
will be iterated until a certain stopping criterion is reached.
The research process can then be divided into 3 main steps that are described
below.

Model Selection and Validation

In this simulated case, no a priori information about the phenomenon is
available; thus, we will base our knowledge on the information extracted
from the proteins, previously simulated and tested, using complex statisti-
cal models. The task here is to see which method is the best for modeling
the surface of the problem depending on the elements.
Different statistical models are tested using a benchmark function, built ad
hoc for the practical problem presented. Candidate models are: multiple
regression, weight regression, local polynomial model.
Being the validation phase extremely time consuming, we can even consider
to exploit relatively expensive approaches, from a computational point of
view, to model the problem. Due to the inherent complexity of protein
folding, multiple experiments must be run simultaneously to dissect the in-
terplay between different variables. For this reason, any single experimental
batch will be composed of 95 synthetic proteins (the maximum number of
proteins that can be experimentally tested at one time). The evaluation of
these 95 proteins takes 2-3 days, using state-of-arts prediction software.
This comparison between models allows us to understand the ability of sta-
tistical modelling to predict the target and to compare its performance to
stochastic local search algorithms.
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Model Based Algorithm for Evolutionary Design of Experiments

After having selected the most suited model for our problem, we will build
the optimization algorithm on top of it, exploiting the model output as a
fitness function. We will compare a number of different optimization algo-
rithms, such as Ant Colony Optimization [1], population-based and stochas-
tic local search algorithms [3], on the same set of initial experimental points
and with the same strategy for updating the set; this will allow us to identify
the best approach for searching in the experimental space.
The search space will then be explored with a mixed approach, exploiting
both information from the predictive statistical model and the abilities of
the Stochastic Local Search algorithm: the iterated refinement of the statis-
tical model will provide the optimization algorithm with a fitness function
that increases in accuracy during the optimization process.

Generalization of the problem

We will generalize the problem of selecting and ordering of a sequence (so-
lution) of elements chosen from a huge number of candidate elements, com-
paring different optimization algorithms and different statistical modelling
techniques with complex benchmark functions able to simulate the general
features of our problems.

3 Conclusion and state of the research

In our work, we intend to tackle the general problem of selecting the correct
subset from a huge set of possible elements and defining their positions in
the selected sequence. The main feature of this kind of problems is the
large experimental space, due to the huge library of candidate elements to
be selected, the different ways in which elements can be composed together,
the different laboratory protocols and the complex high order interaction
network among the elements.
Usually researches try to solve these problems using classical techniques
from statistical Design of Experiments [6], which are not effective when
the number of independent variables increases; moreover, they assume the
presence of priori knowledge on the systems. In all practical examples these
assumptions tend to be too strict. The main objective of this work is to
define a new way of designing experiments based on the combination of
advanced statistical techniques and optimization algorithms, in order to find
the best experimental design and to reduce cost and time.
We started from the ideas presented in Theis et al [9], in which a biochemical
problem is solved with an evolutionary design of experiments based on a
genetic algorithm (GA), and from the approach used by Forlin et al. [2], in
which the potentialities of adopting this kind of evolutionary approaches for
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high dimensional mixture experiments are described.
At the moment, a simulated dataset of domains is ready to be analysed and
we are going to finish the first step of the research process, the selection and
the evaluation of the statistical models. Moreover, we are defining the search
strategy that has to be applied in the second step, the implementation of
the Model Based Algorithm for Evolutionary Design of Experiments. When
these two goals are accomplished, we will concentrate on the generalization
of the strategy.
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Abstract

When solving instances of the Vehicle Routing Problem (VRP), it
is almost always assumed that one has access to all the information rel-
ative to the problem instance in advance and that it does not change
over time. However, in most real-world vehicle routing problems in-
formation is not always static or known a priori: new costumers, new
orders or unexpected variations, such as a vehicle’s travel time, can
occur during or after planning the initial routes. The Dynamic Vehicle
Routing Problem (DVRP) is a special VRP class in which it is explic-
itly considered that information can be obtained and processed in real
time. Despite all the progress achieved so far, one issue remains open:
how to design optimization methods that are able to adapt to the con-
stantly changing optima? This work is a glance at how the DVRP has
been tackled with Ant Colony Optimization (ACO) algorithms and
how some pheromone update strategies can improve the performance
of ACO algorithms to solve vehicle routing problems in real-time.

1 Introduction

The consolidation of a global economy and the increasing development of
information technology have made remarkable changes in the Supply Chain
Management process. Companies need now to deal with information in real
time to be competitive in the global market.

In this context, goods distribution is a prime example of how the use
of real-time information can differentiate one company from another by its
ability to react efficiently to failures or other type of disturbances.

Distribution problems in real-time are usually modeled as instances of
the DVRP [7], an NP-hard combinatorial optimization problem that has
been formulated in order to improve vehicle routing decisions under uncer-
tainties encountered in the real world.

In recent years, many different versions of dynamic problems have been
studied and formulated [7]. Despite all the progress achieved so far, there is
still need for algorithms that are able to find and track high quality solutions
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in dynamic environments. The successful performance of ACO algorithms
when applied to the static vehicle routing problem [2] inspired its application
on the DVRP. In this paper, we briefly describe how the DVRP has been
tackled with ACO algorithms. We focus in particular on methods that
modify the pheromone update process in order to make the algorithms more
suitable to the dynamic nature of this class of problems.

2 Dynamic Vehicle Routing Problems

A vehicle routing problem can be considered dynamic if any important infor-
mation that defines a problem instance changes over time. On the contrary,
if all information is received or known before planning starts and does not
change thereafter, it is considered to be a static problem [7]. Thus, we can
say that every DVRP is a series of static VRPs if we consider that a change
in one parameter leads to another instance. As an example, consider a set
of customers to be served by a vehicle. Some services are known a priori and
an initial set of routes is built covering these services. However, during the
day new service orders arrive and are included in the current routes. This
gives rise to a new problem instance.

For solving dynamic routing problems two main strategies are found in
the literature, both solving a series of static problems: (i) a new problem is
defined each time a new event occurs [1], or (ii) a new problem is defined at
predefined time intervals [6].

3 Ant Colony Optimization for the Dynamic Ve-
hicle Routing Problem

In a practical scenario, the best of the two above mentioned approaches
depends on the time that is available for solving the new problem and the
amount of information that changes from one instance to the next.

The simplest way to handle dynamic changes is to restart the optimiza-
tion algorithm and solve a new static VRP. However, if the changes to the
current instance are small, it should be a good strategy to transfer knowl-
edge from the previous optimization run to the new one. On the other
hand, restarting the optimization process from scratch could prevent the
algorithm from getting stuck in a local optimum, though at the cost of more
computation time.

Based on the above mentioned constraints, pheromone modification strate-
gies have started to be proposed to make ACO a successful tool for opti-
mization in dynamic environments. For a complete review about ACO see
[2].

7



3.1 Pheromone Modification Strategies

The research interest about pheromone modification strategies for dynamic
problems was started by Guntsh and Middendorf [4] [5] who tried different
strategies for decreasing the pheromone values on the pheromone update
procedure in order to improve the performance of Ant Colony System [2] on
instances of the dynamic travelling salesman problem. Global pheromone
modification strategies were proposed as a way to reduce the influence of
past decisions when building a new solution after the insertion or deletion
of a city into an instance of the problem tackled. These strategies are:

Restart-Strategy assigns a reset-value at each city j of the problem
by equalizing the pheromone values to some degree,

η-Strategy and τ-Strategy assume that good solutions to changed
instances will differ only locally. In both strategies, the pheromone equal-
ization value is proportional to the distances between the cities, that is,
pheromone values is maintained to a higher degree on edges that are “closer”
to inserted/deleted cities in the current instance. τ -Strategy uses pheromone
based information as reference, while η-Strategy uses the heuristic informa-
tion.

All the strategies presented above work by distributing a value Yi ∈ [0,1]
to each city i. These values are then used to reinitialize the pheromone
values τij on edges incident to i according to the equation

τij → (1 − Yi) · τij + Yi · τ0, (1)

where τ0 is the initial pheromone value.

The experiments using the proposed pheromone strategies have shown
that when applied to the dynamic TSP, the variation of pheromone update
values have a direct and positive influence to problem solutions. After pa-
rameter tuning all these pheromone update strategies have achieved better
results than restarting the algorithm for each static problem.

Inspired by Guntsh and Middendorf [4] [5], Montemanni [6] implemented
a simpler pheromone modification strategy for a vehicle routing problem
with dynamic demands where a parameter γr replaces the parameter ρ on
the global pheromone update procedure [2]. For each pair of customers
which appear both in the previous and in the current static problem, the
pheromone matrix entry is re-initialized using γr. Entries of pheromone
matrix corresponding to pairs of new customers are initialized by the starting
pheromone value. Entries of the new pheromone matrix corresponding to
pairs of new customers are initialized to τ0.

τij = (1 − γr) · τ
old
ij + γr · τ0, (2)

where τ old
ij represents the value of τij in the previous static problem. Thus,

the pheromone values are not completely reinitialized.
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In [6] different values for γr were proposed. As in [4] [5], the obtained
results also highlighted the importance of the pheromone conservation pro-
cedure in the algorithm for building good solutions.

Other pheromone strategies for dynamic environments can be found in
the literature. So far, they are mostly applied to routing in telecommuni-
cations networks. When applied to vehicle routing the TSP is chosen for
application. Eyckelhof [3] for example, presented several ways to adapt the
pheromone matrix both locally and globally in an Ant System algorithm
applied for the dynamic TSP where the travel time between the cities was
dynamic.

4 Conclusions

We briefly described approaches for tackling the dynamic vehicle routing
problem using Ant Colony Optimization algorithms. We paid special atten-
tion to methods that reuse information from previously found solutions as it
has been reported that such an approach gives better results than restarting
the algorithms.

Despite these promising results it is still unclear how new pheromone
update strategies affect the runtime behavior of the algorithms as well as
their convergence properties. Moreover, there is so far no methodological ap-
proach for determining the right balance between reusing information from
one instance to another and restarting algorithms anew. Another avenue of
research is the hybridization of ACO algorithms with other approaches for
the DVRP.
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Abstract

The performance of evolutionary algorithms is highly affected by
the selection of the variation operators to solve the problem at hand.
This paper presents a brief review of the results that have been re-
cently obtained using the “Extreme - Dynamic Multi-Armed Bandit”
(Ex-DMAB), a technique used to automatically select the operator to
be applied between the available ones, while searching for the solution.
Experiments on three well-known unimodal artificial problems of the
EC community, namely the OneMax, the Long k-Path and the Royal
Road, and on a set of a SAT instances, are briefly presented, demon-
strating some improvements over both any choice of a single-operator
alone, and the naive uniform choice of one operator at each application.

1 Adaptive Operator Selection

Adaptive methods use information from the history of evolution to modify
parameters while solving the problem. This paper focuses on the Adaptive
Operator Selection (AOS), i.e., the definition of an on-line strategy able
to autonomously select between different variation operators each time one
needs to be applied. Fig. 1 illustrates the general scheme for achieving this
goal, from which we can derive the need of defining two main components:
the Credit Assignment - how to assess the performance of each operator
based on the impact of its application on the progress of the search; and
the Operator Selection rule - how to select between the different operators
based on the rewards that they have received so far.

2 Extreme - Dynamic Multi-Armed Bandit

The two ingredients of the Adaptive Operator Selection method proposed
by us are: an Operator Selection rule based on the Multi-Armed Bandit
paradigm, and a Credit Assignment mechanism based on extreme values.
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Figure 1: General Adaptive Operator Selection scheme.

2.1 Operator Selection: Dynamic Multi-Armed Bandits

The explored idea, firstly proposed in [3], is that the selection of an operator
can be seen as yet another Exploration vs. Exploitation dilemma, but this
time at operator-selection level: there is the need of applying as much as
possible the operator known to have brought the best results so far, while
nevertheless exploring the other possibilities, in case one of the other op-
erators becomes the best option at some point. Such dilemma has been
intensively studied in the context of Game Theory, in the so-called Multi-
Armed Bandit (MAB) framework. Among the existent MAB variants, the
Upper Confidence Bound (UCB) [1] was chosen to be used, for being proved
optimal w.r.t. maximization of the cumulative reward.

More formally, the UCB algorithm works as follows. Each variation
operator is viewed as an arm of a MAB problem. Let ni,t denote the number
of times the ith arm has been played up to time t, and let p̂i,t denote the
average empirical reward received until time t by arm i. At each time step
t, the algorithm selects the arm maximizing the following quantity:

p̂j,t + C

√

2 log
∑

k nk,t

nj,t
(1)

The first term of this equation favors the best empirical arm (exploita-
tion) while the second term ensures that each arm is selected infinitely often
(exploration); this algorithm has also been described briefly as “be opti-
mistic when facing the unknown”, as the second term of Equation 1 can
also be viewed as some kind of variance, and the user should choose the arm
that might lead to the highest value.

In the original setting [1], all rewards, and hence also their empirical
means p̂j,t are in [0, 1]. However, since this is not the case in the AOS
context, a Scaling factor C is needed, in order to properly balance the trade-
off between both terms.

Another important issue is that the original MAB setting is static, while
the AOS scenario is dynamic, i.e., the quality of the operators is likely to
change along the different stages of the search. Even though the exploration
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term in the UCB algorithm ensures that all operators will be tried infinitely
many times, after a change in their ordering, it might take a long time be-
fore the new best operator catches up. To cope with dynamic environments,
it was proposed [7] to use a statistical test that efficiently detects changes
in time series, the Page-Hinkley (PH) test [10], coupled with the UCB al-
gorithm. Basically, as soon as this test detects a change in the rewards
distribution, the MAB algorithm is restarted from scratch, allowing it to
quickly re-discover the new best operator.

2.2 Credit Assignment: Extreme Value Based

The idea of using extreme values was proposed as the Credit Assignment
mechanism, based on the assumption that attention should be paid to ex-
treme, rather than average events, in agreement with [11]. The credit as-
signed to the operator is the maximum of the impacts caused by the operator
application over a sliding window of the last W applications.

The measurement of such impact depends on the nature of the problem
at hand. In unimodal problems, we have been using the fitness improvement;
while in the multimodal SAT problems, an engineered aggregation of fitness
improvement and diversity, called Compass [9], was applied.

3 Summary of Results

Experiments with Ex-DMAB in unimodal benchmark problems have been
presented in [4, 5, 6], in which the fitness improvement was used to measure
the impact of the operator application. The Ex-DMAB has been used to
adapt a (1+λ)-EA, by efficiently choosing on-line between 4 mutation oper-
ators for solving the OneMax problem [3]; and has been tried on yet another
unimodal benchmark problem, the Long k-Path [5], this time efficiently se-
lecting between 5 mutation operators. In both cases, the optimal operator
selection strategy was extracted by means of Monte-Carlo simulations, and
the Ex-DMAB showed to perform statistically equivalent to it; while signif-
icantly improving over the naive (uniform selection) approach. It has also
been used to adapt a (100,100)-EA with 4 crossover and 1 mutation oper-
ators on the Royal Road problem [6], also performing significantly better
than the naive approach. For the three problems, we have also used other
AOS combinations as baseline for comparison, namely Adaptive Pursuit,
Probability Matching and the static MAB (without restarts), coupled with
Extreme or Average rewards. Ex-DMAB was shown to be the best option.

A different analysis was also done in the light of SAT problems, in [8].
Since these problems are mostly multimodal, the reward used was the Com-
pass [9], which aggregates both the fitness improvement of the offspring, and
the diversity that this offspring brought by being inserted in the population.
Significantly better results were achieved w.r.t. the naive approach, and also
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to the original Compass and Ex-DMAB combinations. The application of
such approach in multimodal functions should be more deeply investigated
in the future.

4 Discussion and Perspectives

A current drawback concerns the tuning of the Ex-DMAB hyper-parameters,
the window size W, the scaling factor C and the change detection test thresh-
old γ – actually, they are being off-line tuned by means of F-Race [2]. Al-
though its good performances rely on such expensive procedure, Ex-DMAB
was found to outperform the main options opened to the naive EA user,
namely (i) using a fixed or deterministic strategy (including the naive, uni-
form selection, strategy; or (ii) using a different AOS strategy. Furthermore,
Ex-DMAB involves a fixed and limited number of parameters, whereas the
number of operator rates increases with the number of operators.

Further research will aim at addressing the above weaknesses. Firstly,
we shall investigate better how the threshold γ and the scaling factor C
relate, as both cooperate to control the exploration vs exploitation trade-
off. Another possible direction is the analysis of a rank-based reward, instead
of the absolute value that is currently being used; in this way, it will not
be problem-dependent anymore, and a robust setting for these parameters
might be found. A different direction that might also be analyzed is the use
of this selection technique in another context, selecting between different
algorithms instead of operators.
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Abstract

Timetabling tasks form a widely studied type of resource scheduling
problem, with important real-world applications in schools, universi-
ties and other educational settings. In this work, we focus on post-
enrollment course timetabling, the problem that was covered by Track
2 of the recent 2nd International Timetabling Competition (ITC2007).
Following an approach that makes strong use of automated exploration
of a large design space of modular and highly parameterised stochastic
local search algorithms for this problem, we have obtained a solver that
achieves consistently better performance than the top-ranked solver
from the competition. This represents a substantial improvement in
the state of the art for post-enrollment course timetabling.

1 Introduction

Course and examination timetabling is a resource-constrained scheduling
problem encountered by universities and other educational institutions, in-
volving scheduling a set of events into given rooms and timeslots. The
resulting schedule is subject to resource and feasibility constraints derived
from the availability of rooms, student enrollments in the events, prece-
dence relations between events, and student or teacher preferences. While
the feasibility constraints must be strictly satisfied, giving rise to a satisfac-
tion problem, preferences should not be violated whenever possible, which
gives rise to an optimization problem. The presence of such hard and soft
constraints is typical for many real-world constraint optimisation problems.

In this work, we present a new state-of-the-art solver for a particular
problem in timetabling, the Post-Enrollment Course Timetabling Problem,
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as considered in Track 2 of the recent 2nd International Timetabling Com-
petition (ITC2007) [13]. Leveraging our previous work which resulted in a
solver that placed third in Track 2 of ITC2007 [5], our main contribution
lies in the automated approach for designing our new solver, as well as the
resulting solver itself, which represents a substantial improvement over the
previous best algorithm for the problem (the solver by Cambazard et al.
that won Track 2 of ITC2007 [3]).

2 Automated Design Approach and Algorithm

Framework

In recent years there has been a considerable amount of methodological
research devoted to the issue of configuring the components and tuning
the parameters of optimisation algorithms, and especially of heuristic al-
gorithms. Contrary to the traditional approach of trying to minimise the
number of user-configurable algorithm parameters, these methods embrace
the idea of parameterising as much algorithm functionality as possible [8].
Out of the available procedures for automated algorithm configuration we
selected FocusedILS [11, 10], as it is the only procedure we are aware of that
has been demonstrated to be effective in dealing with very large, highly
discrete design spaces.

Our approach is heavily based on the use of this powerful automated
algorithm configuration method, allowing us to search for a performance-
optimised design within a very large space of candidate solvers. The same
fundamental automated algorithm design approach has been recently used
to obtain substantial improvements in the state of the art for solving various
types of SAT instances [9, 12] (where the latter piece of work has been under-
taken in parallel and to a large degree independently of the work presented
here). The space of algorithms for the problem considered in this work is de-
fined by a modular solver framework that is based on stochastic local search
(SLS) methods [7] and builds on several ideas from the timetabling and
graph coloring literature, as well as on work done for the first timetabling
competition in 2003 [4]. The design space for our solvers involves not only
traditional numerical parameters, but also choices between preprocessing
options and neighbourhoods as well as the diversification strategies em-
ployed. This framework contains 18 configuration parameters and design
choices, and allows for a total of approximately 1013 possible instantiations.
The key idea behind this framework is to first solve the feasibility problem
and then the optimisation problem by restricting the search to only feasible
timetables. Different solution representations and neighbourhoods are inter-
leaved during the search in the two phases, and randomisation together with
tabu search and simulated annealing concepts are combined in a flexible and
novel way.
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The hard constraint solving phase of our configured solver consists of a
constructive phase followed by a stochastic local search phase. The construc-
tive phase generates partial assignments using an approach similar to that of
Arntzen and Løkketangen [1], inserting events using a topological ordering
of the precedence constraints. The local search phase uses a tabu search
procedure based on the PARTIALCOL algorithm [2]. At each iteration, an
unscheduled event is inserted into the best possible non-tabu timeslot for
it, and all events subsequently breaking hard constraints are moved into the
list of unscheduled events. After a number of non-improving iterations have
been made, a component of the soft constraint solver is used as a diversifi-
cation mechanism. If this perturbation and subsequent optimisation fails to
produce an improvement, a number of events are chosen at random to be
unscheduled and the search proceeds as before. When there are no longer
any hard constraint violations, the algorithm proceeds to the soft constraint
solving phase.

The soft constraint solving phase begins with a first-improvement lo-
cal search until a local minima is found for all four of the neighbourhoods
available in the solver. Next, a simulated annealing phase is applied using
both the 2-exchange and swap-of-time-slots neighbourhoods until a speci-
fied time limit is reached or an optimal schedule is located. In addition
to the usual geometric cooling schedule, the temperature parameter of the
annealing procedure is increased after a number of non-improving iterations.

3 Experimental Design and Results

Based on the multi-phase architecture underlying our solver, we applied
FocusedILS to first optimise the parameters controlling the behaviour of
the hard constraint solver and then to optimise the parameters for the soft
constraint solver. The solver was tuned using a runtime cutoff of 600 CPU
seconds, and all tuning was performed using a cluster of identical machines,
in order to perform multiple independent runs of FocusedILS in parallel.
Overall, 360 CPU hours were used for runs of FocusedILS to produce our
final solver.

In the course of this work, we also developed a new metric for FocusedILS
called the p-value performance metric, based on the idea of using empirical
solution quality distributions (SQDs) for an existing solver as a target for the
algorithm being tuned. This metric was used when tuning the parameters
of the soft constraint solver, using empirical SQDs from the Cambazard et
al. solver. In addition, we extended FocusedILS to perform more effectively
when there is an expectation that some numeric parameters have a convex
or unimodal response when the values of the other parameters are fixed.
This new version 2.4 of FocusedILS was used for all parameter configuration
performed in this work.
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Of the 24 available instances from ITC2007 for this problem, the sixteen
“public” instances were used for configuration while the eight “private” in-
stances were reserved for testing purposes. Using 100 runs each 600 CPU
seconds in length on each of these 24 instances, our tuned solver configura-
tion achieves better median soft constraint violation values than the solver
of Cambazard et al. on all of the public instances as well as for five of the
eight private instances that were not used in the configuration process. On
four instances, the median quality is better by more than an order of mag-
nitude. In addition, we also beat the solver of Cambazard et al. using the
rank-based competition metric of ITC2007 in a 2-way race. These results
clearly demonstrate a substantial performance improvement compared to
the previous state of the art.

In future work, it would be particularly interesting to use these tools in
combination with an appropriately expanded version of our solver frame-
work to tackle the two other timetabling problems used in ITC2007 (an
examination and a curriculum-based timetabling problem [14, 6]). We have
also recently begun applying our timetabling algorithm to the real-world
problem of scheduling exams at the University of British Columbia.
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Abstract

In this article, we tackle the automatic algorithm configuration
problem (ACP), finding the best configuration of an algorithm such
that some measure of its performance is optimized. We study the
mesh adaptive direct search (MADS) method for the ACP. MADS is
an iterative algorithm for global optimization. It does not require any
infomation of the evaluation function, therefore the ACP can be re-
garded as a black-box for evaluation. To handle the stochastic nature
of the ACP, we adopted F-Race, to adaptively allocate the evaluation
budgets among a population of candidate configurations. We compare
the hybrid of MADS and F-Race (MADS/F-Race) to MADS with cer-
tain fixed numbers of evaluations, and demonstrate the advantage and
robustness of MADS/F-Race over its counterparts in solving the ACP.

1 Introduction

Many algorithms for tackling computationally hard problems have a number
of parameters to be determined, which might greatly influence the algorithm
performance. Finding a good parameter setting of an algorithm is of great
importance in both research and industrial practice, and we call this problem
algorithm configuration problem.

In this abstract, we focus on the offline algorithm configuration problem
following the definition from Birattari [3]. In the training phase, an algo-
rithm configuration is determined such that the expected solution quality of
the algorithm is optimized. The selected configuration is then deployed in
the production phase where the algorithm is used to solve previously unseen
instances. One crucial aspect is generalization, i.e., based on a given set of
training instances, the goal is to find high-performing algorithm configura-
tions for (a potentially infinite set of) unseen instances.

The algorithm configuration problem is itself a hard optimization prob-
lem. An important aspect of this problem is that it is typically a stochastic
optimization problem. There are two main sources of stochasticity, firstly
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the algorithm itself is usually stochastic, which is typical for stochastic local
search (SLS) algorithms. However, even if the algorithm is deterministic,
its performance and search behavior depends on the particular instance to
which it is applied. In fact, the particular instance being tackled can be
seen as having been drawn according to some underlying, possibly unknown
probability distribution, introducing in this way a second stochastic factor.

In the effort to tackle this problem, F-Race was proposed [4] and it is
particularly well suited for dealing with the stochastic aspect. The essential
idea of F-Race is to evaluate a given set of candidate configurations itera-
tively on a stream of instances. As soon as enough statistical evidence is
gathered against some candidate configurations, these are eliminated and
the race continues with the surviving ones until only one candidate is left.
In particular, in each evaluation step, the non-parametric family-wise Fried-
man test is applied to check whether there is evidence that at least one
of the configurations is significantly different from the others. If the null
hypothesis of no differences is rejected, Friedman post-tests are applied to
eliminate those candidate configurations that are significantly worse than
the best one.

There are various ways how the candidate configurations for F-Race are
generated. In this article, we have adopted an iterative sampling method
called mesh adaptive direct search (MADS) [1] for tuning numerical param-
eters. We show how the hybrid of F-Race and MADS, which is denoted
MADS/F-Race, can help to cope with the stochastic nature of the evaluation
function in the context of algorithm configuration problems.

2 The MADS/F-Race

The MADS class of algorithms [1] is designed for global optimization problems,
which can be in general stated as minp∈Ω f(p) for a function f : Ω ∈ R

d →
R ∪ +∞, and d = |Ω| denotes the dimension of the variable space. The
algorithm does not require derivative information or continuity of f , thus f
can be treated as a black-box. For the settings of the MADS algorithm, we
follow [2].

MADS is an iterative algorithm, where each iteration essentially consists of
two steps, the search step and the poll step. In the initial search step, d2

trial points are sampled by latin hypercube, while in the search step from
the second iteration on, 2d trial points are randomly sampled on the current
mesh, whose coarseness is controlled by a mesh size parameter Deltak ∈ R+.
The set of mesh points at iteration k is defined as:

Mk =
⋃

p∈Sk

{p + ∆kz : z ∈ Z
d} (1)

where Sk denotes the set of points that have been evaluated in the previous
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iterations. If the search step does not find an improved point, the poll

step is activated, where 2d trial points are generated, which forms the set
called frame, defined as:

Fk = {pk ± ∆kb : b ∈ Bk} (2)

where Bk = {b1, b2, . . . , bd} is a basis in Z
d. At iteration k, either an im-

proved point is found replacing the incumbent or both steps terminate, the
mesh size parameter is updated as Equation 3:

∆k+1 =







∆k/4 if no improved mesh point is found;
4∆k if an improved mesh point is found, and ∆k ≤ 1

4 ;
∆k otherwise.

(3)

In order to handle the noisy black-box objective function, MADS should
be adapted by allowing more than one evaluation on the trial points so as
to reduce the evaluation variance. A brute-force approach is to perform a
fixed number of evaluations. However, it is not a priori known what the
appropriate evaluation number is, besides, the same amount of computa-
tional resources have to be allocated to the good performing candidates as
well as the bad performing ones. To this end, a hybrid of F-Race and MADS

(or MADS/F-Race), is proposed to cope with this difficulty. The hybrid can
be done in a rather straightforward way. At each iteration of MADS, be it
the search or poll step, a population of candidate configurations sampled
from MADS, together with the incumbent point, will be evaluated by F-Race.
Each F-Race is allowed a budget of 10 times the number of candidates. The
objective of F-Race in this task is to identify the best point, be it the incum-
bent or a new improved point, and then the MADS parameters are updated
accordingly.

3 Experimental results

The experiments are conducted on six problem classes, (i) MMASTSP, the
MAX–MIN Ant System (MMAS) for traveling salesman problem (TSP)
with 6 parameters; (ii) MMASTSP ls, the MMAS with 2-opt local search
for TSP, the same parameters as MMASTSP; (iii) ACSTSP, ant colony sys-
tem (ACS) for TSP with 6 parameters; (iv) ACSTSP ls, ACS with 2-opt
local search fo TSP, the same parameters as ACSTSP; (v) ILSQAP, iterated
local search (ILS) for quadratic assignment problem (QAP) with 8 param-
eters; (vi) SAQAP, simulated annealing (SA) for QAP with 3 parameters.
Each class contains 4 different computation time (1, 2, 5, 10 seconds) and
3 different numbers of function evaluations (1000, 2000 and 4000), which
makes it in total 12 domains per problem class.
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Figure 1: The comparison of normalized costs between random (left) or tuned

(right) MADS-fixed and MADS/F-race. In average MADS/F-Race is 0.25% better

than random MADS(fixed), and 0.17% better than tuned MADS(fixed)

In order to apply MADS(fixed), six levels of the evaluation number are
pre-assigned: 1, 5, 10, 20, 30, 40. Given no a priori information about
the optimal setting of MADS(fixed), we select one setting from the six ran-
domly for each problem domain, and compare it with MADS/F-Race across
all domains, with blocking on each instance. The comparison is done us-
ing the Wilcoxon signed rank test with continuity correction; the α-level
chosen is 0.05. The experimental results show that MADS/F-Race performs
statistically significantly better than MADS(fixed) with a randomly selected
number of evaluations on each individual domain. The QQplot is shown in
Figure 1.

In the sequel, we fine-tune the evaluation number of MADS(fixed) by
leave-one-out cross-validation. It is done as follows, in each iteration, one
domain is picked for testing, and the rest of the data set serve as the train-
ing set. The best candidate chosen according to the training set will be
performed on the testing domain, and its results are collected into a valida-
tion set. The process repeats until each domain has collected its validation
data. Then we compare the validation set of MADS(fixed) to the target al-
gorithm MADS/F-Race. Note that the data collected in the validation set are
first trained, while MADS/F-Race is not. The unfairness of the comparison
shows the robustness of MADS/F-Race.

The comparison results show that MADS/F-race significantly (by wilcoxon
test) outperforms MADS-fixed with tuned evaluation numbers. The QQplot
is shown in Figure 1. Also in the individual problem classes, MADS/F-Race
obtains significantly better results than tuned MADS(fixed) in MMASTSP,
ACSTSP, SAQAP, whose variation coefficients are relatively higher than the
other three problem classes, on which MADS/F-Race has significantly worse
results than tuned MADS(fixed). The positive correlation between the prob-
lem variation and the performance of MADS/F-Race is an interesting topic
to investigate in the future.
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Abstract

The twin screw configuration problem is a typical problem of poly-
mer industry and consists in the definition of the location of a set
of screw elements along the screw axis (sequencing problem), where
several and often conflicting objectives must be optimized. An initial
study of iterative improvement algorithms to solve the optimization of
individual criteria was performed. Different operators, search strate-
gies and neighborhood restrictions were tested in order to define ef-
fective algorithms. The knowledge gathered allowed the development
of different multi-objective local search algorithms, such as TPLS and
PLS. A Multi-Objective Ant Colony Optimization algorithm was also
developed. The performance of the multi-objective algorithms was
compared with previously developed Multi-Objective Evolutionary Al-
gorithm making use of attainment functions.

1 Introduction

In the last decades, plastics have been used in applications with more rig-
orous specifications requiring the development of more complex systems.
This is been accomplished with the use of co-rotating twin screw extruders.
In fact, this type of machines are built connecting different modular screw
elements allowing the definition of different configurations and making pos-
sible the adaptation to a multiplicity of systems. However, its performance
is quite sensitive to the operating conditions and the screw configuration.
Thus, each polymer system requires the careful definition of each of the two.
The definition of the best screw configuration consists in defining the loca-
tion of several elements along the screw axis maximizing the entire process.
This is denoted as the Twin Screw Configuration Problem (TSCP). Only
recently, an optimization methodology was developed to define the best loca-
tion of a pre-defined number of screw elements [2]. In this work, alternative
algorithms for tackling the TSCP were developed. The performance of the
algorithms was compared with the previously designed MOEA (Reduced
Pareto Set Genetic Algorithm) [2] making use of the attainment functions.
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2 Modeling

As represented in Figure 1 screws of twin screw extruders are built connect-
ing screw elements with different geometrical characteristics that induces dif-
ferent flow behaviors: restrictive elements (left handed and kneading blocks)
induce restrictions to the polymer flow while transport elements have con-
veying capability. The goal consists in defining the position along the screw
axis of 14 screw elements, in such a way that the process performance is
maximized. To evaluate the performance of each screw solution a modeling

Figure 1: Twin Screw Configuration Problem

routine that takes into account the appropriate physical steps was initially
developed [6]: the solid polymer is feed into a hopper and it will flow through
transport elements under starved conditions. When a restrictive element is
reached, the channel starts to fill up and the melting process takes place.
When all polymer is melted, the flow occurs with or without pressure in
the rest of the screw elements, depending on whether it is totally or par-
tially filled; overall, pressure is determined by the location of the restrictive
elements.

In this example, the specific mechanical energy (SME), viscous dissipa-
tion and average strain are the optimization goals considered. SME repre-
sents the mechanical energy required to move the screws per unit of material
and viscous dissipation is the difference between real and set temperatures.
Thus, both objectives should be minimized. Since strain can be related to
the degree of mixing, it should be maximized.

3 Twin-Screw Optimization

Given the high computational time required by the evaluation of each solu-
tion (1-2 minutes of CPU time) it is necessary to develop algorithms that
reach good results with a low number of evaluations. Iterative improvement
algorithms were implemented given that they accomplish very well this task.
Initially, different operators and pivoting rules were tested in the optimiza-
tion of individual criterion in order to define an appropriate neighborhoord
relation [3]. Given the importance of the order how the neighborhood is
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checked the usual sequential order was compared with the initial shift of the
restrictive elements. Finally, different neighborhood restrictions as limits of
number of neighborhood scans, distance of exchanged elements in the per-
mutation and DLB strategy were analyzed in order to decrease the number
of evaluations without a significant loss of solution quality.

Since a good performance was obtained with iterative improvement al-
gorithms, an extension of these algorithms was developed to solve the multi-
objective TSCP. For that, two different strategies were studied. The first
one converts multi-objective problems into single problems aggregating the
several objectives into a single objective function - Two-Phase Local Search
(TPLS). The other considers that one solution is accepted as a new solution
if it is non-dominated - Pareto Local Search (PLS) [5]. A Multi-Objective
Ant Colony Optimization algorithm was also developed and a comparison
study of the different parameters, such as, use of one or various pheromone
matrices, different types of assignment of screw elements, use of the prob-
ability summation rule and use of various colonies was developed [1]. A
detailed investigation of the sensitivity of the algorithms performance to
changes of their parameters and a comparison to the previously designed
MOEA was carried out plotting the differences between the respective em-
pirical attainment functions (EAF)[4].

4 Results and Discussion

Figure 2 represents the comparison between MOEA and TPLS for the max-
imization of Strain and minimization of SME. The results were obtained
running the algorithms 10 times using different seed values and during 3000
evaluations. The left plot represents the region of the Pareto frontier where
the EAF obtained with MOEA is higher than that obtained with TPLS. The
opposite is represented on the rigth side. As can be seen, the performance
of the TPLS algorithm is higher. Identical results were obtained with the
PLS algorithm and for the remaining case studies.

Figure 3 shows three solutions taken from the Pareto Frontier obtained
with the MO-ACO algorithm for the same situation. Restrictive elements
are represented at darker colour. When the SME decreases, the restrictive
elements are upstream of the screw configuration in order to melt the poly-
mer as late as possible, and consequently, minimize the energy necessary to
rotate the screws. The opposite happens when the maximization of Strain
is considered. Therefore the solutions obtained are in agreement with the
knowledge about the process and have physical meaning.
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Figure 2: EAFs differences between the results obtained with MOEA and
TPLS for the maximization of Strain and minimization of SME.

Figure 3: Pareto front for maximization of Average Strain and minimization
of SME and the screw configuration for solutions A to C

5 Conclusions

A previous study of iterative improvement algorithms in the optimization
of individual criteria was developed. The knowledge gathered allowed the
development of different multi-objective algorithms, such as TPLS, PLS
and MO-ACO. The good performance obtained with the simple algorithms
indicates that the incorporation of iterative improvement methods either in
the MO-ACO or in MOEA algorithms can be a good solution to improve the
performance of the algorithms reducing simultaneously the required number
of evaluations. The solutions obtained have a physical meaning and are in
agreement with the extrusion process requirements.
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Abstract

We present high performing SLS algorithms for learning and infer-
ence in Markov Logic Networks (MLNs). MLNs are a state-of-the-art
representation formalism that integrates first-order logic and probabil-
ity. Learning MLNs structure is hard due to the combinatorial space
of candidates caused by the expressive power of first-order logic. We
present current work on the development of algorithms for learning
MLNs, based on the Iterated Local Search (ILS) metaheuristic. Ex-
periments in real-world domains show that the proposed approach im-
proves accuracy and learning time over the existing state-of-the-art al-
gorithms. Moreover, MAP and conditional inference in MLNs are hard
computational tasks too. This paper presents two algorithms for these
tasks based on the Iterated Robust Tabu Search (IRoTS) schema. The
first algorithm performs MAP inference by performing a RoTS search
within an ILS iteration. Extensive experiments show that it improves
over the state-of-the-art algorithm in terms of solution quality and in-
ference times. The second algorithm combines IRoTS with simulated
annealing for conditional inference and we show through experiments
that it is faster than the current state-of-the-art algorithm maintaining
the same inference quality.

1 Introduction

This paper focuses on Markov Logic Networks (MLNs) [5], a powerful repre-
sentation for Artificial Intelligence and Machine Learning that has first-order
logic and probabilistic graphical models as special cases.

State-of-the-art algorithms for structure learning of MLNs [1, 3] follow
systematic search strategies that can lead to local optima and prohibitive
learning times. The algorithm in [1] performs a beam search in a greedy
fashion which makes it very susceptible to local optima, while the algorithm
in [3] works in a bottom-up fashion trying to consider fewer candidates. We
propose an algorithm based on the ILS metaheuristic that samples the set
of local optima and performs a search in the sampled space. We show that
the algorithm achieves improvements over the state-of-the-art algorithms.
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Algorithm 1 SearchBestClause
Input: P:set of predicates, MLN:Markov Logic Network, BestScore: current best score, CLS:
List of clauses, RDB:Relational Database)
CLC = Randomly Pick a clause in CLS ∪ P; CLS = LocalSearchII(CLS); BestClause = CLS ;
repeat

CL’C = Perturb(CLS);
CL’S = LocalSearchII(CL’C ,MLN,BestScore);
if WPLL(BestClause,MLN,RDB) ≤ WPLL(CL’S ,MLN,RDB) then

BestClause = CL’S ;
Add BestClause to MLN; BestScore = WPLL(CL’S ,MLN,RDB)

end if

CLS = accept(CLS ,CL’S);
until two consecutive steps have not produced improvement on WPLL
Return BestClause

Maximum a posteriori (MAP) inference means finding the most likely
state of output variables given the state of the input variables and this
problem is NP-hard. Since for MLNs, the MAP state is the state that
maximizes the sum of the weights of the satisfied ground clauses, it can be
found by weighted MAX-SAT solvers. This paper presents a novel algo-
rithm that exploits Iterated Local Search (ILS) [2] and Robust Tabu Search
(TS) [7] metaheuristics. Experiments in real-world domains show that it
outperforms the state-of-the-art algorithm, in terms of solution quality and
inference running times.

Conditional inference in graphical models involves computing the dis-
tribution of query variables given evidence and it was shown to be #P-
complete. An inference algorithm for MLNs is that of [4] where the au-
thors combine ideas from satisfiability and MCMC methods. In this paper
we propose the novel algorithm SampleIRoTS based on the ILS and RoTS
metaheuristics. SampleIRoTS is then plugged in the novel algorithm MC-
IRoTS. Experimental evaluation shows that on a large number of inference
tasks, MC-IRoTS performs faster than the state-of-the-art algorithm while
maintaining the same quality of predicted probabilities.

2 Learning and inference with metaheuristics

Structure learning proceeds by adding the best clause until no improving
clauses are found for two steps. The best clause is found in Algorithm
1 where an ILS is performed with strong perturbations (restarting search
from unit clauses) and greedy acceptance function. Regarding MAP infer-
ence, Algorithm 2 uses RoTS as local search procedure. This algorithm is
then used in the SampleIRoTS algorithm to sample from the set of satisfying
assignments where a RoTS step is taken with probability p and a simulated
annealing step is taken with probability 1 - p. The novel probabilistic in-
ference algorithm MC-IRoTS uses samples from SampleIRoTS to compute
the probability of a formula by sampling worlds and counting those where
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Algorithm 2 Iterated Robust Tabu Search

Input: C: set of weighted clauses in CNF, BestScore: current best score)
CLC = Random initialization of truth values for atoms in C;
CLS = LocalSearchRoTS(CLC);
BestAssignment = CLS ; BestScore = Score(CLS);
repeat

CL’C = PerturbRoTS(BestAssignment);
CL’S = LocalSearchRoTS(CL’C);
if Score(CL’S) ≥ BestScore then

BestScore = Score(CL’S)
end if

BestAssignment = accept(BestAssignment,CL’S);
until k consecutive steps have not produced improvement
Return BestAssignment

Table 1: Accuracy results and learning time for all algorithms

Algorithm CLL AUC Time (minutes)
BUSL -0.196±0.003 0.201 9350
ILS -0.088±0.004 0.240 1160

a certain formula holds.

3 Experimental results

Table 1 presents results on structure learning in terms of conditional log-
likelihood (CLL), area under curve for precision recall (AUC) and learning
time in minutes. For the greedy algorithm BS [1] we were not able to report
results since it did not finish in 45 days of computation. The comparison
is performed with the BUSL algorithm [3]. The results show that ILS is
more accurate. Moreover, it is much faster than BUSL which takes on av-
erage 7 days to complete on the CORA dataset. Tables 2 and 3 present
results for MAP and conditional inference on the UW-CSE dataset. Each
row represents an experiment and the results are averaged over five folds
of the dataset. The experiments are performed with a different number of
ground predicates and clauses in order to verify the robustness for differ-
ent configurations of the inference task. For MAP inference the compari-
son is performed with the current best algorithms for MLNs, MaxWalkSat
with tabu (MWS-T) and MWS-T with restarts. All algorithms perform the
same number of flips. As can be seen our algorithm finds better solutions.
Running times show that in general the proposed algorithm is faster. For
conditional inference comparison is performed with MC-SAT [4]. As can be
seen, results in terms of CLL are comparable, but our algorithm performs
better in terms of AUC. This means that it is able to produce more accurate
probability estimates in less time than MC-SAT.
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Table 2: MAP inference results averaged for each experiment over 5 folds of the
dataset UW-CSE.

IROTS MWS-T MWS-TR
Exp Cost Time Cost Time Cost Time preds clauses

1 77318.7 45.63 77490.1 49.32 77411.0 66.76 3454 126104
2 60328.2 35.94 60374.6 38.91 60339.7 45.23 3454 126104
3 46.58 3.14 46.58 21.01 46.58 15.71 3454 126104
4 11667.11 46.83 12007.90 51.36 11727.50 61.42 3932 163485
5 10108.82 182.26 11433.16 178.26 10841.27 186.11 6796 458877
6 311071.6 31.68 350522.44 27.21 347179.74 26.7 18588 1280622

Table 3: Conditional inference results averaged for each experiment over 5 folds of
the dataset UW-CSE.

MC-IRoTS MC-SAT
Exp CLL AUC Time CLL AUC Time preds clauses
1 -0.031±0.008 0.047 39.18 -0.032±0.008 0.007 47.25 3454 126104
2 -0.032±0.008 0.007 41.05 -0.031±0.008 0.037 48.77 3454 126104
3 -0.029±0.006 0.138 45.69 -0.028±0.006 0.107 51.86 3454 126104
4 -0.007±0.002 0.243 39.93 -0.008±0.003 0.021 48.36 3932 163485
5 -0.021±0.004 0.013 155.07 -0.022±0.004 0.004 165.68 6796 458877
6 -0.024±0.002 0.012 374.14 -0.024±0.002 0.005 463.83 18588 1280622

4 Ongoing work

Ongoing work includes the dynamic adaptation of the perturbation operator
in the structure learning algorithm. The current implementation uses only
strong pertubation but this often leads to long search afterwards. Another
improvement being investigated is the use of probabilistic acceptance crite-
rion. Regarding MAP inference, changing search parameters during search
may help explore better solutions. Perturbation is currently fixed, but we
plan to dynamically change it like in [6]. and use a probabilistic choice in
accept. For conditional inference, current work deals with the uniformity of
sampling from the space of satisfying assignments which is the main point in
producing reliable probability estimates. We plan to investigate how unifor-
mity of sampling depends on the parameters of search and how parameters
can be tuned to achieve good sampling.
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Abstract

Particle Swarm Optimization (PSO) algorithms are used for solving
real parameter optimization problems that may be characterized by
discontinuities, plateaus, multiple local optima, and other features. In
most PSO variants, the swarm is homogeneous, that is, all particles
use the same search mechanism; however, given the possible complex
nature of the solution space, a single search mechanism can be more
effective in certain areas of the search space than in others. Thus,
particle homogeneity can negatively affect the performance of PSO
algorithms. A possible way to tackle this issue, is to use heterogeneous
PSO algorithms, which are composed of particles that use different
search mechanisms. In this paper, we propose a number of different
strategies to allow particles to select, from a set of two candidates,
their search mechanism according to information obtained during the
optimization process. We show preliminary results and outline future
research.

1 Introduction

In most particle swarm optimization (PSO) [2] algorithms, simple agents
(called particles) move in the solution space of an objective function using
exactly the same set of rules. These homogeneous PSO algorithms perform
very differently when applied to problems with different features. This can
be explained by realizing that, for example, a set of rules can be good for
optimizing convex objective functions, but bad for optimizing multimodal
ones. Thus, particle homogeneity constrains the number of problems to
which a particular PSO variant can be effectively applied to. An alternative
approach that has the potential of circumventing this problem is to use
heterogeneous particles, that is, particles that are different from each other
in terms of the rules that they use to search a problem’s solution space.
Indeed, previous research shows that a heterogeneous PSO algorithm, with
two different types of particles, will usually perform better than the worst
of the two homogeneous variants [4]. However, a problem with nonadaptive

36



heterogeneous PSO algorithms, which are those in which particles do not
change search mechanism over time, is that they cannot fully exploit the
best search mechanism at any given moment during the optimization process
because the number of particles using one or another search mechanism is
constant over time.

In this document, we describe a number of simple adaptation mecha-
nisms that allow particles in a heterogeneous PSO algorithm to change their
search mechanism over time (Section 2). Initial results suggest that more
elaborate mechanisms than the ones presented here are needed to devise
competitive adaptive heterogeneous PSO algorithms (Section 3).

2 Adaptive Heterogeneous Particle Swarm Opti-

mizers

We say that a heterogeneous PSO algorithm is adaptive if the particles it is
composed of are able to change search mechanism as a result of some event
triggered during the optimization process. The mechanisms used by the
particles to change search mechanism are referred to as adaptation mech-
anisms. The adaptation mechanisms that are explored in this paper are
detailed below.

2.1 Stagnation Threshold

This mechanism is based on the idea that each agent is self-conscious of its
performance and whenever it is “unsatisfied”, it changes its search mech-
anism. It is implemented as follows: Each particle counts the number of
consecutive function evaluations in which its personal best does not im-
prove. If the value of the counter exceeds a certain threshold (a parameter),
the particle switches search mechanism and resets the counter.

2.2 Difference-proportional Probability

A good search mechanism is one that allows a particle to find good solu-
tions; thus, it is reasonable to make a particle “copy” the search mechanism
of a particle that has found a better solution. For any given particle, the
probability of copying the search mechanism of its best neighbor should
increase when the difference between the particles’ personal best solutions
is favorable to the neighbor, and decrease when the opposite is true. We
implement this mechanism using an approach similar to the pairwise com-
parison rule used in social learning dynamics models [5]. The probabil-
ity that particle i adopts the search mechanism of particle j is defined as

pij = 1/
(

1 + exp
(

−β
bi−bj

|bj |

))

where bi and bj are the objective function

values of the personal best solutions of particle i and j respectively, and β is
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a parameter that controls the sensitiveness of particle i to the differences in
solution quality between itself and its best neighbor. In order to avoid the
swarm adopting one single search mechanism we set a number of particles
as “rigid”, meaning that they do not change search mechanism. There is at
least one ‘rigid” particle for each search mechanism.

3 Experimental Setup and Results

We carried out a series of experiments using the two adaptation mechanisms
presented above in model-of-influence heterogeneous PSO algorithms [4].

3.1 Setup

The experimental design examines four main factors:

1. Problem. We used the same benchmark functions as in [4] except
Weierstrass. In all cases, we used their 100-dimensional versions. All
algorithms were run 100 times on each problem for up to 106 function
evaluations.

2. Particle configurations. We used best-of-neighborhood and fully-
informed particles [3]. The constriction factor as well as the acceler-
ation coefficients were set as suggested in the literature [1]. We ran
experiments with fully-connected and ring topologies.

3. Population size. We used swarms of 100 particles. Each particle
is initialized as being of one kind with probability p = 0.5 producing
unbiased swarms (50% best-of-neighborhood – 50% fully-informed).

4. Adaptation mechanism. We used the two adaptation mechanisms
described in the previous section with the following parameter set-
tings. For the stagnation threshold mechanism, we used two thresh-
olds: {2, 5}. For the difference-proportional probability mechanism,
the following values for the β parameter were used: {5, 10}. The
number of “rigid” particles was set to 5 particles of each kind. As a
control, we use the static heterogeneous PSO in which particles do not
change search mechanism during the optimization process, and both
homogeneous swarms.

3.2 Results

In Tables 1 and 2, we show the average and standard deviation of the ranking
obtained by the different PSO variants across all the benchmark functions.
The rankings are grouped by population topology and run length (in func-
tion evaluations). The best rankings are highlighted. The results obtained
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after 102 function evaluations are not shown as they are the result of random
fluctuations during initialization (as we worked with 102 particles).

Table 1: Average and standard deviation of the ranking obtained by each
PSO variant (using a fully connected topology) across benchmark problems
at different run lengths (in function evaluations). The best rankings are
highlighted.

103 104 105 106

β = 5 4.1 (1.524) 3.9 (0.876) 3.8 (1.549) 3.7 (0.823)

β = 10 4.3 (1.494) 4.2 (1.317) 4 (1.764) 3.6 (1.713)

Stagnation threshold = 2 2.3 (1.059) 2.5 (2.121) 3.5 (1.65) 3 (1.826)

Stagnation threshold = 5 3.7 (1.636) 3.3 (1.418) 5.3 (1.059) 5.6 (0.966)

Static heterogeneous PSO 4.5 (1.434) 2.5 (1.269) 2.8 (1.229) 3.3 (1.16)

Homogeneous PSO: Best of
neighborhood

7 (0) 5.4 (1.897) 1.7 (1.059) 1.9 (1.287)

Homogeneous PSO: Fully
informed

2.1 (1.729) 6.2 (1.932) 6.9 (0.316) 6.9 (0.316)

Table 2: Average and standard deviation of the ranking obtained by each
PSO variant (using a ring topology) across benchmark problems at different
run lengths (in function evaluations). The best rankings are highlighted.

103 104 105 106

β = 5 3.6 (1.43) 2.8 (0.789) 2.7 (0.632) 3.35 (1.226)

β = 10 3 (1.633) 2.7 (0.823) 2.6 (0.658) 3.55 (1.039)

Stagnation threshold = 2 5.8 (0.422) 7 (0) 7 (0) 7 (0)

Stagnation threshold = 5 4.4 (1.35) 4.7 (0.949) 4.2 (1.317) 3.15 (1.811)

Static heterogeneous PSO 3.5 (1.269) 4.1 (1.197) 4.2 (1.317) 3.05 (0.864)

Homogeneous PSO: Best of
neighborhood

5.9 (2.132) 4.9 (2.079) 4.6 (2.271) 3.85 (1.93)

Homogeneous PSO: Fully
informed

1.8 (1.874) 1.8 (1.687) 2.7 (2.263) 4.05 (1.554)

In all cases, except in the case of the difference-proportional probabil-
ity mechanism with a ring topology and after 105 function evaluations, it
is either a homogeneous PSO or the static heterogeneous PSO algorithm,
the one that performs best. With a fully connected topology, the differ-
ence in performance between the algorithms using an adaptation mecha-
nism seems to be insignificant. On the contrary, when using a ring topology,
the difference-proportional probability mechanism seems to outperform the
stagnation threshold approach. A possible explanation of this behavior is
that the adaptation mechanisms favor too strongly the search mechanism
that is more exploitative very early in a run. This is especially true for the
difference-proportional probability mechanism because it makes the whole
swarm adopt the strategy that works best during the first iterations.1 An-

1The results that support this statement are not shown for the sake of conciseness.
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other possible reason for this behavior is that since the natural tendency
of a swarm (especially one using a constriction factor) is to converge, the
effect of changing search strategy is reduced when the inter-particle distance
is small. Preliminary results obtained with variants in which the particles’
positions and velocities are reset after changes in the search mechanism seem
to back this statement.

4 Conclusions and Outlook

Adaptive heterogeneous PSO algorithms are, conceptually, a possible way
of circumventing the problem of selecting the best suited PSO algorithm for
each specific problem. We have conducted experiments with two adaptation
mechanisms which were aimed at selecting the best search mechanism from
a set of two candidates during an optimization run. The results indicate that
adaptation mechanisms that favor exploitative search mechanisms hinder, in
the long run, the algorithms’ performance. Possible causes of this problem
are premature convergence in the search space and in search mechanism.
Preliminary results suggest that more elaborate adaptation mechanisms are
needed to obtain satisfactory results.
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Abstract

Local Search (LS) and its related metaheuristics have a proven track
record when it comes to solving many NP-hard constrained problems.
Complete methods such as those in Constraint Programming (CP)
provide alternative approaches which make explicit use of the problem
structure (as defined by the constraints) to improve solution speed
and quality. Previously the most successful LS algorithms made use
of domain knowledge, however, unlike in CP this was typically tightly
coupled to a specific problem. The advent of Constraint-Based Local
Search (CBLS) with its elegant separation of Model and Search offers
the chance to harness the internal structure whilst retaining a clean
problem independent search. We introduce a framework for detecting
the useful interactions between search neighbourhoods and problem
constraints and discuss how this information can be used in a Variable
Neighbourhood Search (VNS) to improve efficiency.

1 Introduction

The basic idea behind LS is that by making a series of changes to a solution
the global optimum can be reached. A neighbourhood is the set of solutions
which can be created from an existing solution via the application of a per-
turbative function. In this paper we use the term neighbourhood to refer
to this generating function rather than the resultant candidate set. The
neighbours are assessed by the application of a fitness criteria. A successor
is chosen and the process repeats itself until none of the neighbouring so-
lutions offer an improvement on the current solution. Unfortunately when
the search terminates it is most likely only at a local (rather than global)
optima.

2 Rise of the Metaheuristics

In a bid to overcome this weakness the area of metaheuristics emerged in the
80’s. Foremost amongst these techniques are Simulated Annealing (SA) [5]
and Tabu Search (TS) [3]. SA allows the acceptance of worse solutions to
promote diversification and to prevent the search from becoming trapped
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at local optima. As the search progresses the likelihood of transitioning
to a worsening state decreases, the exact probability is determined by the
cooling schedule. By allowing the search to explore a wider range of states
the chance of reaching the global optimum increases.

The TS algorithm takes an alternative approach based upon the intro-
duction of an adaptive memory. Unlike complete techniques TS does not
try to store all the previously visited states, it retains only recently visited
states and then enforces that any future solutions are not amongst this tabu
list. In this way the search is forced away from becoming trapped at optima.
The tabu tenure controls how long a move remains tabu for.

Whilst these metaheuristics have been successful at increasing the power
of LS based algorithms this has come at the cost of added complexity in the
form of parameterisation. SA requires the setting of the cooling schedule
and TS is dependant on the tabu list length and setting moves’ tabu tenure.
The performance of algorithms can be drastically improved solely by find-
ing good parameter settings as shown in [2, 4] where automated parameter
tuning approaches are taken. This still does not address the problem that
LS’ are typically tightly coupled and tuned to specific problems, and in
some cases even problem instances. CP operates with clearly separated
models, inspired by this notion that LS could (and should) be reusable and
problem independent CBLS was developed, best exemplified by the Comet
language [8]. Models are stated in a simple declarative form syntactically re-
lated to CP and advanced control abstractions allow the search to be loosely
coupled. This, however, raises the dilemma that previously LS algorithms
had explicitly exploited features of the problem structure to boost their
performance, how can this be achieved in a problem independent fashion
without sacrificing the CBLS = Model + Search goal?

3 Detecting Interactions

Our work seeks to answer that question by providing a formal framework
expressed in Comet with which to guide the process. The first stage is
to detect the interactions between the problem constraints and the search
neighbourhoods. What is meant by an interaction? If a neighbourhood
permutes an existing solution in such a way that it can alter the violations
of that constraint it is said to interact with that constraint. We do not
try to influence whether this interaction is positive or negative as the role
of the neighbourhood within the search is simply to propose candidate so-
lutions to the acceptance function. Constraints in this sense refers to the
problem constraints not the actual implementation. For example a problem
constraint precluding certain assignments could be represented as a series
of disequations or a single alldifferent, these modelling decisions are
irrelevant to our system.
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We employ two main strategies to detect whether or not there is any
interplay between a neighbourhood and constraint. Firstly we compare the
id’s of the variables involved, if the constraint and neighbourhood operate
upon disjoint sets no interaction can occur. One minor caveat is that if a
constraint is defined in terms of an intermediary variable the detector must
be informed. If the sets overlap then we cannot rule out an interaction. By
exploring the neighbourhood and monitoring the violations we can detect
if the neighbourhood causes any changes, if so then we have proof of an
interaction. We fully explore a neighbourhood and if no such interactions
are found we assume that no interaction exists. Discovering the interactions
has a worst case complexity of O(c∗n) where n is number of neighbourhoods
and c the number of problem constraints. The average case performance is
much better, if the variable id comparison has not ruled out the possibility
of an interaction the first move will usually lead some change in the violation
state. The results of the detection process are cached so this only needs to
be performed once for a given problem and neighbourhood collection. This
component operates only through Comet interfaces and has no knowledge
of the underlying constraint or neighbourhood’s implementation.

3.1 Exploiting Interactions

Given that we have obtained an idea of how the application of a neighbour-
hood will effect the state of the constraint violations, how can this informa-
tion be used within a search? Understanding the effect of a neighbourhood
allows a more informed decision regarding the choice of neighbourhood at
any given point to be made. The VNS framework [6] offers an alternative
approach to the problem of escaping local optima. VNS hinges on the obser-
vation that the local optima are just that, local to a neighbourhood, only the
global optimum is an optimum in all neighbourhoods. When VNS reaches
an optimum it uses this as a sign that it should change neighbourhoods,
following a predefined sequence.

The idea of using multiple neighbourhoods is not revolutionary, indeed
it forms the basis of most LS approaches to hard combinatorial optimisation
problems such as University Course Timetabling. Typically a subset of the
constraints will be optimised until a solution which is feasible with respect to
these is found, subsequent phases will try to satisfy the remaining constraints
whilst preserving the state of the first phase constraints. To realise this style
of multi-phase algorithm the designer is exploiting their knowledge about
the interactions of search neighbourhoods and constraints.

The prevailing wisdom is to create these phases based around the hard
and soft constraints of the problem. Hard constraints are those which cannot
be violated in any feasible solution, soft constraints may be violated but
the reduction of these violations is an optimisation objective. Partitioning
based upon the hard and soft constraints has the attractive property that
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in the latter stages all the solutions being explored will be feasible. Does
this partitioning of the search into hard and soft phases actually hinder
the search process? Work into oversubscribed scheduling problems showed
that there can be efficiency gains made by allowing the search to transition
through the infeasible areas [7] and harness what are described as shortcuts.

We are currently investigating two strategies for determining the order
in which the constraints should be optimised based upon the information
from the interaction detection. The first approach selects a neighbourhood
for each constraint such that this neighbourhood interacts with as few other
constraints as possible, then the constraints are sorted into descending order
of their selected neighbourhood’s interactions (breaking ties on neighbour-
hood size).

The interaction information also opens another avenue, each neighbour-
hood now has a known set of effects making it possible to reason about its
potential to alter the state of the violations. The field of Automated Plan-
ning is one where there are a series of operators which can effect the state
of the world, the world begins in an initial state and there is a desired goal
state. A plan is an ordered list of operator applications which transforms
the initial state into the goal state. In this case the neighbourhoods are
the operators, the initial state is that the constraints are unsatisfied and
the goal is that they are satisfied. We generate a planning problem in the
standard PDDL format and pass it to an automated planner. The resulting
plan is a sequence of neighbourhood applications which is read in and used
as another possible neighbourhood ordering for the VNS. It should be noted
the neighbourhood ordering implicitly contains the constraint ordering.

Optimising constraint models is another potential use of the interac-
tion information. If none of the proposed neighbourhoods effect a given
constraint it becomes redundant (providing the initial solution can be con-
structed to satisfy it). In our system the interactions are displayed visually
as a bipartite graph, this is invaluable in the neighbourhood design process
where it allows the algorithm designer to see which constraints are being
missed by the current set of neighbourhoods or where there are many neigh-
bourhoods with the same effects.

4 Constraint-Directed Variable Neighbourhood
Search

Conventional VNS orders the neighbourhoods linearly by increasing size.
Constraint-Directed Variable Neighbourhood Search (CDVNS) is our at-
tempt to use the interaction information to make the VNS scheme more
efficient. The interactions indicate when a neighbourhood will not be ca-
pable of causing a change in violations, thus during search neighbourhoods
which will lead to no improvements can be omitted. The exploration of the
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neighbourhoods is done much like a transitive closure, whenever an improv-
ing state is found the search returns to the starting neighbourhood, only
when a neighbourhood is exhausted can the next in the list be explored.

The system which we have developed is flexible enough to allow the pro-
gression to be defined as any directed graph structure desired so, rather than
just a list, it can now contain cyclic components. This allows multiphase
algorithms to be succinctly captured as a configuration of transitions rather
than being hard coded. CDVNS retains the structural simplicity of VNS
and so can easily be hybridised with other metaheuristics.

5 Future Work

The work we have so far described is based upon existing neighbourhoods
and determining their properties, an interesting future direction is to au-
tomatically create neighbourhoods with specific interaction properties. [1]
introduced the concept of Constraint Oriented Neighbors, where constraints
are used to explicitly create neighbourhoods. Their approach requires the
constraints to expressed in Existential Monadic Second Order logic extended
with counting (∃MSO+) and we would be looking to explore options which
are independent of constraint implementation.
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Abstract

There are lots of applications and systems requiring paths search
across networks. Most of them have dependencies between the quality
of the results and the size of the network they can manage. In addi-
tion, several of them require a fast response, despite the result would
not be the optimal in quality (path cost). The target is obtaining good
enough solutions in the shortest response time. There have been devel-
oped several proposals aimed to improve the performance of searches
over huge networks. Crucial issues in this research are a good man-
agement of the stored data (for which making use of databases seems
to be a good direction) and fast and good quality querying methods.
Specifically, this work focuses on the problem of finding the path be-
tween two nodes through a huge network in the shortest response time,
by applying spatio-temporal databases (DB) and metaheuristics.

1 Motivation

Systems which use graphs or networks are a useful technique to formalise and
to structure certain kind of knowledge and querying it, mainly for the search
of paths between two points. A typical application, for example, is to guide
pedestrian and vehicles through a map. But there are also a lot of systems
that can use networks for improving tasks which are not initially conceived
to that formalization, by abstracting their information. For example, main
concepts can be nodes and relations between concepts can be links.

Specifically, a network-based problem is found in managing circumstan-
tial knowledge trough human-like interaction. That knowledge is handled
by a Situation Model, taking into account several aspects [4], among others:

• Material aspect: encloses spatial and temporal information (passable
points are nodes, and links represent connections with a cost).

• Operative aspect: regards tasks and transactions achieved through
interaction (paths represent strategies or plans to attain some goal).
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The work in the SOPAT project (Servicio de Orientación Personalizada
y para el Turismo, financed by the Spanish Science and Innovation Min-
istry) realised during 2008, included, as main innovation, a basic Situation
Model focused in the spatio-temporal aspect [8]. For that Interaction Do-
main, the scenario was small (a hotel), so Dijkstra’s algorithm was found
to be a good solution for finding paths through the network (stored in a
Spatial DB). However, it was found that most problems would require big-
ger areas and lower granularity, so the network can reach giant dimensions.
That increment has a very important influence in the response time, doing
it inapplicable to this type of system (because of real time response require-
ment). Storing pre-processed paths is not a good solution because of the
unthinkable amount of combinations, and also because the scenario is subject
to structural changes that should be assimilated dynamically. These facts
motivated the study of other kind of algorithms providing faster answers
to path queries between two nodes in dynamic huge networks (hundreds of
thousands of nodes) stored in a Spatio-Temporal DB.

Yet there are similar solutions, none of them suit to the posed problem,
and if such algorithm is found a lot of systems would be improved, enabling
them to manage big networks in real time.

2 Related Works

For many years networks have been used to represent information and to eas-
ily manage it. A classic problem is the search of a path between two points,
for which resolution several algorithms have been proposed. They man-
age the information in main memory, obtaining fast response time, so their
target is just to obtain the optimum path (minimum cost). Requirements
evolution (greater domains, precision, etc) led to bigger networks, which in
addition exceed the capacity of main memory and require secondary storage.

Such changes involve substantial performance loss, yet real time response
is a requisite for most network-based systems. This forced a change of focus:
optimal cost is desirable, but fast response time is essential. These guidelines
can be seen in [1], which proposes to divide the global network in subnets
and pre-process them. Queries are analysed in an abstract way, substituting
subnets with direct links between their frontier nodes.

As the networks size is increased to provide more detailed and complete
services, arises the need for a change in the information management. This
support can be provided by a Database Management System with spatio-
temporal information management. There are several DB suited proposals
based on network pre-processing ([6], or [9]), given that its cost should have
no incidence in the global performance. These approaches provide fast solu-
tions, but their weakness is that they are restricted to constant information:
any change in the network involves the invalidation of a great part of the
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pre-processing, which updating entails to spend a lot of time, often affect-
ing global performance. On the other hand, there are also some works [5]
proposing solution quality restrictions with performance enhancement.

To reduce response time, a frequent way is to include metaheuristics.
Specifically, ACO algorithms [2] are oriented to the search of paths across
networks. This kind of algorithms minimize response time providing good
enough solutions (close to optimal). Their main drawback is that current
proposals (see [7], and [3]) are applied over small scenarios (networks of at
most thousands of nodes), and need to be adapted to the massive amount
of data required for huge networks.

3 Contribution

This proposal is aimed to solve the problem of fast algorithm to search paths
in huge networks using DB (to store nodes and links) and metaheusristics
(to search paths).

Regarding the DB, the amount of nodes and links stored may reflect the
information requirements: more detailed information (or bigger problems)
involve more nodes, but also more precision and service quality. Anyhow,
modern systems of this kind demand to manage hundreds of thousands of
nodes (even millions), and this is only practicable if supported by a DB.

Once reviewed the storage and basic management requirements, it is
necessary to adapt ACO algorithms for profiting the DB facilities and for
overcoming its limitations. Main issues to observe through this adaptation
are summarized next:

• The time needed to update, insert, and delete information stored has
to be reduced, because it affects to the time to give a solution to the
query. This implies study the form in which the pheromone is going
to be updated.

• Over the same network, different queries could be done in the same
time. This concurrent access must be possible, and each execution
must not affect to the others.

• Queries are going to be diverse (start and end nodes could not be the
same). This fact must be taken into account, because the information
of pheromone stored in the DB of previous searches does not have to
influence over future queries if their destination nodes are not equals,
but the one with different start node and equal end one could be useful
(the experience of the system could be useful).

• Loops and lost ants have to be avoided, because these problems have
a direct influence in the time of execution and are very normal in
networks with the dimensions mentioned before.
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• The time to give a first approximation of the path must be reduced,
but the methods employed with this objective must not have influence
in the capacity of adaptability of ants.

4 Evaluation

A spatio-temporal DB is required to evaluate the proposed algorithm. These
experiments will be run over Oracle 11g, a commercial well spread DBMS
that supports spatio-temporal information storage and management.

The evaluation goal is to demonstrate that the proposal works faster than
other analogous algorithms with low quality loss (if any). Therefore, the
evaluation methodology will simply consist in comparing the performance
(and results) of the proposed extended ACO algorithm with other solutions
actually used. All the algorithms will be run over the same network in the
DB (randomly generated), in the same conditions (from physical resources
to the programming language) and with the same querying load.

The algorithms to be compared with the proposal are the classical Dijk-
stra’s algorithm (usually employed by commercial DBMS to search paths),
a fragmented Dijkstra (as an evolved and adapted version of the previous)
[1], and the basic metaheuristic ant colony algorithm (basic ACO) [2].

5 Conclusions and Future Work

There is a wide range of applications which require a fast algorithm to give a
solution to a question of path between to nodes in huge networks (hundreds
of thousands of nodes).

This research work aims to gather spatio-temporal DB technology and
metaheuristics seeking a new search method, adapted to modern needs.
Specifically, the spatio-temporal DB is used to store and to handle the net-
work, and the search is performed applying ACO algorithms. The algorithm
will suffer some transformations to exploit the potential of such technolog-
ical joint. The resultant algorithm is going to be tested by comparing its
performance with other currently used used algorithms. The proposal is
being developed as a thesis work at the Computer Science Department of
Carlos III University of Madrid.

Finally, it should be mentioned that this work is framed in THUBAN
(Plataforma de Interacción Natural para Acompañamiento Virtual en En-
tornos Reales), a project supported by the Spanish Science and Innovation
Ministry.
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Abstract

The numerical peculiarities which inhabit the numerical instance
of a MOCO problem may seriously decrease the effectiveness of an
approximation method. To deal with this problem we propose a flexible
two-phase method for MOCO. Phase 1 produces a good approximation
of the efficient frontier. However it may not be of good enough quality
in terms of density. The aim of phase 2 is to tackle this problem in
a flexible way so as to deal with the potential numerical peculiarities.
We test this proposition on the multi-objective Traveling Salesman
Problem for which there exists a number of low-level heuristics.

1 Introduction

Multi-objective combinatorial optimization (MOCO) considers p ≥ 2 (con-
flicting) objectives to find a set of efficient solutions within a set of discrete
feasible solutions, see [3] for more details. It is assumed that a solution
which optimizes all objectives simultaneously does not exist. A solution
x̂ ∈ X is said to be efficient if there is no x ∈ X such that x dominates x̂
(xk ≤ x̂k,∀k ∈ {1, . . . , p} with at least one strict inequality).

Finding the whole set of efficient solutions is often not necessary. How-
ever, having a good distribution of an approximation of this set is useful for
decision makers to perform informed choices.

As resolution methods try to get better results, they often become more
complicated, requiring expert knowledge to use them effectively. The hy-
perheuristic approach [1] provides a high-level view of the problem. Its aim
is to allow the user to provide a number of heuristics, usually low-level ones,
to solve a problem and then the hyperheuristic tries to find on its own which
heuristics are the best online, i.e. as the search progresses. As such, a hyper-
heuristic does not operate in the solution space (this is done by the selected
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heuristics) but in the heuristic space. This makes it different from variable
neighborhood search (VNS) [7] which looks for solutions based on the sys-
tematic change of neighborhood during the search. There exists a domain
barrier between the hyperheuristic and the low-level heuristics and, ideally,
the hyperheuristic requires no or minimal knowledge of how the heuristics
work but relies instead on the analysis of one or more objective functions
(knowing whether maximization or minimization are required) and heuristic
performance indicators such as running time.

This work proposes the use of a hyperheuristic to make the efficient
frontier more dense by starting from a sparse approximation of the efficient
frontier. The method is applied to the multi-objective Traveling Salesman
Problem (moTSP). To the best of our knowledge, hyperheuristics have yet
to be applied to this problem.

The objective of the TSP is to find the shortest tour passing only once
through every location which has to be visited (a Hamiltonian cycle). The
multi-objective version of the TSP is of interest because it represents many
practical situations, for example having to make a compromise between
travel time and cost of transportation.

This paper presents some initial results and discusses possible improve-
ments and future research.

2 Overview of the Method

Our algorithm consists of two phases which are described below. We note
that the key contribution here is the second phase of the proposed approach.

2.1 First Phase

The first phase computes a very good subset of efficient solutions. For the
bi-ojective TSP we use the same method employed by Lust and Teghem [6].
When considering problems with more objectives, in our case three objec-
tives, the first phase uses the algorithm proposed by Przybylski et al. [8]
where the exact solver is replaced by the Lin-Kernighan heuristic [5].

2.2 Second Phase

The second phase iteratively drives a subset of the population across the
potential efficient frontier with the goal of maximizing the hypervolume
indicator [9]. The non-dominated solutions found in this manner are added
to the population.

Components and Layout of the Method. The algorithm requires
a set of one or more heuristics whose only requirement is to implement a
simple interface so that the search mechanism can manipulate them.

52



Next, the algorithm needs an initial population of solutions P0, |P0| ≥
1. It maintains an archive A of all non-dominated points found and, at
each iteration, only uses a running population P of maximum size S. The
hypervolume indicator allows us to consider the movement of each solution
with respect to the current running population and not as a point on its
own.

At each iteration, each solution p ∈ P is considered, a heuristic is selected
and the neighborhood of p is explored to find a new point which increases
the hypervolume. Any non-dominated solution found during this process is
added to the archive. Should a point with a strictly improving hypervolume
be found, the same heuristic is applied to this new point in a descent fashion.

If the maximum size of the running population is not reached, improving
solutions are added to P as is, otherwise they replace the point they were
a neighbor of. If no solutions in P were moved during the last iteration, a
new running population is randomly selected from the archive. This prevents
the algorithm from getting stuck in a local optimum and contributes to the
diversity of the solution set. Since calculating the hypervolume and non-
dominated sorting occur constantly throughout the algorithm, it is better
to keep S small. We arbitrarily choose S = 20.

Heuristic Selection Mechanism. At the start of the search, all heuris-
tics have the same score of 1. The performance of the heuristics is inferred
through a system of reward and punishment, whereby improving heuristics
obtain a higher score and non-performing heuristics a lower one. The heuris-
tic with the best rank is selected in each iteration of the process described
above.

To supplement this strategy, a tabu list is also used to prevent worse
heuristics from being used during a certain amount of time (even if it was
performing well previously). This strategy is inspired by the one used in
Burke et al. [2]. A heuristic is included in the tabu list if it has not been
able to improve the distribution by moving a solution in the given amount
of time it was allowed to run. However, if an improving solution has been
found, the tabu list is cleared (it is also cleared if all heuristics turn out to
be tabu). No aspiration criterion is used.

Next, we present some results and name the hyperheuristic Best Rank
with Tabu List (BRTL).

3 Initial Experimental Results

A population of 11 low-level classic TSP heuristics is used: subpath inser-
tions and swaps, the 2-exchange move and a dummy heuristic (the first and
second cities are inverted). Running time was set to 30 s and the neighbor-
hood of each move was explored for a maximum of 50 ms. Averages of 10
runs are reported. We compare our method with two recent algorithms: evo-
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lutionary multi-objective simulated annealing (EMOSA) [4] and two-phase
Pareto local search (2PPLS) [6]. Here, BRTL and 2PPLS share the same
first phase (but not EMOSA).

BRTL manages to outperform EMOSA for the hypervolume indicator in
three out of the four published results for convex instances (Table 1). BRTL
performs less well than our implementation of 2PPLS for instances with less
objectives (Table 2). However, with more objectives, if the running time of
2PPLS is capped in the same way as for BRTL, initial results indicate that
BRTL obtains better results.

Instance BRTL EMOSA
kroAB50 0.3544 0.2839
kroBC50 0.4327 0.2809
kroAB100 2.1782 1.9060
kroBC100 1.8630 1.9392

Table 1: Hypervolume (1010)
comparison of BRTL with
EMOSA

Instance Algo. H(108) R Time(s)
kroAB100 BRTL 225.84 0.93516 30

2PPLS 226.11 0.93526 13

Cluster100 BRTL 233.12 0.94672 30
2PPLS 233.35 0.94679 13

kroAB200 BRTL 835.37 0.875358 30
2PPLS 1076.08 0.94507 20

kroABC50 BRTL 4092608 0.98286 30

2PPLS 3454695 0.97029 30

2PPLS – – 3600+

Table 2: Phase 2 of BRTL and 2PPLS

1

4 Conclusion

Our approach is a new generic resolution method for MOCO. Work is still
needed to evaluate the potential advantage of the hyperheuristic with re-
gard to its flexibility when dealing with various numerical instances and its
ability to intelligently switch between heuristics. Potential avenues of inves-
tigation include a simpler first phase. The second phase could be improved
in a number of ways: better indicators of the quality of the distribution of
set, intelligent selection of the running population and a smarter selection
mechanism. The approach also needs to be tested on more instances and
other problems.

Acknowledgements. The authors are grateful for Anthony Przybyl-
ski’s insights in the implementation of phase 1 and for his helpful remarks.
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Abstract

Multiobjective Ant Colony Optimization (MO-ACO) metaheuris-
tics have shown to be very successful in addressing hard multiobjec-
tive combinatorial optimization problems. As most other multiobjec-
tive heuristics, MO-ACOs are however usually providing the decision
maker with the best possible approximation of the Pareto-optimal fron-
tier, leaving him or her with the delicate task of making a choice in an
often very large set of non dominated solutions. This paper presents an
approach of tackling multiobjective combinatorial optimization prob-
lems by integrating a decision maker’s a priori preferences.

1 Introduction

Most methods used nowadays for tackling multiobjective combinatorial op-
timization problems (MOCOPs) are based on the best possible approxima-
tion of the Pareto-optimal frontier. While this approach has established
itself and remains largely used for bi-objective problems, its applicability
becomes questionable when the number of objectives grows. Indeed, not
only is the meaningful and interpretable representation of the set of efficient
solutions becoming a non trivial issue when dealing with more than three
objectives, but also is the quantity of non-dominated solutions getting so
large that a decision maker has to be provided with additional tools for
selecting a solution that best fits his needs.

A common approach for addressing this issue is to integrate knowledge
about a decision maker’s preferences into the optimization process. This
decreases the computational cost of optimization by diminishing the number
of solutions to be generated. Moreover, as the number of solutions proposed
to the decision maker is lower than for a whole Pareto-optimal frontier, he
or she can better focus on interesting regions of the decision space.

Such approaches are usually classified into interactive and a priori meth-
ods. Interactive methods are by far the most studied ones (e.g., [1]), mainly
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because they resist the argument that a decision maker almost never knows
the problem at hand in such a manner that he could provide all needed
parameters with sufficient accuracy.

The goal of this paper is to propose new ways of integrating a decision
maker’s a priori preferences into multiobjective combinatorial optimiza-
tion heuristics. We will in particular examine possible paths of applying
preference modeling techniques developed by the multicriteria decision aid
(MCDA) community in a multiobjective ant colony optimization (MO-ACO)
algorithm.

2 Preference modeling

An important aspect of Multicriteria Decision Aid (MCDA) consists in mod-
eling a decision maker’s preference model in a given decision context. One
usually distinguishes two main approaches: First, methods based on utility
functions that synthesize the performance of a solution (called “action” in
MCDA) on all considered criteria into a single value, hence defining a com-
plete preorder on the set of possible actions. The second common approach
may lead to a more complex relational structure by performing pairwise
comparisons of actions (see [4] for a detailed introduction).

One particular kind of pairwise comparison relation called outranking
can informally be stated as follows: “An action a outranks another action b
iff a can be considered as least as good as b on the set of objectives without
comparatively performing too bad on one objective”. This vague definition
can be expressed in multiple mathematical ways. In the following we will
use the Promethee methodology ([2]) as an exemplary outranking method
to illustrate how MCDA tools can possibly be integrated into multiobjective
optimization ACO’s.

The Promethee methods introduce a preference function Pj (fj(x), fj(y))
that expresses the degree of preference of a solution x over a solution y con-
sidered on objective j (see Fig. 1).

In order to compare two solutions the preference functions have to be
aggregated over all objectives. This is done by defining the following nor-
malized preference index:

πxy = π(x, y) =

Q
∑

j=1

wj · Pj (fj(x), fj(y)) (1)

where each objective j is associated with a user defined weight wj (with wj >

0, ∀j ∈ {1, . . . , Q} and
∑Q

j=1 wj = 1). The preference index is characterized
by the following properties: πxy ≥ 0, and πij + πji ≤ 1. Once aggregated,
any two solutions can be compared in a natural way: The higher the index
πxy, the higher the preference of solution x over solution y.
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Figure 1: Example of a preference function that allows to model a decision
makers preference degree P depending on the difference d = fj(x) − fj(y)
for objective j ∈ {1, . . . , Q} with two parameters: the indifference threshold
q and the preference threshold p (Preference function type 5, taken from
[2]).

3 Integration of a preference model into MO-ACO

A decision maker often has a more or less rough idea on values of the pref-
erence modeling parameters presented in the previous section. Allowing
him to express his (partial) knowledge thus narrows the problem, hence
allowing him a deeper and more focused exploration of the regions of the
decision space that are of interest to him. Although applicable to virtually
any MOCOP, we will describe our integration approach on the example of
a multiobjective TSP (with n cities) in order to allow a better grip on the
presented ideas.

At its different stages, an ACO algorithm (we refer to [3] for a thorough
introduction to the ant colony optimization metaheurstic) needs to compare
solutions either at component or solution level: The component level com-
parison is required to state - under consideration of multiple objectives -
which city, denoted j, is the closest to another given city i (this is needed to
compute heuristic information, build candidate lists of nearest neighbours,
etc.). At solution level, the comparison of two generated solutions mainly
allows to determine which ants will be allowed to update the pheromone
trail(s).

Using the notations defined in section 2, we will now take a closer look
at both levels:

Solution Level Let Fi(Xk) be the evaluation in respect to criteria i of

the solution Xk =
(

x
(1)
k , . . . , x

(n)
k

)

built by ant k. The preference degree

of this solution over a solution built by ant l will be given by π(Xk, Xl).
The aggregation of all pairwise preference degrees yields the positive and
negative outranking flows of each solution Xk, respectively denoted by Φ+

k
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and Φ−
k , and defined by the following equations:

{

Φ+
k = Φ+(Xk) = 1

m−1

∑m
i=1 π(Xk, Xi)

Φ−
k = Φ−(Xk) = 1

m−1

∑m
i=1 π(Xi, Xk)

(2)

This definition is based on Eq. 1 and follows the Promethee I method,
explained in detail in [2]. Notice that Φ+

k ∈ [0, 1] and Φ−
k ∈ [0, 1]. Intuitively,

the positive flow Φ+
k expresses the outranking power of the solution of ant k

compared to all other ants. On the other hand, Φ−
k quantifies its outranking

weakness. Based on the preceding, an intuitively quite forward manner of
implementing these flows would be to directly use Φ+

k to reinforce the trail
associated to solution k, while using Φ−

k to weaken (like evaporation) that
same trail in the pheromone matrix. The resulting variation of pheromone
could thus be defined as ∆τ = µ · Φ+

k − ρ · Φ−
k , where µ and ρ are two

parameters to be chosen.

Component Level Let x
(l)
k be the l-th component of the solution Xk; in

the case of a TSP, x
(l)
k =

(

a
(l)
k , b

(l)
k

)

represents a pair of connected nodes (i.e.,

cities) belonging to a constructed tour. In order to determine the nearest
neighbours of a given node a, we need to define a way of comparing two
solution components. We propose to define the component net outranking
flow φ (a, b) for two nodes a and b ∈ C:

φab = φ (a, b) = 1

m−1

∑

c∈C

[π (xab, xac) − π (xac, xab)] (3)

where xab = (a, b) and xac = (a, c) are respectively the connections between
nodes a and b, and nodes a and c. In this equation C represents the set of all
nodes of the construction graph. This definition is strongly inspired by the
net flow of the Promethee II method (that provides a complete ranking
on a set of actions).

In this way, the nearest neighbours of any node a can be determined by
decreasingly sorting the set of component net outranking flows φ(a, b), ∀b ∈
C. Any pair of connections (a, b) and (c, d) can also easily be compared by
comparing their respective component net outranking flows φab and φcd.

Since the evaluation functions fi and Fi are used at different scales (fi

scales a component, while Fi scales a solution, i.e., an aggregation - often a
sum, Fi(Xk) =

∑

x∈Xk
fi(x) of component evaluations), it is useful to take

a relativistic variation of the preference functions P , that is using relative
thresholds in stead of absolute once.
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4 Conclusion

This paper opens some promising perspectives on how a finer preference
model could be used in conjunction with a MO-ACO for tackling multiob-
jective hard combinatorial optimization problems. We expect interesting re-
sults to show up thanks to the flexible representation of the decision maker’s
preference structure.
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Abstract

The problem of Reverse Engineering of Gene Regulatory Networks
consists of the inference of causal relations between genes from the ob-
servation of gene temporal profiles. If causal relations are modelled by
a system of equations, fitting the system parameters can be seen as an
optimization problem, where the function to be minimized is the error
between the real and the estimated temporal profiles. We present here
a study on the application of a mixed optimization approach to this
problem, with a discrete search step in the space of network structures
and a continuous search step in the space of system parameters.

1 The biological problem

All the information necessary for an organism to live is coded in the genes
of its DNA, and almost every biological function in living organisms is car-
ried out by proteins; DNA molecules are transcribed into mRNA molecules,
which, in turn, direct chemical machinery which translates the nucleic acid
message into a protein [4].

Some proteins have the role to activate or inhibit the transcription of
genes and to control the translation of mRNA into new proteins; the process
by which genes, through the proteins they code, control the expression (i.e.
the mRNA transcription rate) of other genes is known as genetic regulation.

The expression rate of the whole genome can be monitored through the
new technology of DNA microarray [7]: each microarray experiment is a
snapshot of the transcription level of every single gene, and different exper-
iments can be replicated under various genetic, chemical and environmental
conditions or in subsequent temporal instants.

One of the goals of microarray experiments is to infer regulatory relations
between genes from the analysis of gene expression profiles, gaining finally
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a Gene Regulatory Network (GRN), which is a graph in which nodes repre-
sent genes or proteins and two or more nodes are connected if a regulatory
relation exists between them.

The inference of GRNs is intrinsically difficult for a number of reasons:
first, the number of genes in an organism is O(103 ∼ 104), whereas the
number of observations for each gene is usually limited to O(101 ∼ 102), thus
making the problem underdimensioned. Moreover, regulatory relations are
usually differential and highly nonlinear, and DNA microarray experiments
are affected by a rather large amount of noise.

2 State-of-the-art

The inference of a GRN from a set of gene expression time series consists
basically of two steps: choice of a model to describe temporal data and
fit of the model to data. In the literature, a wide spectrum of different
models have been proposed to describe gene regulation (for a survey see
[2]): Relevance Networks, Boolean Networks, Dynamic Bayesian Networks
and systems of additive or differential equations, being them linear, ordinary
nonlinear or S-systems.

For Relevance Networks, Boolean Networks and Dynamic Bayesian Net-
works there is no straightforward way to define an error measure for a par-
ticular fit with respect to expression data, since no mathematical description
of model variables is considered; systems of equations, on the contrary, al-
low one to analytically describe gene profiles. Thus, error measures, such as
Relative Squared Error between real and estimated profiles, can be defined
to assess the fitness of a particular assignment of values to the parameters
of the model. The problem is then mapped to an optimization problem, in
which the model’s parameters form the search space and the error is the
cost function to be minimized.

For all the aforementioned reasons, the Stochastic Local Search com-
munity has focused mostly on systems of equations to model the GRN: in
[5, 16, 17], mixed discrete and continuous optimization techniques are ex-
ploited to fit data to a Recurrent Neural Network, which basically consists
of a system of nonlinear differential equations; [6, 8] model the network with
an S-system and exploit evolutionary algorithms for the inference; [15] is a
comparison of a set of evolutionary algorithms on the inference of S-systems.

All the cited works have two major limitations: first, they estimate
derivatives of the profiles directly from time series data, either with in-
terpolation or with finite difference approximation, rather than numerically
solving the whole system of equations. Such an approach, though compu-
tationally faster, amplifies the effects of noise and requires a large amount
of data points. Moreover, trials are usually run on one or two simulated
networks of small size (5 to 10 genes), preventing the results from being a
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general assessment of average algorithmic performance.

3 Main contributions

Our three main contributions to the solution of the Reverse Engineering
problem are the following.

CNET

We designed CNET [11, 12], an algorithm for the inference of causal relations
between genes from gene temporal profiles. For each gene, the algorithm
searches, among all the possible sets of causes, for the set of causes that
minimizes a heuristic scoring function. The function exploits information-
theoretic criteria and is carefully designed to take into account real features
of gene profiles, such as noise and variable delays in the regulatory effects.
CNET, tested both on simulated and real data, exhibits a performance com-
parable to the state of the art.

Topological properties of Gene Regulatory Network

We studied the relations between the performance of two Reverse Engineer-
ing algorithms (CNET and Dynamic Bayesian Networks) and the structural
and topological properties of the GRN to be inferred [1, 10, 13]. Results
show that performance of the algorithms is higher when the biological sys-
tem is externally stimulated and that the edges of the regulatory network
which are closer to the stimulated gene are easier to be inferred. Moreover,
we observed that relations with a single regulator are identified with higher
accuracy than relations with a combination of effects from different regula-
tors, and that there are network motifs, i.e. recurrent substructures, which
are significantly easier to be identified than others.

Fitness distance correlation analysis

Using Recurrent Neural Networks to model regulatory relations, we system-
atically studied the fitness landscape induced by minimizing the Relative
Squared Error between real and estimated temporal profiles [14]. Results
indicate that the generated landscapes have a positive fitness-distance corre-
lation, but the error values span several orders of magnitude over very short
distance variations. This suggests that the fitness landscape has extremely
deep valleys, which can make general-purpose state-of-the-art continuous
optimization algorithms exhibit poor performance.

An analysis based on perturbations of the optimal network topology
showed that the portions of the search space that correspond to networks
structurally close to the optimum present more organization in the fitness
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landscape. The region close to the optimum can thus be a local basin of
attraction for an algorithm which searches in the discrete space of network
structures.

Finally, we run two state-of-the-art continuous optimization algorithms,
NEWUOA [9] and CMA-ES [3], on a set of simulated test instances and
in two different experimental conditions: first without a priori information
and then with full information on network structure (i.e. configuration of
zero and nonzero parameters) but no information on the values of nonzero
parameters. Without a priori information, none of the algorithms is able to
converge to the global optimum; with structural information, CMA-ES con-
verges in almost every run, whereas NEWUOA’s behaviour strongly depends
on the particular network to infer. It converges easily in the majority of cases
but is unable to escape from local optima for some problem instances.

Given all the previous observations, we concluded that a two-phase
mixed optimization algorithm, which alternates between a search step in
the discrete space of network structures and a search step in the continuous
space of nonzero system parameters, has the potential of reaching high-
quality solutions for the problem of network inference.

4 Future directions

As far as future directions, we plan to design, implement and test the two-
phases mixed optimization algorithm, exploiting CMA-ES for the continu-
ous search phase, given its good and stable behaviour, and a standard local
search strategy with best improvement rule and multiple restarts for the
discrete phase. We will focus on exploiting locality when evaluating the
discrete neighbourhood of a network structure, thus avoiding re-optimizing
unchanged system parameters in the subsequent continuous search step.
Moreover, we will study how to efficiently plug structural a priori informa-
tion, such as sparsity of the network or knowledge about certain regulatory
relations, into the algorithm. Finally, we will consider how to merge the
results of multiple runs of the same stochastic algorithm.
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1 Introduction

The Quadratic Assignment Problem (QAP) is considered to be one of the
hardest combinatorial optimization problems. The largest instance ever
solved from QAPLIB, a benchmark library for the QAP, is of size 36. In
this article, we compare the performance of Simulated Annealing (SA), Ro-
bust Tabu Search (RoTS), and Reactive Tabu Search (RTS) on solving large
QAP instances. Several comparisons between SA and Tabu Search (TS) are
reported [2, 3], but none on tackling large instances.

2 Algorithms

In this article, we compare the performance of SA and two TS variants; RoTS
and RTS. SA has been applied to various difficult optimisation problems
since its introduction in the early 1980’s, including the QAP. In this article,
we adopt a basic SA to generally justify the potential of SA in solving
problems of large dimension. As for TS, we apply RoTS by Taillard [5]
which was reported to achieve very good performance on the QAP, and
RTS by Battiti and Tecchiolli [1]. TS was reported to perform better than
SA [2] in terms of CPU time needed to reach a solution quality which is 1%
from the best known solutions. The instances considered then, however are
rather small instances.

This article is structured as follows. In the next section, we introduce
the benchmark instances we use in this article. Experimental results with
the comparison between RoTS, RTS, and SA are given in Section 3 and we
conclude in Section 4.

3 Experimental results

3.1 Experimental setup

The experiments reported in this article have been run on Intel Xeon 2.4
Ghz quad-core CPUs with 6MB cache and 8 GB of RAM running under
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Cluster Rocks Linux. Only a single core is used for computations, due to the
sequential implementation of the algorithms. The stopping criteria for the
experiments were based on the CPU time taken by our re-implementation
of Taillard’s RoTS [5] to perform 10000 ·n iterations, where n is the instance
size. Results are collected at CPU time, t1 = 1000 · n iterations, and t2 =
10000 · n iterations. Algorithms studied in this article are coded in C and
compiled with gcc version 3.4.6.

Studies of algorithms for the QAP are normally done on instances from
QAPLIB. However, the number of large instances (size 100 and above) in
QAPLIB is limited, which prevents a thorough analysis of solver perfor-
mance on large instances. Therefore we generated a new set of QAP in-
stances which, comparable to those used in the research of the Metaheuris-
tics Network [4]. Generating our own instances allows us to generate a sys-
tematically varied set of instances, where each set is of acceptably similar
characteristics.

We have generated four classes of instances with Euclidean distance ma-
trices (ES) and four with Grid distance matrices (GS), where both come
with structured flow matrices. These four instance classes differ mainly in
the sparsity of the flow matrices (defined as the percentage of zero entries)
and the distance or flow dominance values (variation coefficient of the dis-
tance and flow matrix entries multiplied by 100). Instances are named based
on the type of distance matrix and the sparsity of flow matrix, e.g., ES.25
refers to instance with Euclidean distance matrix and structured flow matrix
with sparsity 0.25. We have generated for each instance class 100 instances.

3.2 Comparison of RoTS, RTS, and SA

In Table 1, we present the comparison of RoTS, RTS, and SA on instances of
size 50 and 100 at t1 and t2. For each instance class, we compute the average
solution quality across 100 instances, and we normalize the results w.r.t. the
best performing algorithm. We used the pairwise Wilcoxon test with Holm
corrections for multiple comparisons to check the statistical significance of
our results. The difference between the corresponding algorithms is signif-
icant if the p-value for the comparison is less than α = 0.05. On instance
size 50 and 100, SA is clearly the best performing algorithm at t1 for all
instance classes, except on very sparse instance size 50. Similar results are
observed on instance size 50 at t2, except on instance class GS.67, where
RoTS performs the best. At t2, RoTS shows a better average result on dense
instance size 100, while on other instance classes, SA remains as the best
performing algorithm.

We then compared the performance of RoTS and SA on larger instances,
and present the results in Table 2. For this experiment, 30 randomly selected
instances from each class are considered to reduce the total computation time
for running the experiments. Statistically significant differences in the table
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Class Size t1 RoTS RTS SA t2 RoTS RTS SA

ES.25 50 4 0.20 1.36 0.00 40 0.03 0.95 0.00
ES.67 50 4 0.70 2.72 0.00 40 0.14 2.24 0.00
ES.90 50 4 0.72 1.22 0.00 40 0.16 2.49 0.00
ES.97 50 4 6.48 0.00 30.70 40 2.10 0.00 22.60
GS.25 50 4 0.54 1.40 0.00 40 0.04 0.56 0.00
GS.67 50 4 1.08 2.75 0.00 40 0.00 1.20 0.08
GS.90 50 4 4.48 3.97 0.00 40 2.33 3.92 0.00
GS.97 50 4 0.26 0.00 0.03 40 0.01 0.00 0.01
ES.25 100 33 0.42 0.78 0.00 300 0.00 0.67 0.19
ES.67 100 33 1.63 2.42 0.00 300 0.27 1.22 0.00
ES.90 100 33 9.35 13.04 0.00 300 4.76 11.12 0.00
ES.97 100 33 15.81 8.27 0.00 300 8.69 8.98 0.00
GS.25 100 33 1.47 0.64 0.00 300 0.05 0.35 0.00
GS.67 100 33 2.35 1.07 0.00 300 0.08 0.45 0.00
GS.90 100 33 31.70 23.80 0.00 300 5.94 15.28 0.00
GS.97 100 33 27.62 9.67 0.00 300 6.62 7.78 0.00

Table 1: Comparison of RoTS, RTS, and SA on instance size 50 and 100. Statistically
signicant differences are indicated in italics font, while the best solutions are in bold font

are indicated in italics font, while the best solutions are in bold font. SA is
again the best performing algorithm at t1 on all instance classes considered.
Different results are observed at t2, where RoTS generally performs better
than SA on dense instances.

Finally, we compared the performance of RoTS, RTS, and SA on sev-
eral QAPLIB instances. Similar stopping criteria as the previous exper-
iments are used. For each instance, we conducted 30 independent trials,
and the solutions obtained were recorded for comparison. The results of
the comparison are given in Table 3. We normalize the results obtained
w.r.t. the results published at QAPLIB website (http://www.opt.math.tu-
graz.ac.at/qaplib/inst.html). SA is the best performing algorithm only on
two smallest QAPLIB instances considered, tai50b and tai60b, while for
larger instances, RoTS and RTS clearly show better performance.

4 Conclusions

In this paper, we have reported the comparison of selected metaheuristics on
large generated QAP instances and selected QAPLIB instances, where we
have obtained interesting results from our experiments. The results obtained
suggest that SA surpasses RoTS and RTS when a small number of iterations
are executed. However, when the number of iterations increased, RoTS and
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Class Size t1 RoTS SA t2 RoTS SA

ES.25 200 265 0.51 0.00 2650 0.00 0.02
ES.67 200 265 1.05 0.00 2650 0.12 0.00
ES.90 200 265 16.65 0.00 2650 0.46 0.00
ES.97 200 265 24.24 0.00 2650 6.37 0.00
GS.25 200 265 1.10 0.00 2650 0.00 0.05
GS.67 200 265 1.57 0.00 2650 0.00 0.13
GS.90 200 265 23.37 0.00 2650 0.00 0.01
GS.97 200 265 67.90 0.00 2650 9.79 0.00
ES.25 300 900 0.93 0.00 9000 0.00 0.11
ES.67 300 900 2.03 0.00 9000 0.08 0.00
ES.90 300 900 34.52 0.00 9000 1.26 0.00
ES.97 300 900 60.44 0.00 9000 12.52 0.00
GS.25 300 900 1.80 0.00 9000 0.00 0.04
GS.67 300 900 1.84 0.00 9000 0.00 0.08
GS.90 300 900 44.18 0.00 9000 0.93 0.00
GS.97 300 900 159.41 0.00 9000 24.56 0.00
ES.25 500 4220 0.57 0.00 42200 0.00 0.07
ES.67 500 4220 1.84 0.00 42200 0.06 0.00
ES.90 500 4220 24.42 0.00 42200 0.85 0.00
ES.97 500 4220 68.25 0.00 42200 7.95 0.00
GS.25 500 4220 1.13 0.00 42200 0.00 0.05
GS.67 500 4220 2.10 0.00 42200 0.00 0.10
GS.90 500 4220 18.75 0.00 42200 0.00 0.26
GS.97 500 4220 173.65 0.00 42200 21.91 0.00

Table 2: Comparison of RoTS and SA on instance size 200, 300, and 500

RTS beat SA, particularly on dense instances.

SA which introduces a single neighborhood exchange for every iteration
provides a very fast and cursory search mechanism that benefits from having
a large number of zero entries in the flow matrices, thus obtains better results
than TS when solving sparse instances.
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Abstract

Stochastic local search algorithms are among the state-of-the-art
for solving 3-SAT problems. Computational studies for 3-SAT typ-
ically involve examining the behavior of solvers on instances drawn
from a uniform random problem distribution as the constrainedness
(measured as the ratio of clauses to variables) is varied. However, most
studies for local search are performed on filtered problem distributions
in which unsatisfiable instances have been removed. We show that by
filtering the problem distribution, statistical trends are introduced at
the critical point which subsequently intensify into the overconstrained
phase. The presence of these biases implies that filtered problem dis-
tributions have significant statistical deviations from uniform random
problem distributions. We conjecture these biases may be partially re-
sponsible for the observed local search easy-hard-easy pattern which is
distinct from the analogous phenomenon detected in complete solvers.

1 Introduction

The Boolean 3-Satisfiability Problem (3-SAT) is a fundamental problem in
the theory of computation. Generating hard benchmarks is of interest to
both the experimental evaluation of solvers and the theoretical computer
science community.

A 3-SAT formula F consists of the logical conjunction of a set of clauses,
each containing exactly 3 literals in disjunction. The objective is to deter-
mine whether or not the formula is satisfiable, that is, ascertaining whether
there exists an assignment to variables such that all clauses in the formula
are simultaneously satisfied.

A 3-SAT formula with n variables and m clauses is generated uniformly
at random by selecting, for each of the m clauses, exactly 3 distinct elements
out of the set of n variables and negating each with probability 1/2. Let
Ξ(n, m) denote the set of all 3-SAT formulas with n variables and m clauses.

This uniform random generation process is equivalent to choosing m
clauses uniformly at random (with replacement) from the 8

(

n
3

)

possible

71



clause configurations. This in turn is equivalent to choosing F ∈ Ξ(n, m)
uniformly at random [3]. In other words, generating an instance uniformly
at random is identical to drawing an unbiased sample from Ξ(n, m).

The constrainedness of an instance belonging to Ξ(n, m) is given by a
control parameter α = m

n . This is the average number of constraints that
each variable must satisfy. Low α values indicate underconstrained instances
where high α values indicate overconstrained instances. If F is drawn uni-
formly at random from Ξ(n, m) then the probability that F is satisfiable is
a function of α. There is a phase transition between underconstrained and
overconstrained phases where the probability that a formula is satisfiable
drops from one to zero. This transition occurs around a critical value which
has been empirically determined to be α ≈ 4.26. The hardest problems
occur around this critically constrained value.

In many studies, probabilistic analysis can be employed if the assumption
holds that F has been drawn uniformly from Ξ(n, m). For example, an exact
expression for the expected number of solutions can be derived if we assume
the expectation is taken over all Ξ(n, m).

Complete solvers (if given sufficient computation time) will halt for both
satisfiable and unsatisfiable instances. However, a stochastic local search
algorithm cannot, in principle, determine that an instance is unsatisfiable.
Thus local search algorithms are typically evaluated using instances that are
guaranteed to be satisfiable.

2 The filtering process

Forcing is one way to generate an instance that is guaranteed to be satisfi-
able. First a variable assignment is randomly selected at the beginning of
the generation process. Then, clauses are subsequently generated and tested
for compatibility with the selected assignment. A clause is accepted only if
it is compatible with the assignment. After all m clauses are generated, the
formula is guaranteed to have at least one satisfying assignment.

Forced instances tend to be much easier to solve by stochastic local
search algorithms [1]. The conjecture is that the forced clauses possess some
structural regularity that guides stochastic local search toward solutions.

To eliminate this bias, the filtering process attempts to select satisfiable
instances at the instance level rather than the individual clause level. An
instance is generated uniformly at random and tested for satisfiability using
a complete solver. If the instance is unsatisfiable it is discarded and a new
instance is generated.

Strictly speaking, the filtering process becomes unusable above the crit-
ical value as n approaches infinity and the satisfiability probability function
approaches a step function. In this limit, instances above the critical value
have a vanishing probability of being satisfiable and the filtered distribution
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becomes essentially truncated. Thus filtering, as Achlioptas et al. [1] have
pointed out, becomes limited for larger instances (to address this, they intro-
duce a structured distribution which is significantly distinct from Ξ(n, m)).

This filtering process has been employed to generate standard bench-
marks (e.g. many SATLIB benchmarks) as well as to identify and study an
easy-hard-easy pattern for stochastic local search algorithms [2, 6, 4].

3 Trends that emerge at the critical point

Beyond the critical point, the number of “free” variables available for clauses
reduces and more variable inter-dependencies arise. To produce satisfiable
problems in this overconstrained phase, the increasing constraints must be
offset by some structure of the interactions.

Due to the random uniform generation process, a variable should occur
negated roughly the same number of times it appears unnegated. We can
calculate the expectation of the absolute difference ∆ between the number
of times a variable appears negated and the number of times it appears un-
negated. Let ω denote the number of times a particular variable occurs in the
formula. Fix ω = i. The conditional expectation of the absolute difference
∆ between negated and unnegated occurrences given i total occurrences is

E[∆|ω = i] =

⌊i/2⌋
∑

j=0

(

i

j

)

pj(1 − p)i−j2(i − 2j) (1)

Since p is the probability a variable appears negated, uniform random prob-
lems should have p = 1

2 . Now we characterize ω as a random variable. Over
uniform random problems, ω is distributed binomially:

Pr{ω = i} =

(

m

i

) [

3

n

]i [

1 −
3

n

]m−i

(2)

since the probability of an arbitrary variable occurring in a clause is 3
n . Thus

the theoretical expectation of ∆ taken over all possible values of ω is

E[∆] =
m

∑

i=0

E[∆|ω = i] Pr{ω = i} (3)

We have discovered on filtered problems a significant divergence in a key
coefficient that appears in a decomposition of the 3-SAT objective function
[5]. This deviation begins at the critical point and suggests that the negation
balance is changing in filtered instances.

To test this, we generated two benchmark sets. The unfiltered set con-
sists of instances of 100 variables each sampled uniformly at random from
Ξ(100, m) varying m in such a way to obtain 391 values with α ranging
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Figure 1: Unfiltered vs filtered sets: polarity delta [left] and
POLARITY-HEURISTIC value [right].

from 2.00 to 5.90 in increments of 0.01. The filtered set consists of the same
number of instances with the same α values but the generate-and-test pro-
cedure was employed to filter out unsatisfiable instances. We generated 50
instances for each value of α.

We report the average difference in positive vs. negative occurrence over
all variables for each instance on each set in Figure 1. We compare this with
the expectation computed in Equation (3). We see a deviation in the filtered
problems emerge at the critical point. In other words, the filtering process
is selecting instances that have variable negation ratios that are fluctuating
away from expectation.

This structural regularity might be exploited by a stochastic local search
algorithm if the polarity of a given variable tends to satisfy more clauses than
if it were negated. The POLARITY-HEURISTIC is computed by simply setting
each variable to true (false) if it appears more often unnegated (negated).
We plot the resulting number of clauses satisfied for each instance under the
POLARITY-HEURISTIC on the right in Figure 1.

4 Summary

We conjecture that filtering instances for satisfiability has the side-effect of
selecting instances that have certain structural characteristics that cause
significant statistical deviations from Ξ(n, m). Stochastic local search algo-
rithms may be able to exploit these characteristics, perhaps partially ex-
plaining the reduced computational effort noticed by others [2, 4] in the
filtered overconstrained phase.
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Abstract

Two-Phase Local Search (TPLS) is a general algorithmic framework
for multi-objective optimization. TPLS transforms the multi-objective
problem into a sequence of single-objective ones by means of weighted
sum aggregations. This paper studies different sequences of weights for
defining the aggregated problems, in the bi-objective case. In particu-
lar, we propose two weight setting strategies that show better anytime
search characteristics than the original weight setting strategy used in
the TPLS algorithm.

1 Introduction

In this work we focus on the study of weight setting strategies for the Two-
Phase Local Search (TPLS). Two-Phase Local Search has been shown to be
an important part (with Pareto Local Search) of state-of-the-art algorithms
for the bi-objective traveling salesman problem [5] and the bi-objective per-
mutation flowshop scheduling problem (PFSP) [3]. We use the latter as
our test problem for our experimental study. This extended abstract is
structured as follows. We first introduce the TPLS, the bi-objective PFSP,
and the performance assessment tools used to analyse the results. Then we
present the different weight setting strategies.

Two-Phase Local Search. TPLS [6] is a general algorithmic framework
for multi-objective optimization which consists in two main phases. The
first phase uses an effective single-objective algorithm to find a good solution
according to one objective. We slightly modified this first phase by using
two initial solutions, for each one of the two objectives. The second phase
solves a sequence of scalarizations, that is, weighted sum aggregations of the
multiple objectives into a single scalar function. In TPLS, the best solution
found by the previous scalarization is used as the initial solution for the next
scalarization. The motivation for TPLS is to exploit the effectiveness of the
underlying single-objective algorithm.
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Bi-objective Permutation Flowshop Scheduling. The Permutation
Flowshop Scheduling Problem (PFSP) is a well-known problem among the
scheduling class. Our study here is based on previous work [3, 2] and the
reader should refer to these for a complete description of the PFSP. We
show here some results for the bi-objective PFSP with the objectives of
makespan minimization and weighted tardiness minimization. However, the
experimental results are also representative for those obtained on two other
combinations: makespan and sum of flowtimes, and sum of flowtimes and
weighted tardiness.

Performance assessment and experimental setup. Results are ana-
lyzed by examining the differences between the empirical attainment func-
tion (EAF), in order to identify in which region and by how much an algo-
rithm performs better relatively to another one [4]. Given a pair of algo-
rithms, the differences in favor of each algorithm are plotted side-by-side and
the magnitude of the difference is encoded in grey levels. The bi-objective
PFSP instances were generated following a similar procedure as for exist-
ing benchmarks [2, 3]. The experiments have been carried out using 50
scalarizations of 500 iterations each. All single-objective solutions have been
obtained with the Iterated Greedy (IG) algorithm; initial solutions were ob-
tained running IG for 1 000 iterations. EAFs have been determined using
100 independent runs of each algorithm.

2 Weight Setting Strategies

Single direction (1to2 or 2to1). The simplest way to define a sequence
of scalarizations is to use a regular distribution of the weights from (0, 1)
to (1, 0) in a given direction, either from the first objective to the other
or vice versa. We call these alternatives 1to2 or 2to1, depending on the
direction followed. There are two major drawbacks of this strategy. First,
the direction chosen gives a clear advantage to the starting objective, that
is, the Pareto front approximation will be better on the starting side. This
fact explains why these strategies are always the best ones for their starting
sides. Second, to allow a fair computation effort in the different regions of
the Pareto front, one needs to know in advance the computation time which
is available to define appropriately the number of scalarizations.

Double strategy. This is a combination of 1to2 and 2to1, where half of the
scalarizations are defined sequentially from one objective to the other one,
and other half in the other direction. This approach, proposed in [6], tries
to avoid giving advantage to the starting objective, but it still requires to
define the number of weights, and hence, the computation time, in advance.

Anytime strategy. We propose the anytime strategy, which does not re-
quire to define the number of scalarizations in advance. This strategy defines
a new weight in the middle of the interval for two previous scalarizations.
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Then for each of the two solutions obtained with the previous scalarizations
that form the interval, the weighted sum value for the new weight is com-
puted. The solution which is better for this new weight is taken to be the
initial solution of the scalarization for the new weight. Given a weight vector
~λ = (λ1, λ2), where λ2 = 1 − λ1, the sequence of weights produced by the
anytime strategy is λ1 = (1, 0, 0.5, 0.25, 0.75, 0.125, 0.375, 0.625, 0.875, . . . ).
Moreover, for each level of depth, the scalarizations can be solved in a ran-
dom order, for instance one can have half a chance to start with 0.25 or with
0.75. This strategy allows to stop the search at any time and insures that
the computation effort has been fairly distributed along the Pareto front.
This strategy appears to have a different behavior of 1to2, 2to1, and double
by performing differently in different regions of the Pareto front. Hence, it
is not easy to compare the respective quality of the outcomes. However, one
can say that the quality of anytime strategy is roughly similar to the other
ones.

Dichotomic scheme. A dichotomic scheme does not define the weights
sequence in advance, but determines the weights according to the solutions
already found. The aim is to fit automatically the resolution to the Pareto
front shape (more precisely, the approximation of it which is known at a
given time).

The dichotomic scheme for exact resolutions was proposed by Aneja and
Nair [1] and was adapted recently for the approximate case by Lust and
Teghem [5]. However we found that, at least for the bi-objective PFSP, the
acceptance criterion used in this latter paper is not the best one. Indeed in
their criterion a solution is accepted only if it is inside the triangle formed
by the two initial solutions and their ideal point, and some non-dominated
solutions can be rejected (for instance, a very good new solution which dom-
inates the ideal point). We found that another criterion, more permissive, is
more effective. We call s1 the initial solution which have the higher value for
the second objective and s2 the other one. With our permissive criterion,
the new solution is accepted if at least one of these conditions is true:

1. Objective1(newSol) < Objective1(s1)

2. Objective2(newSol) < Objective2(s2)

3. newSol is on the left side of the segment [s2, s1]

Moreover we propose a new way to define the scalarizations, by solving two
scalarizations for each step instead of one. Both scalarizations are defined
by the same weight, but each one uses a different initial solution as a seed for
the underlying single-objective algorithm. That is, for each recursive step,
two new solutions are found (if both are accepted), then three new recursive
steps are defined instead of two in the original version. During the resolution,
a solution that appears to be dominated is replace by the better solution.
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This scheme is proposed specifically for approximate problems for which use
one of the previously found solutions to seed the underlying single-objective
algorithm leads better results than use an heuristic or random seed. This
scheme appears to improve the effectiveness of TPLS for the PFSP. We give
in Figure 1 a comparison of this dichotomic scheme with the other strategies.

3 Conclusion

We presented two weight setting strategies that do not require defining an
a priori number of weights. This feature is useful in practical situations
when the available computation time is not known in advance. The anytime
strategy utilizes a regular distribution of weights, whereas the dichotomic
strategy tries to adapt the set of weights to the shape of the Pareto frontier.
The latter is shown to be more effective, at least for the PFSP, than the
other strategies examined. Further research should test whether this result
generalizes to other multi-objective problems.
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Figure 1: Dichotomic strategy (on the right) against (from top to bottom):
1to2, 2to1, double, anytime. Objective 1 is makespan minimization.
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