An Experimental Investigation of Model-Based Parameter Optimization: SPO and Beyond

> Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, Kevin P. Murphy

> Department of Computer Science University of British Columbia Canada {hutter, hoos, kevinlb, murphyk}@cs.ubc.ca

Motivation for Parameter Optimization

Genetic Algorithms & Evolutionary Strategies are

+ Very flexible frameworks

Motivation for Parameter Optimization

Genetic Algorithms & Evolutionary Strategies are

- + Very flexible frameworks
- Tedious to configure for a new domain
 - Population size
 - Mating scheme
 - Mutation rate
 - Search operators
 - Hybridizations, ...

Motivation for Parameter Optimization

Genetic Algorithms & Evolutionary Strategies are

- + Very flexible frameworks
- Tedious to configure for a new domain
 - Population size
 - Mating scheme
 - Mutation rate
 - Search operators
 - Hybridizations, ...

Automated parameter optimization can help

- High-dimensional optimization problem
- ► Automate ~→ saves time & improves results

- Numerical parameters
 - See Blackbox optimization workshop (this GECCO)
 - Algorithm parameters: CALIBRA [Adenso-Diaz & Laguna, '06]

Numerical parameters

- See Blackbox optimization workshop (this GECCO)
- Algorithm parameters: CALIBRA [Adenso-Diaz & Laguna, '06]

Few categorical parameters: racing algorithms

[Birattari, Stützle, Paquete & Varrentrapp, '02]

Numerical parameters

- See Blackbox optimization workshop (this GECCO)
- Algorithm parameters: CALIBRA [Adenso-Diaz & Laguna, '06]

Few categorical parameters: racing algorithms

[Birattari, Stützle, Paquete & Varrentrapp, '02]

Many categorical parameters

- Genetic algorithms [Terashima-Marín, Ross & Valenzuela-Réndon, '99]

Numerical parameters

- See Blackbox optimization workshop (this GECCO)
- Algorithm parameters: CALIBRA [Adenso-Diaz & Laguna, '06]

Few categorical parameters: racing algorithms

[Birattari, Stützle, Paquete & Varrentrapp, '02]

Many categorical parameters

- Genetic algorithms [Terashima-Marín, Ross & Valenzuela-Réndon, '99]
- Iterated Local Search

[Hutter, Hoos, Leyton-Brown & Stützle, '07-'09]

- → Dozens of parameters (*e.g.*, CPLEX with 63 parameters)
- \rightsquigarrow For many problems: SAT, MIP, time-tabling, protein folding, MPE, ...

Model-free Parameter Optimization

- Numerical parameters: see BBOB workshop (this GECCO)
- Few categorical parameters: racing algorithms [Birattari, Stützle, Paquete & Varrentrapp, '02]

Many categorical parameters

[*e.g.*, Terashima-Marín, Ross & Valenzuela-Réndon, '99, Hutter, Hoos, Leyton-Brown & Stützle, '07-'09]

Model-free Parameter Optimization

- Numerical parameters: see BBOB workshop (this GECCO)
- Few categorical parameters: racing algorithms [Birattari, Stützle, Paquete & Varrentrapp, '02]

Many categorical parameters

[*e.g.*, Terashima-Marín, Ross & Valenzuela-Réndon, '99, Hutter, Hoos, Leyton-Brown & Stützle, '07-'09]

Model-based Parameter Optimization

Model-free Parameter Optimization

- Numerical parameters: see BBOB workshop (this GECCO)
- Few categorical parameters: racing algorithms [Birattari, Stützle, Paquete & Varrentrapp, '02]

Many categorical parameters

[*e.g.*, Terashima-Marín, Ross & Valenzuela-Réndon, '99, Hutter, Hoos, Leyton-Brown & Stützle, '07-'09]

Model-based Parameter Optimization

- Methods
 - Fractional factorial designs [e.g., Ridge & Kudenko, '07]
 - Sequential Parameter Optimization (SPO)

[Bartz-Beielstein, Preuss, Lasarczyk, '05-'09]

Model-free Parameter Optimization

- Numerical parameters: see BBOB workshop (this GECCO)
- Few categorical parameters: racing algorithms [Birattari, Stützle, Paquete & Varrentrapp, '02]

Many categorical parameters

[*e.g.*, Terashima-Marín, Ross & Valenzuela-Réndon, '99, Hutter, Hoos, Leyton-Brown & Stützle, '07-'09]

Model-based Parameter Optimization

- Methods
 - Fractional factorial designs [e.g., Ridge & Kudenko, '07]
 - Sequential Parameter Optimization (SPO) [Bartz-Beielstein, Preuss, Lasarczyk, '05-'09]
- Can use model for more than optimization
 - Importance of each parameter
 - Interaction between parameters

- 1. Sequential Model-Based Optimization (SMBO): Introduction
- 2. Comparing Two SMBO Methods: SPO vs SKO
- 3. Components of SPO: Model Quality
- 4. Components of SPO: Sequential Experimental Design
- 5. Conclusions and Future Work

1. Sequential Model-Based Optimization (SMBO): Introduction

- 2. Comparing Two SMBO Methods: SPO vs SKO
- 3. Components of SPO: Model Quality
- 4. Components of SPO: Sequential Experimental Design
- 5. Conclusions and Future Work

 $1. \ \mbox{Get}$ response values at initial design points

1. Get response values at initial design points

- 1. Get response values at initial design points
- 2. Fit a model to the data

- 1. Get response values at initial design points
- 2. Fit a model to the data
- 3. Use model to pick most promising next design point (based on expected improvement criterion)

- 1. Get response values at initial design points
- 2. Fit a model to the data
- 3. Use model to pick most promising next design point (based on expected improvement criterion)

- 1. Get response values at initial design points
- 2. Fit a model to the data
- 3. Use model to pick most promising next design point (based on expected improvement criterion)
- 4. Repeat 2. and 3. until time is up

- 1. Sequential Model-Based Optimization (SMBO): Introduction
- 2. Comparing Two SMBO Methods: SPO vs SKO
- 3. Components of SPO: Model Quality
- 4. Components of SPO: Sequential Experimental Design
- 5. Conclusions and Future Work

Dealing with Noise: SKO vs SPO

- Method I (used in SKO) [Huang, Allen, Notz & Zeng, '06.]
 - Fit standard GP assuming Gaussian observation noise
 - Can only fit the mean of the responses

Method I: noisy fit of original response

Dealing with Noise: SKO vs SPO

- Method I (used in SKO) [Huang, Allen, Notz & Zeng, '06.]
 - Fit standard GP assuming Gaussian observation noise
 - Can only fit the mean of the responses
- Method II (used in SPO) [Bartz-Beielstein, Preuss, Lasarczyk, '05-'09]
 - Compute statistic of empirical distribution of responses at each design point
 - Fit noise-free GP to that

Method I: noisy fit of original response

Method II: noise-free fit of cost statistic

Experiment: SPO vs SKO for Tuning CMA-ES

- ► CMA-ES [Hansen et al., '95-'09]
 - Evolutionary strategy for global optimization
 - State-of-the-art (see BBOB workshop this GECCO)
 - Parameters: population size, number of parents, learning rate, damping parameter

Experiment: SPO vs SKO for Tuning CMA-ES

- ► CMA-ES [Hansen et al., '95-'09]
 - Evolutionary strategy for global optimization
 - State-of-the-art (see BBOB workshop this GECCO)
 - Parameters: population size, number of parents, learning rate, damping parameter
- Tuning objective
 - Solution cost: best function value found in budget
 - Here: Sphere function
 - Minimize mean solution cost across many runs

Experiment: SPO vs SKO for Tuning CMA-ES

- ► CMA-ES [Hansen et al., '95-'09]
 - Evolutionary strategy for global optimization
 - State-of-the-art (see BBOB workshop this GECCO)
 - Parameters: population size, number of parents, learning rate, damping parameter
- Tuning objective
 - Solution cost: best function value found in budget
 - Here: Sphere function
 - Minimize mean solution cost across many runs

- 1. Sequential Model-Based Optimization (SMBO): Introduction
- 2. Comparing Two SMBO Methods: SPO vs SKO
- 3. Components of SPO: Model Quality
- 4. Components of SPO: Sequential Experimental Design
- 5. Conclusions and Future Work

Components of SPO: initial design

Fixed number of initial design points (250) and repeats (2)

 Size of initial design studied before [Bartz-Beielstein & Preuss, '06]

Here: studied *which* 250 design points to use

Components of SPO: initial design

• Fixed number of initial design points (250) and repeats (2)

- Size of initial design studied before [Bartz-Beielstein & Preuss, '06]
- Here: studied which 250 design points to use
 - Sampled uniformly at random
 - Random Latin Hypercube
 - Iterated Hypercube Sampling [Beachkofski & Grandhi, '02]
 - SPO's standard LHD

Components of SPO: initial design

• Fixed number of initial design points (250) and repeats (2)

- Size of initial design studied before [Bartz-Beielstein & Preuss, '06]
- Here: studied which 250 design points to use
 - Sampled uniformly at random
 - Random Latin Hypercube
 - Iterated Hypercube Sampling [Beachkofski & Grandhi, '02]
 - SPO's standard LHD
- Result: no significant difference
 - Initial design not very important
 - Using cheap random LHD from here on

- Compute empirical cost statistics $\hat{c}(\theta)$ first
- Then transform cost statistics: $log(\hat{c}(\theta))$

- Compute empirical cost statistics $\hat{c}(\theta)$ first
- Then transform cost statistics: $log(\hat{c}(\theta))$
- Data: solution cost of CMA-ES on sphere
 - Training: $250 \cdot 2$ data points as above
 - Test: 250 new points, sampled uniformly at random

- Compute empirical cost statistics $\hat{c}(\theta)$ first
- Then transform cost statistics: $log(\hat{c}(\theta))$
- Data: solution cost of CMA-ES on sphere
 - Training: $250 \cdot 2$ data points as above
 - Test: 250 new points, sampled uniformly at random

- Compute empirical cost statistics $\hat{c}(\theta)$ first
- Then transform cost statistics: $log(\hat{c}(\theta))$
- Data: solution cost of CMA-ES on sphere
 - Training: 250 \cdot 2 data points as above
 - Test: 250 new points, sampled uniformly at random

- Compute empirical cost statistics $\hat{c}(\theta)$ first
- Then transform cost statistics: $log(\hat{c}(\theta))$
- Data: solution cost of CMA-ES on sphere
 - Training: 250 \cdot 2 data points as above
 - Test: 250 new points, sampled uniformly at random

Note: In newer experiments, SKO with log models was competitive

- 1. Sequential Model-Based Optimization (SMBO): Introduction
- 2. Comparing Two SMBO Methods: SPO vs SKO
- 3. Components of SPO: Model Quality
- 4. Components of SPO: Sequential Experimental Design
- 5. Conclusions and Future Work

Components of SPO: expected improvement criterion

User wants to optimize some objective c

- We transform *c* to improve the model
- But that doesn't change the user's objective
- Have to adapt expected improvement criterion to handle un-transformed objective

Components of SPO: expected improvement criterion

User wants to optimize some objective c

- We transform *c* to improve the model
- But that doesn't change the user's objective
- Have to adapt expected improvement criterion to handle un-transformed objective

Fix for log-transform: new expected improvement criterion

- Want to optimize $I_{exp}(\theta) = \max\{0, f_{min} \exp[f(\theta)]\}$
- There is a closed-form solution (see paper)

Components of SPO: expected improvement criterion

User wants to optimize some objective c

- We transform *c* to improve the model
- But that doesn't change the user's objective
- Have to adapt expected improvement criterion to handle un-transformed objective

Fix for log-transform: new expected improvement criterion

- Want to optimize $I_{exp}(\theta) = \max\{0, f_{min} \exp[f(\theta)]\}$
- There is a closed-form solution (see paper)
- However: no significant improvement in our experiments

Some algorithm runs can be lucky

- \rightsquigarrow need extra mechanism to ensure incumbent is really good
- \rightsquigarrow SPO increases number of repeats over time

Some algorithm runs can be lucky

- \rightsquigarrow need extra mechanism to ensure incumbent is really good
- \rightsquigarrow SPO increases number of repeats over time

SPO's mechanism in a nutshell

• Compute cost statistic $\hat{c}(\theta)$ for each configuration θ

Some algorithm runs can be lucky

- \rightsquigarrow need extra mechanism to ensure incumbent is really good
- \rightsquigarrow SPO increases number of repeats over time

SPO's mechanism in a nutshell

- Compute cost statistic $\hat{c}(\theta)$ for each configuration θ
- $\theta_{inc} \leftarrow \text{configuration with lowest } \hat{c}(\theta)$

Some algorithm runs can be lucky

- \rightsquigarrow need extra mechanism to ensure incumbent is really good
- \rightsquigarrow SPO increases number of repeats over time

SPO's mechanism in a nutshell

- Compute cost statistic $\hat{c}(\theta)$ for each configuration θ
- $\theta_{inc} \leftarrow \text{configuration with lowest } \hat{c}(\theta)$
- Perform up to R runs for θ_{inc} to ensure it is good
 - Increase R over time

Some algorithm runs can be lucky

- \rightsquigarrow need extra mechanism to ensure incumbent is really good
- \rightsquigarrow SPO increases number of repeats over time

SPO's mechanism in a nutshell

- Compute cost statistic $\hat{c}(\theta)$ for each configuration θ
- $\theta_{inc} \leftarrow \text{configuration with lowest } \hat{c}(\theta)$
- Perform up to R runs for θ_{inc} to ensure it is good
 - Increase R over time
- But what if it doesn't perform well?
 - Then a different incumbent is picked in the next iteration
 - That might also turn out not to be good...

Simple fix

- ▶ Iteratively perform runs for single most promising θ_{new}
 - Compare against current incumbent θ_{inc}
 - Once θ_{new} has as many runs as θ_{inc} : make it new θ_{inc}
- Maintain invariant: θ_{inc} has the most runs of all

Simple fix

- Iteratively perform runs for single most promising θ_{new}
 - Compare against current incumbent θ_{inc}
 - Once θ_{new} has as many runs as θ_{inc} : make it new θ_{inc}
- Maintain invariant: θ_{inc} has the most runs of all
- ► Substantially improves robustness → new SPO variant: SPO⁺

Simple fix

- Iteratively perform runs for single most promising θ_{new}
 - Compare against current incumbent θ_{inc}
 - Once θ_{new} has as many runs as θ_{inc} : make it new θ_{inc}
- Maintain invariant: θ_{inc} has the most runs of all
- Substantially improves robustness \rightarrow new SPO variant: SPO⁺

Tuning CMA-ES on Griewangk

Simple fix

▶ Iteratively perform runs for single most promising θ_{new}

- Compare against current incumbent θ_{inc}
- Once θ_{new} has as many runs as θ_{inc}: make it new θ_{inc}
- Maintain invariant: θ_{inc} has the most runs of all
- Substantially improves robustness \rightarrow new SPO variant: SPO⁺

Summary of Study of SPO components & Definition of SPO⁺

Model Quality

- Initial design not very important
 - $\rightsquigarrow\,$ use simple random LHD in SPO^+ $\,$
- ► Log-transforms sometimes improve model quality a lot ~→ use them in SPO⁺ (for positive functions)

Summary of Study of SPO components & Definition of SPO⁺

Model Quality

- Initial design not very important
 - $\rightsquigarrow\,$ use simple random LHD in SPO^+ $\,$
- ► Log-transforms sometimes improve model quality a lot ~→ use them in SPO⁺ (for positive functions)

Sequential Experimental Design

- Expected improvement criterion
 - \rightsquigarrow New one that's better in theory but not in practice
 - \rightsquigarrow Use original one in SPO⁺
- ▶ New mechanism for increasing #runs & selecting incumbent
 - \rightsquigarrow substantially improves robustness
 - \rightsquigarrow Use it in SPO⁺

- SAPS
 - Stochastic local search algorithm for SAT
 - 4 continuous parameters
 - ▶ Here: min. search steps for single problem instance

- SAPS
 - Stochastic local search algorithm for SAT
 - 4 continuous parameters
 - Here: min. search steps for single problem instance
- Results known for CALIBRA & ParamILS [Hutter et al, AAAI'07]

- SAPS
 - Stochastic local search algorithm for SAT
 - 4 continuous parameters
 - Here: min. search steps for single problem instance
- Results known for CALIBRA & ParamILS [Hutter et al, AAAI'07]

- SAPS
 - Stochastic local search algorithm for SAT
 - 4 continuous parameters
 - Here: min. search steps for single problem instance
- Results known for CALIBRA & ParamILS [Hutter et al, AAAI'07]

- 1. Sequential Model-Based Optimization (SMBO): Introduction
- 2. Comparing Two SMBO Methods: SPO vs SKO
- 3. Components of SPO: Model Quality
- 4. Components of SPO: Sequential Experimental Design
- 5. Conclusions and Future Work

- SMBO can help design algorithms
 - More principled, saves development time
 - Can exploit full potential of flexible algorithms

- SMBO can help design algorithms
 - More principled, saves development time
 - Can exploit full potential of flexible algorithms
- Our contribution
 - Insights: what makes a popular SMBO algorithm, SPO, work
 - ▶ Improved version, SPO⁺, often performs better than SPO

Ongoing Extensions of Model-Based Framework

- ► Use of different models in SPO⁺ framework
- Dealing with categorical parameters
- Optimization for Sets/Distributions of Instances

Ongoing Extensions of Model-Based Framework

- ► Use of different models in SPO⁺ framework
- Dealing with categorical parameters
- Optimization for Sets/Distributions of Instances

Use of models for scientific understanding

- Interactions of instance features and parameter values
- Can help understand and hopefully improve algorithms

- Thomas Bartz-Beielstein
 - SPO implementation & CMA-ES wrapper
- Theodore Allen
 - SKO implementation