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Motivation for Parameter Optimization

Genetic Algorithms & Evolutionary Strategies are

+ Very flexible frameworks

– Tedious to configure for a new domain
I Population size
I Mating scheme
I Mutation rate
I Search operators
I Hybridizations, ...

Automated parameter optimization can help

I High-dimensional optimization problem

I Automate  saves time & improves results

2
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Parameter Optimization Methods

I Numerical parameters

– See Blackbox optimization workshop (this GECCO)
– Algorithm parameters: CALIBRA [Adenso-Diaz & Laguna, ’06]

I Few categorical parameters: racing algorithms
[Birattari, Stützle, Paquete & Varrentrapp, ’02]

I Many categorical parameters

– Genetic algorithms [Terashima-Maŕın, Ross & Valenzuela-Réndon, ’99]

– Iterated Local Search
[Hutter, Hoos, Leyton-Brown & Stützle, ’07-’09]

 Dozens of parameters (e.g., CPLEX with 63 parameters)
 For many problems: SAT, MIP, time-tabling, protein folding,

MPE, ...
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Parameter Optimization Methods

Model-free Parameter Optimization

I Numerical parameters: see BBOB workshop (this GECCO)

I Few categorical parameters: racing algorithms
[Birattari, Stützle, Paquete & Varrentrapp, ’02]

I Many categorical parameters
[e.g., Terashima-Maŕın, Ross & Valenzuela-Réndon, ’99, Hutter, Hoos,

Leyton-Brown & Stützle, ’07-’09]

Model-based Parameter Optimization

I Methods

– Fractional factorial designs [e.g., Ridge & Kudenko, ’07]

– Sequential Parameter Optimization (SPO)
[Bartz-Beielstein, Preuss, Lasarczyk, ’05-’09]

I Can use model for more than optimization

– Importance of each parameter
– Interaction between parameters
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Outline

1. Sequential Model-Based Optimization (SMBO): Introduction

2. Comparing Two SMBO Methods: SPO vs SKO

3. Components of SPO: Model Quality

4. Components of SPO: Sequential Experimental Design

5. Conclusions and Future Work
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SMBO: Introduction

1. Get response values at initial design points

2. Fit a model to the data

3. Use model to pick most promising next design point (based
on expected improvement criterion)

4. Repeat 2. and 3. until time is up
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Outline

1. Sequential Model-Based Optimization (SMBO): Introduction

2. Comparing Two SMBO Methods: SPO vs SKO
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Dealing with Noise: SKO vs SPO

I Method I (used in SKO) [Huang, Allen, Notz & Zeng, ’06.]

– Fit standard GP assuming Gaussian observation noise
– Can only fit the mean of the responses

I Method II (used in SPO) [Bartz-Beielstein, Preuss, Lasarczyk, ’05-’09]

– Compute statistic of empirical distribution of responses at each
design point

– Fit noise-free GP to that
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Experiment: SPO vs SKO for Tuning CMA-ES

I CMA-ES [Hansen et al., ’95-’09]

– Evolutionary strategy for global optimization
– State-of-the-art (see BBOB workshop this GECCO)
– Parameters: population size, number of parents, learning rate,

damping parameter

I Tuning objective
– Solution cost: best function value found in budget
– Here: Sphere function
– Minimize mean solution cost across many runs
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Components of SPO: initial design

I Fixed number of initial design points (250) and repeats (2)

– Size of initial design studied before [Bartz-Beielstein & Preuss, ’06]

I Here: studied which 250 design points to use

– Sampled uniformly at random
– Random Latin Hypercube
– Iterated Hypercube Sampling [Beachkofski & Grandhi, ’02]

– SPO’s standard LHD

I Result: no significant difference

– Initial design not very important
– Using cheap random LHD from here on
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Components of SPO: Transformations

I Compute empirical cost statistics ĉ(θ) first
I Then transform cost statistics: log(ĉ(θ))

I Data: solution cost of CMA-ES on sphere
– Training: 250 · 2 data points as above
– Test: 250 new points, sampled uniformly at random
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Note: In newer experiments, SKO with log models was competitive
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Components of SPO:
expected improvement criterion

User wants to optimize some objective c

I We transform c to improve the model

I But that doesn’t change the user’s objective

 Have to adapt expected improvement criterion to handle
un-transformed objective

Fix for log-transform: new expected improvement criterion

I Want to optimize Iexp(θ) = max{0, fmin − exp[f (θ)]}
I There is a closed-form solution (see paper)

I However: no significant improvement in our experiments

15
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Components of SPO: choosing the incumbent
parameter setting in presence of noise

Some algorithm runs can be lucky

 need extra mechanism to ensure incumbent is really good

 SPO increases number of repeats over time

SPO’s mechanism in a nutshell

I Compute cost statistic ĉ(θ) for each configuration θ

I θinc ← configuration with lowest ĉ(θ)
I Perform up to R runs for θinc to ensure it is good

– Increase R over time

I But what if it doesn’t perform well?

– Then a different incumbent is picked in the next iteration
– That might also turn out not to be good...

16
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Components of SPO: choosing the incumbent
parameter setting in presence of noise
Simple fix

I Iteratively perform runs for single most promising θnew

I Compare against current incumbent θinc

I Once θnew has as many runs as θinc : make it new θinc

I Maintain invariant: θinc has the most runs of all

I Substantially improves robustness → new SPO variant: SPO+
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I Once θnew has as many runs as θinc : make it new θinc

I Maintain invariant: θinc has the most runs of all

I Substantially improves robustness → new SPO variant: SPO+
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Summary of Study of SPO components &
Definition of SPO+

Model Quality

I Initial design not very important

 use simple random LHD in SPO+

I Log-transforms sometimes improve model quality a lot

 use them in SPO+ (for positive functions)

Sequential Experimental Design

I Expected improvement criterion

 New one that’s better in theory but not in practice
 Use original one in SPO+

I New mechanism for increasing #runs & selecting incumbent

 substantially improves robustness
 Use it in SPO+
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Comparison to State of the Art
for tuning SAPS

I SAPS
I Stochastic local search algorithm for SAT
I 4 continuous parameters
I Here: min. search steps for single problem instance

I Results known for CALIBRA & ParamILS [Hutter et al, AAAI’07]
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Comparison to SPO variants,
with varying budget

Procedure SAPS median run-time/103

SAPS default 85.5
CALIBRA(100) 10.7± 1.1
BasicILS(100) 10.9± 0.6

FocusedILS 10.6± 0.5
SPO 0.3 18.3± 13.7
SPO 0.4 10.4± 0.7

SPO+ 10.0± 0.4

With budget of 20000 runs of SAPS
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Outline

1. Sequential Model-Based Optimization (SMBO): Introduction

2. Comparing Two SMBO Methods: SPO vs SKO

3. Components of SPO: Model Quality

4. Components of SPO: Sequential Experimental Design

5. Conclusions and Future Work
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Conclusions

I SMBO can help design algorithms
I More principled, saves development time
I Can exploit full potential of flexible algorithms

I Our contribution
I Insights: what makes a popular SMBO algorithm, SPO, work
I Improved version, SPO+, often performs better than SPO
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Ongoing & Future Work

Ongoing Extensions of Model-Based Framework

I Use of different models in SPO+ framework

I Dealing with categorical parameters

I Optimization for Sets/Distributions of Instances

Use of models for scientific understanding

I Interactions of instance features and parameter values

I Can help understand and hopefully improve algorithms
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