
Automatic Algorithm Configuration
based on Local Search

Frank Hutter1 Holger Hoos1 Thomas Stützle2

1Department of Computer Science
University of British Columbia

Canada

2IRIDIA
Université Libre de Bruxelles

Belgium

Real-world example for algorithm configuration:

Tree search for SAT-encoded software verification

I New DPLL-type SAT solver (Spear)

– Variable/value heuristics, clause learning, restarts, ...

– 26 user-specifiable parameters:
7 categorical, 3 boolean, 12 continuous, 4 integer parameters

I Minimize expected run-time

I Problems:

– Huge variation in runtime (with default setting):
< 1 second for some instances
> 1 day for others

– Good performance on a few instances does not generalise well
– Many possible configurations (8.34× 1017 after discretization)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 2

Real-world example for algorithm configuration:

Tree search for SAT-encoded software verification

I New DPLL-type SAT solver (Spear)

– Variable/value heuristics, clause learning, restarts, ...
– 26 user-specifiable parameters:

7 categorical, 3 boolean, 12 continuous, 4 integer parameters

I Minimize expected run-time

I Problems:

– Huge variation in runtime (with default setting):
< 1 second for some instances
> 1 day for others

– Good performance on a few instances does not generalise well
– Many possible configurations (8.34× 1017 after discretization)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 2

Real-world example for algorithm configuration:

Tree search for SAT-encoded software verification

I New DPLL-type SAT solver (Spear)

– Variable/value heuristics, clause learning, restarts, ...
– 26 user-specifiable parameters:

7 categorical, 3 boolean, 12 continuous, 4 integer parameters

I Minimize expected run-time

I Problems:

– Huge variation in runtime (with default setting):
< 1 second for some instances
> 1 day for others

– Good performance on a few instances does not generalise well
– Many possible configurations (8.34× 1017 after discretization)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 2

Real-world example for algorithm configuration:

Tree search for SAT-encoded software verification

I New DPLL-type SAT solver (Spear)

– Variable/value heuristics, clause learning, restarts, ...
– 26 user-specifiable parameters:

7 categorical, 3 boolean, 12 continuous, 4 integer parameters

I Minimize expected run-time

I Problems:

– Huge variation in runtime (with default setting):
< 1 second for some instances
> 1 day for others

– Good performance on a few instances does not generalise well
– Many possible configurations (8.34× 1017 after discretization)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 2

Standard algorithm configuration approach

I Choose a “representative” benchmark set for tuning

I Perform iterative manual tuning:

start with some parameter configuration
repeat

modify a single parameter
if results on tuning set improve then

keep new configuration

until no more improvement possible (or “good enough”)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 3

Standard algorithm configuration approach

I Choose a “representative” benchmark set for tuning

I Perform iterative manual tuning:

start with some parameter configuration
repeat

modify a single parameter
if results on tuning set improve then

keep new configuration

until no more improvement possible (or “good enough”)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 3

Problems of standard approach

I Slow and tedious, requires significant human time

I Not guaranteed to find global optimum

– Hill climbing local minimum only

I “Representative” benchmark set may not be representative

– Constraints on tuning time
 typically only few instances
 typically fairly easy instances

Solution:

I Automate process

I Use more powerful search method

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 4

Problems of standard approach

I Slow and tedious, requires significant human time

I Not guaranteed to find global optimum

– Hill climbing local minimum only

I “Representative” benchmark set may not be representative

– Constraints on tuning time
 typically only few instances
 typically fairly easy instances

Solution:

I Automate process

I Use more powerful search method

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 4

Problems of standard approach

I Slow and tedious, requires significant human time

I Not guaranteed to find global optimum

– Hill climbing local minimum only

I “Representative” benchmark set may not be representative

– Constraints on tuning time
 typically only few instances
 typically fairly easy instances

Solution:

I Automate process

I Use more powerful search method

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 4

Problems of standard approach

I Slow and tedious, requires significant human time

I Not guaranteed to find global optimum

– Hill climbing local minimum only

I “Representative” benchmark set may not be representative

– Constraints on tuning time
 typically only few instances
 typically fairly easy instances

Solution:

I Automate process

I Use more powerful search method

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 4

Related work

I Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O’Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

I Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004 – 2007]

I Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

I Learning approaches

– Regression trees [Bartz-Beielstein et al. 2004]

– Response surface models, DACE
[Bartz-Beielstein et al. 2004–2006]

I Lots of work on per-instance tuning / reactive search
 orthogonal to the approach followed here

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 5

Related work

I Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O’Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

I Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004 – 2007]

I Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

I Learning approaches

– Regression trees [Bartz-Beielstein et al. 2004]

– Response surface models, DACE
[Bartz-Beielstein et al. 2004–2006]

I Lots of work on per-instance tuning / reactive search
 orthogonal to the approach followed here

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 5

Related work

I Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O’Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

I Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004 – 2007]

I Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

I Learning approaches

– Regression trees [Bartz-Beielstein et al. 2004]

– Response surface models, DACE
[Bartz-Beielstein et al. 2004–2006]

I Lots of work on per-instance tuning / reactive search
 orthogonal to the approach followed here

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 5

Related work

I Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O’Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

I Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004 – 2007]

I Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

I Learning approaches

– Regression trees [Bartz-Beielstein et al. 2004]

– Response surface models, DACE
[Bartz-Beielstein et al. 2004–2006]

I Lots of work on per-instance tuning / reactive search
 orthogonal to the approach followed here

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 5

Related work

I Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O’Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

I Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004 – 2007]

I Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

I Learning approaches

– Regression trees [Bartz-Beielstein et al. 2004]

– Response surface models, DACE
[Bartz-Beielstein et al. 2004–2006]

I Lots of work on per-instance tuning / reactive search
 orthogonal to the approach followed here

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 5

Outline

1. Introduction

2. Iterated local search over parameter configurations

3. The BasicILS and FocusedILS algorithms

4. Sample applications and performance results

5. Conclusions and future work

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 6

The ParamILS framework

ILS in parameter configuration space (ParamILS):

Choose initial parameter configuration θ
Perform subsidiary local search on θ

While tuning time left:
|| θ′ := θ
|| perform perturbation on θ
|| perform subsidiary local search on θ
|||| based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b with probability prestart randomly pick new θ

 Performs biased random walk over local optima

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 7

The ParamILS framework

ILS in parameter configuration space (ParamILS):

Choose initial parameter configuration θ
Perform subsidiary local search on θ
While tuning time left:
|| θ′ := θ
|| perform perturbation on θ
|| perform subsidiary local search on θ

|||| based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b with probability prestart randomly pick new θ

 Performs biased random walk over local optima

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 7

The ParamILS framework

ILS in parameter configuration space (ParamILS):

Choose initial parameter configuration θ
Perform subsidiary local search on θ
While tuning time left:
|| θ′ := θ
|| perform perturbation on θ
|| perform subsidiary local search on θ
|||| based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b with probability prestart randomly pick new θ

 Performs biased random walk over local optima

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 7

The ParamILS framework

ILS in parameter configuration space (ParamILS):

Choose initial parameter configuration θ
Perform subsidiary local search on θ
While tuning time left:
|| θ′ := θ
|| perform perturbation on θ
|| perform subsidiary local search on θ
|||| based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b with probability prestart randomly pick new θ

 Performs biased random walk over local optima

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 7

Details on ParamILS:

I Initialisation: pick best of default & R random configurations

I Subsidiary local search: iterative first improvement,
change one parameter in each step

I Perturbation: change s randomly chosen parameters

I Acceptance criterion: always select better local optimum

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 8

Details on ParamILS:

I Initialisation: pick best of default & R random configurations

I Subsidiary local search: iterative first improvement,
change one parameter in each step

I Perturbation: change s randomly chosen parameters

I Acceptance criterion: always select better local optimum

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 8

Details on ParamILS:

I Initialisation: pick best of default & R random configurations

I Subsidiary local search: iterative first improvement,
change one parameter in each step

I Perturbation: change s randomly chosen parameters

I Acceptance criterion: always select better local optimum

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 8

Details on ParamILS:

I Initialisation: pick best of default & R random configurations

I Subsidiary local search: iterative first improvement,
change one parameter in each step

I Perturbation: change s randomly chosen parameters

I Acceptance criterion: always select better local optimum

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 8

Evaluation of a parameter configuration θ
(based on N runs)

I Sample N instances from given set (with repetitions)

I For each of the N instances:

– Execute algorithm with configuration θ
– Record scalar cost of the run

(user-defined: e.g. run-time, solution quality, . . .)

I Compute scalar statistic ĉN(θ) of the N costs
(user-defined: e.g. empirical mean, median, . . .)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 9

Evaluation of a parameter configuration θ
(based on N runs)

I Sample N instances from given set (with repetitions)

I For each of the N instances:

– Execute algorithm with configuration θ
– Record scalar cost of the run

(user-defined: e.g. run-time, solution quality, . . .)

I Compute scalar statistic ĉN(θ) of the N costs
(user-defined: e.g. empirical mean, median, . . .)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 9

Evaluation of a parameter configuration θ
(based on N runs)

I Sample N instances from given set (with repetitions)

I For each of the N instances:

– Execute algorithm with configuration θ
– Record scalar cost of the run

(user-defined: e.g. run-time, solution quality, . . .)

I Compute scalar statistic ĉN(θ) of the N costs
(user-defined: e.g. empirical mean, median, . . .)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 9

The BasicILS(N) algorithm

I Use a fixed number of N runs to evaluate each configuration θ

Question: How to choose number of runs N?

I Too many

 evaluating a configuration is very expensive
 optimisation process is very slow

I Too few

 very noisy approximations ĉN(θ)
 poor generalisation to independent test runs

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 10

The BasicILS(N) algorithm

I Use a fixed number of N runs to evaluate each configuration θ

Question: How to choose number of runs N?

I Too many

 evaluating a configuration is very expensive
 optimisation process is very slow

I Too few

 very noisy approximations ĉN(θ)
 poor generalisation to independent test runs

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 10

The BasicILS(N) algorithm

I Use a fixed number of N runs to evaluate each configuration θ

Question: How to choose number of runs N?

I Too many

 evaluating a configuration is very expensive
 optimisation process is very slow

I Too few

 very noisy approximations ĉN(θ)
 poor generalisation to independent test runs

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 10

Generalisation to independent test set,large N (N=100)

(Saps on quasigroups with holes)

10
1

10
2

10
3

10
4

1

1.5

2

2.5

x 10
4

CPU time [s]

R
un

le
ng

th
 (

m
ed

ia
n,

 1
0%

 &
 9

0%
 q

ua
nt

ile
s)

BasicILS(100) performance on training set

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 11

Generalisation to independent test set,large N (N=100)

(Saps on quasigroups with holes)

10
1

10
2

10
3

10
4

1

1.5

2

2.5

x 10
4

CPU time [s]

R
un

le
ng

th
 (

m
ed

ia
n,

 1
0%

 &
 9

0%
 q

ua
nt

ile
s)

BasicILS(100) performance on test set
BasicILS(100) performance on training set

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 11

Generalisation to independent test set, small N (N=1)

(Saps on quasigroups with holes)

10
−2

10
0

10
2

0

1

2

3

4

5

6
x 10

4

CPU time [s]

R
un

le
ng

th
 (

m
ed

ia
n,

 1
0%

 &
 9

0%
 q

ua
nt

ile
s)

BasicILS(1) performance on test set
BasicILS(1) performance on training set

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 12

Test performance of BasicILS with different N

(Saps on quasigroups with holes)

10
−2

10
0

10
2

10
4

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

CPU time for ParamILS [s]

M
ed

ia
n

ru
nl

en
gt

h
of

 S
A

P
S

 [s
te

ps
]

BasicILS(100)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 13

Test performance of BasicILS with different N

(Saps on quasigroups with holes)

10
−2

10
0

10
2

10
4

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

CPU time for ParamILS [s]

M
ed

ia
n

ru
nl

en
gt

h
of

 S
A

P
S

 [s
te

ps
]

BasicILS(100)

BasicILS(10)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 13

Test performance of BasicILS with different N

(Saps on quasigroups with holes)

10
−2

10
0

10
2

10
4

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

CPU time for ParamILS [s]

M
ed

ia
n

ru
nl

en
gt

h
of

 S
A

P
S

 [s
te

ps
]

BasicILS(100)

BasicILS(10)

BasicILS(1)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 13

The FocusedILS algorithm

I Use different numbers of runs, N(θ), for each configuration θ

I Idea: Use high N(θ) only for good θ

– start with N(θ) = 0 for all θ
– increment N(θ) whenever θ is visited
– additional runs upon finding new, better configuration θ

Theorem:
As number of FocusedILS iterations →∞,
it converges to true optimal configuration θ∗

I Key ideas in proof

1. For N(θ)→∞, ĉN(θ)→ c(θ)
2. Underlying ILS eventually reaches any configuration θ.

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 14

The FocusedILS algorithm

I Use different numbers of runs, N(θ), for each configuration θ

I Idea: Use high N(θ) only for good θ

– start with N(θ) = 0 for all θ
– increment N(θ) whenever θ is visited
– additional runs upon finding new, better configuration θ

Theorem:
As number of FocusedILS iterations →∞,
it converges to true optimal configuration θ∗

I Key ideas in proof

1. For N(θ)→∞, ĉN(θ)→ c(θ)
2. Underlying ILS eventually reaches any configuration θ.

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 14

The FocusedILS algorithm

I Use different numbers of runs, N(θ), for each configuration θ

I Idea: Use high N(θ) only for good θ

– start with N(θ) = 0 for all θ
– increment N(θ) whenever θ is visited
– additional runs upon finding new, better configuration θ

Theorem:
As number of FocusedILS iterations →∞,
it converges to true optimal configuration θ∗

I Key ideas in proof

1. For N(θ)→∞, ĉN(θ)→ c(θ)
2. Underlying ILS eventually reaches any configuration θ.

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 14

The FocusedILS algorithm

I Use different numbers of runs, N(θ), for each configuration θ

I Idea: Use high N(θ) only for good θ

– start with N(θ) = 0 for all θ
– increment N(θ) whenever θ is visited
– additional runs upon finding new, better configuration θ

Theorem:
As number of FocusedILS iterations →∞,
it converges to true optimal configuration θ∗

I Key ideas in proof

1. For N(θ)→∞, ĉN(θ)→ c(θ)
2. Underlying ILS eventually reaches any configuration θ.

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 14

Performance of FocusedILS vs BasicILS

(Test performance of Saps on quasigroups with holes)

10
−2

10
0

10
2

10
4

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

CPU time for ParamILS [s]

M
ed

ia
n

ru
nl

en
gt

h
of

 S
A

P
S

 [s
te

ps
]

BasicILS(100)

BasicILS(10)

BasicILS(1)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 15

Performance of FocusedILS vs BasicILS

(Test performance of Saps on quasigroups with holes)

10
−2

10
0

10
2

10
4

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

CPU time for ParamILS [s]

M
ed

ia
n

ru
nl

en
gt

h
of

 S
A

P
S

 [s
te

ps
]

BasicILS(100)

FocusedILS

BasicILS(10)

BasicILS(1)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 15

Sample applications and performance results

Comparison against CALIBRA [Adenso-Diaz & Laguna 2006]

I CALIBRA: limited to 5 continuous/integer parameters

I ParamILS better results with same tuning time

Scenario Metric Default FocusedILS BasicILS(100) CALIBRA(100)

Saps on GC Runtime 5.60 s 0.043 ± 0.005 0.046± 0.01 0.053± 0.010

Gls+ for MPE Approx. error ε = 1.81 0.949 ± 0.0001 0.951± 0.004 1.234± 0.492

Sat4j on GC Runtime 7.02 s 0.65 ± 0.2 1.19± 0.58 (too many param.)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 16

Sample applications and performance results

Comparison against CALIBRA [Adenso-Diaz & Laguna 2006]

I CALIBRA: limited to 5 continuous/integer parameters

I ParamILS better results with same tuning time

Scenario Metric Default FocusedILS BasicILS(100) CALIBRA(100)

Saps on GC Runtime 5.60 s 0.043 ± 0.005 0.046± 0.01 0.053± 0.010

Gls+ for MPE Approx. error ε = 1.81 0.949 ± 0.0001 0.951± 0.004 1.234± 0.492

Sat4j on GC Runtime 7.02 s 0.65 ± 0.2 1.19± 0.58 (too many param.)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 16

Sample applications and performance results

Comparison against CALIBRA [Adenso-Diaz & Laguna 2006]

I CALIBRA: limited to 5 continuous/integer parameters

I ParamILS better results with same tuning time

Scenario Metric Default FocusedILS BasicILS(100) CALIBRA(100)

Saps on GC Runtime 5.60 s 0.043 ± 0.005 0.046± 0.01 0.053± 0.010

Gls+ for MPE Approx. error ε = 1.81 0.949 ± 0.0001 0.951± 0.004 1.234± 0.492

Sat4j on GC Runtime 7.02 s 0.65 ± 0.2 1.19± 0.58 (too many param.)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 16

Sample applications and performance results

Comparison against CALIBRA [Adenso-Diaz & Laguna 2006]

I CALIBRA: limited to 5 continuous/integer parameters

I ParamILS better results with same tuning time

Scenario Metric Default FocusedILS BasicILS(100) CALIBRA(100)

Saps on GC Runtime 5.60 s 0.043 ± 0.005 0.046± 0.01 0.053± 0.010

Gls+ for MPE Approx. error ε = 1.81 0.949 ± 0.0001 0.951± 0.004 1.234± 0.492

Sat4j on GC Runtime 7.02 s 0.65 ± 0.2 1.19± 0.58 (too many param.)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 16

Speedup obtained by automated tuning

(Saps default vs tuned on graph colouring, test set performance)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

run−time [s], default parameters

ru
n−

tim
e

[s
],

au
to

−
tu

ne
d

pa
ra

m
et

er
s

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 17

Two “real-world” applications

I New DPLL-type SAT solver Spear
I 26 parameters
I Software verification: 500-fold speedup (won QB FQ category

in SMT’07 competition)
I Hardware verification: 4.5-fold speedup
 New state of the art for those instances
 [Hutter, Babić, Hoos & Hu: FMCAD ’07 (to appear)]

I New replica exchange Monte Carlo algorithm for protein
structure prediction

I 3 parameters
I 2-fold improvement
 New state of the art for 2D/3D protein structure prediction
 [Thachuk, Shmygelska & Hoos: BMC Bioinformatics ’07 (to

appear)]

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 18

Two “real-world” applications

I New DPLL-type SAT solver Spear
I 26 parameters
I Software verification: 500-fold speedup (won QB FQ category

in SMT’07 competition)
I Hardware verification: 4.5-fold speedup
 New state of the art for those instances
 [Hutter, Babić, Hoos & Hu: FMCAD ’07 (to appear)]

I New replica exchange Monte Carlo algorithm for protein
structure prediction

I 3 parameters
I 2-fold improvement
 New state of the art for 2D/3D protein structure prediction
 [Thachuk, Shmygelska & Hoos: BMC Bioinformatics ’07 (to

appear)]

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 18

Conclusions

I ParamILS: Simple and efficient framework for automatic
parameter optimization

I Arbitrary number and types of parameters
I User-defined objective function

I FocusedILS:
I Converges provably towards optimal configuration
I Excellent performance in practice (outperforms BasicILS,

CALIBRA)

I Huge speedups:
I ≈ 100× for Saps (local search) on graph colouring
I ≈ 500× for Spear (tree search) on software verification

I Publically available at:
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 19

Conclusions

I ParamILS: Simple and efficient framework for automatic
parameter optimization

I Arbitrary number and types of parameters
I User-defined objective function

I FocusedILS:
I Converges provably towards optimal configuration
I Excellent performance in practice (outperforms BasicILS,

CALIBRA)

I Huge speedups:
I ≈ 100× for Saps (local search) on graph colouring
I ≈ 500× for Spear (tree search) on software verification

I Publically available at:
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 19

Conclusions

I ParamILS: Simple and efficient framework for automatic
parameter optimization

I Arbitrary number and types of parameters
I User-defined objective function

I FocusedILS:
I Converges provably towards optimal configuration
I Excellent performance in practice (outperforms BasicILS,

CALIBRA)

I Huge speedups:
I ≈ 100× for Saps (local search) on graph colouring
I ≈ 500× for Spear (tree search) on software verification

I Publically available at:
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 19

Conclusions

I ParamILS: Simple and efficient framework for automatic
parameter optimization

I Arbitrary number and types of parameters
I User-defined objective function

I FocusedILS:
I Converges provably towards optimal configuration
I Excellent performance in practice (outperforms BasicILS,

CALIBRA)

I Huge speedups:
I ≈ 100× for Saps (local search) on graph colouring
I ≈ 500× for Spear (tree search) on software verification

I Publically available at:
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 19

Future work

I Continuous parameters (currently discretised)

I Statistical tests (cf. racing algorithms)

I Learning approaches, sequential design of experiments

I Per-instance tuning

I Automatic algorithm design

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 20

Future work

I Continuous parameters (currently discretised)

I Statistical tests (cf. racing algorithms)

I Learning approaches, sequential design of experiments

I Per-instance tuning

I Automatic algorithm design

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 20

Future work

I Continuous parameters (currently discretised)

I Statistical tests (cf. racing algorithms)

I Learning approaches, sequential design of experiments

I Per-instance tuning

I Automatic algorithm design

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 20

Future work

I Continuous parameters (currently discretised)

I Statistical tests (cf. racing algorithms)

I Learning approaches, sequential design of experiments

I Per-instance tuning

I Automatic algorithm design

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 20

Future work

I Continuous parameters (currently discretised)

I Statistical tests (cf. racing algorithms)

I Learning approaches, sequential design of experiments

I Per-instance tuning

I Automatic algorithm design

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 20

