
On the Potential of
Automatic Algorithm Configuration

Frank Hutter
University of British Columbia, 2366 Main Mall

Vancouver, BC, V6T1Z4, Canada
hutter@cs.ubc.ca

Abstract

Design and implementation of efficient and robust algorithms are core top-
ics of computer science and operations research, and the determination of
appropriate values for free algorithm parameters is a challenging and tedious
task in the design of effective algorithms for hard problems. Such parame-
ters include categorical choices (e.g., neighborhood structure in local search
or variable/value ordering heuristics in tree search), as well as numerical pa-
rameters (e.g., noise or restart timing). In practice, tuning of these parameters
is largely carried out manually by applying rules of thumb and crude heuris-
tics, while more principled approaches are only rarely used. In this paper,
we study some tuning scenarios in more detail and demonstrate the large
potential of even very simple automatic algorithm configuration approaches.

1 Introduction

The problem of setting an algorithm’s free parameters for maximal performance on
a class of problem instances is ubiquitous in the design and empirical analysis of
algorithms. Examples of parameterised algorithms can be found in tree search [6]
and local search [9]; commercial solvers, such as ILOG CPLEX1, also offer a
plethora of parameter settings. Considerable effort is often required to find a default
parameter configuration that yields high and robust performance across all or at
least most instances within a given set or distribution [3, 1].

The use of automated tools for finding performance-optimising parameter set-
tings has the potential to liberate algorithm designers from the tedious task of
manually searching the parameter space. Notice that the task of constructing an
algorithm by combining various building blocks can be seen as a special case of al-
gorithm configuration: Consider, for example, two tree search algorithms for SAT

1http://www.ilog.com/products/cplex/

1



2

that only differ in their preprocessing and variable ordering heuristics – in fact,
these can be seen as a single algorithm with two nominal parameters.

Algorithm configuration is commonly (either implicitly or explicitly) treated
as an optimisation problem, where the objective function captures performance
on a fixed set of benchmark instances. Depending on the number and type of
parameters, the methods used to solve this optimisation problem include exhaustive
enumeration, beam search [15], experimental design [5, 2], genetic programming
[16], the application of racing algorithms [4, 3], and combinations of fractional
experimental design and local search [1].

Recently, we have introduced an iterated local search approach for algorithm
configuration [13]. This approach has subsequently lead to enormous speed-ups
of tree search algorithms for SAT for solving SAT-encoded software verification
(speedups of a factor of 500) and bounded model-checking instances (speedups of
a factor of 4.5) [10].

2 Tuning scenarios

In this paper, we study tuning scenarios including tree search and local search for
propositional satisfiability (SAT) and mixed integer programming. In particular,
we study the tree search algorithm SPEAR [10] with 26 mixed discrete/continuous
parameters, the local search algorithm SAPS [12] with four continuous parameters,
and the commercial software CPLEX for mixed integer programming (MIP)2 with
80 mixed discrete/continuous parameters. All continous parameters are discretized
to seemingly meaningful values spread around the algorithm defaults. As SAT
domains, we employ a set of SAT-encoded quasi-group completion (QCP) prob-
lems [8] and a set of SAT-encoded graph colouring problems based on small-world
graphs (SWGCP) [7]. For MIP, we employ a set of combinatorial auction (CATS)
instances from the combinatorial auctions test set [14].

In order to get an idea about the potential of improvement for these tuning sce-
narios, and about the potential for overtuning to be expected, we sampled a num-
ber of parameter configurations uniformly at random, evaluating them on a small
training set with N = 10 instances, and iterated this process up to a total CPU time
usage of five hours. In Figure 1, we plot both performance on the small training
set and on an independent test set with M = 100 instances; configurations are
ordered with respect to training quality. Note that the cutoff time for each domain
is five seconds, unsuccesful runs are counted as taking ten times this time, and we
plot average performance over the training/test instances; thus, a performance of
50 is the absolute worst a parameter configuration can achieve, and zero is the best.
We note that the differences between parameter configrations vary between tuning
scenarios, as does the correlation between training and test performance.

2http://www.ilog.com/products/cplex/



3

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

Param. configs, sorted by train performance

M
ea

n 
ru

nt
im

e 
of

 p
ar

am
et

er
 c

on
fig

ur
at

io
n

 

 
Training performance (N=10)
Test performance (N=100)

(a) SAPS-SWGCP

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

Param. configs, sorted by train performance

M
ea

n 
ru

nt
im

e 
of

 p
ar

am
et

er
 c

on
fig

ur
at

io
n

 

 
Training performance (N=10)
Test performance (N=100)

(b) SAPS-QCP

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Param. configs, sorted by train performance

M
ea

n 
ru

nt
im

e 
of

 p
ar

am
et

er
 c

on
fig

ur
at

io
n

 

 
Training performance (N=10)
Test performance (N=100)

(c) SPEAR-SWGCP

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

Param. configs, sorted by train performance

M
ea

n 
ru

nt
im

e 
of

 p
ar

am
et

er
 c

on
fig

ur
at

io
n

SPEAR on QCP

 

 
Training performance (N=10)
Test performance (N=100)

(d) SPEAR-QCP

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

Param. configs, sorted by train performance

M
ea

n 
ru

nt
im

e 
of

 p
ar

am
et

er
 c

on
fig

ur
at

io
n

 

 
Training performance (N=10)
Test performance (N=100)

(e) CPLEX-CATS

Figure 1: Performance of randomly sampled parameter configurations on a small
training set of N = 10 instances and a test set of 100 instances. For details see
text.

Figure 2 takes a closer look at test performance of a number of selected param-
eter configurations, namely the default parameter configuration of the algorithms,
and five of the randomly sampled configurations: the best and worst in terms of
training performance, as well as the 25%, 50%, and 75% quantiles. For each of
these parameter configurations, we plot the cumulative distribution of the proba-
bility of solving the instances in the test set. We note that in each single scenario,
the best parameter configuration based on the small training set of ten instances
already performs better than the default parameter setting. Of course, we do not
anticipate this to generalize to arbitrary tuning scenarios, but it at least speaks for
the potential of automatic tuning.

3 Experiments with iterated local search

In this section, we study the effectiveness of our iterated local search from [13] in
the above tuning scenarios. We compare test performances of pure random sam-
pling based on a training set of 100 instances, BasicILS based on the same train-
ing set, and FocusedILS (which uses a different number of instances to evaluate
each parameter configuration). Compared to [13], we implemented one important
improvement for all approaches, namely a pruning technique that stops evalua-
tions of parameter configurations when they are already proovably worse than a
previously seen parameter configurations. This technique improves random sam-
pling the most, followed by BasicILS, and only improves FocusedILS marginally.
Without this pruning technique BasicILS and FocusedILS outperformed random



4

10
−3

10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time

P
er

ce
nt

 te
st

 in
st

an
ce

s 
so

lv
ed

 

 
default setting
best in training
q

0.25
 in training

q
0.5

 in training

q
0.75

 in training

worst in training

(a) SAPS-SWGCP

10
−3

10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time

P
er

ce
nt

 te
st

 in
st

an
ce

s 
so

lv
ed

SAPS on QCP

 

 
default setting
best in training
q

0.25
 in training

q
0.5

 in training

q
0.75

 in training

worst in training

(b) SAPS-QCP

10
−3

10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time

P
er

ce
nt

 te
st

 in
st

an
ce

s 
so

lv
ed

 

 
default setting
best in training
q

0.25
 in training

q
0.5

 in training

q
0.75

 in training

worst in training

(c) SPEAR-SWGCP

10
−3

10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time

P
er

ce
nt

 te
st

 in
st

an
ce

s 
so

lv
ed

SPEAR on QCP

 

 

default setting
best in training
q

0.25
 in training

q
0.5

 in training

q
0.75

 in training

worst in training

(d) SPEAR-QCP

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time

P
er

ce
nt

 te
st

 in
st

an
ce

s 
so

lv
ed

 

 
default setting
best in training
q

0.25
 in training

q
0.5

 in training

q
0.75

 in training

(e) CPLEX-regions100

Figure 2: Test performance for a number of selected parameter configurations; for
details, see text.

sampling in our experiments for [13] and FocusedILS outperformed BasicILS. In
Table 1 we see that the picture becomes less clear when pruning is used: while
FocusedILS performs statistically significantly better than the other approaches on
two domains, the other two approaches reach similar or better (albeit not statisti-
cally significantly better) performance in the remaining three scenarios.

Based on our above analysis of correlations between training and test set, we
expected overtuning effects to be strongest for the tuning scenarios involving the
QCP domain. This expectation is confirmed by the results in Table 1. Finally, note
that the automatically found parameter configurations always clearly outperform
the default configuration, much more so than the random parameter configurations,
sampled without pruning.

4 Conclusions

Automatic algorithm configuration can greatly improve performance for all tuning
scenarios we studied here, and even a simple random sampling of parameter con-
figurations shows very good performance when combined with a simple pruning
technique that stops algorithm evaluations once they are proovably worse (on the
training set) than the incumbent solution.

In future work, we plan to study model-based approaches in order to speed up
the search for good parameter configurations. We also plan to integrate computa-
tionally cheap instance features into this model and use it to perform per-instance
algorithm configuration, where we automatically choose an appropriate parameter
configuration for each given instance [11].



5

Scenario Default Random(100) BasicILS(100) FocusedILS

SAPS-SWGCP 45.41
0.21± 0.03 0.21± 0.03 0.35± 0.05
0.32± 0.05 0.32± 0.06 0.32± 0.05

SPEAR-SWGCP 9.74
6.71± 1.2 6.65± 1.48 8.26± 0.73
7.97± 1.14 8.05± 0.9 8.3± 1.06

SAPS-QCP 15.80
3.4± 1.53 2.78 ± 1.28 3.95± 0.27
5.92± 0.44 5.5± 0.53 5.21 ± 0.39

SPEAR-QCP 2.65
0.45± 0.51 0.36± 0.41 1.08± 0.18
1.2± 0.18 1.39± 0.33 1.29± 0.2

CPLEX-regions100 1.61
0.7± 0.12 0.39 ± 0.12 0.35± 0.04
0.71± 0.12 0.4± 0.11 0.35 ± 0.04

Table 1: Performance for our tuning scenarios; the top row for each scenario gives
training performance, the bottom row test performance, mean±stddev over 25 ex-
ecutions of the tuning approach. The training performance of Random(100) and
BasicILS(100) is directly comparable since they use the same training set: bold
face indicates statistically better performance for BasicILS, but due to limited rep-
resentativeness of the training set this does not transfer to statistically better per-
formance on the test set. For FocusedILS, bold face indicates statistically better
performance than the other approaches on the test set; the cases where Random
performs best are not statistically significant.

References
[1] B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional experimental design and local

search. Operations Research, 54(1):99–114, Jan–Feb 2006.
[2] T. Bartz-Beielstein. Experimental Research in Evolutionary Computation. Springer Verlag, 2006.
[3] M. Birattari. The Problem of Tuning Metaheuristics as Seen from a Machine Learning Perspective. PhD

thesis, Université Libre de Bruxelles, Brussels, Belgium, 2004.
[4] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring metaheuristics.

In Proc. of GECCO-02, pages 11–18, 2002.
[5] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil. Using experimental design to find effective

parameter settings for heuristics. Journal of Heuristics, 7(1):77–97, 2001.
[6] N. Eén and N. Sörensson. An extensible SAT solver. In Proc. of SAT-03, pages 502–518, 2003.
[7] I. P. Gent, H. H. Hoos, P. Prosser, and T. Walsh. Morphing: Combining structure and randomness. In

Proc. of AAAI-99, pages 654–660, Orlando, Florida, 1999.
[8] Carla P. Gomes and Bart Selman. Problem structure in the presence of perturbations. In Proc. of AAAI-97,

1997.
[9] H. H. Hoos and T. Stützle. Stochastic Local Search – Foundations & Applications. Morgan Kaufmann,

2005.
[10] F. Hutter, D. Babić, H. H. Hoos, and A. J.Hu. Boosting verification by automatic tuning of decision

procedures. In Formal Methods in Computer Aided Design (FMCAD’07), 2007. To appear.
[11] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown. Performance prediction and automated tuning of

randomized and parametric algorithms. In Proc. of CP-06, pages 213–228, 2006.
[12] F. Hutter, D. A. D. Tompkins, and H. H. Hoos. Scaling and probabilistic smoothing: Efficient dynamic

local search for SAT. In Proc. of CP-02, pages 233–248, 2002.
[13] Frank Hutter, Holger H. Hoos, and Thomas Stützle. Automated algorithm configuration based on local

search. In Proceedings of the Twenty-Second Conference on Artificial Intelligence (AAAI-07), 2007. To
appear.

[14] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combinatorial auction
algorithms. In ACM Conference on Electronic Commerce (EC-00), 2000.

[15] S. Minton. Automatically configuring constraint satisfaction programs: A case study. Constraints, 1(1):1–
40, 1996.

[16] M. Oltean. Evolving evolutionary algorithms using linear genetic programming. Evolutionary Computa-
tion, 13(3):387–410, 2005.


