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ABSTRACT
Reinforcement learning (RL) has produced spectacular results in
games, robotics, and continuous control. Yet, despite these suc-
cesses, learned policies often fail to generalize beyond their training
distribution, limiting real-world impact. Recent work on contextual
RL (cRL) shows that exposing agents to environment characteristics
– contexts – can improve zero-shot transfer. So far, the community
has treated context as a monolithic, static observable, an approach
that constrains the generalization capabilities of RL agents.

To achieve contextual intelligence we first propose a novel tax-
onomy of contexts that separates allogenic (environment-imposed)
from autogenic (agent-driven) factors. We identify three fundamen-
tal research directions that must be addressed to promote truly
contextual intelligence: (1) Learning with heterogeneous con-
texts – explicitly exploit the taxonomy levels so agents can reason
about their influence on the world and vice versa; (2) Multi-time-
scale modeling – recognize that allogenic variables evolve slowly
or remain static, whereas autogenic variables may change within
an episode, potentially requiring different learning mechanisms;
(3) Integration of abstract, high-level contexts – incorporate
roles, resource & regulatory regimes, uncertainties, and other non-
physical descriptors that crucially influence behavior.

We envision context as a first-class modeling primitive, empow-
ering agents to reason about who they are, what the world permits,
and how both evolve over time. By doing so, we aim to catalyze
a new generation of context-aware agents that can be deployed
safely and efficiently in the real world.
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1 INTRODUCTION
Reinforcement learning (RL) [48] is a powerful paradigm that en-
ables training of intelligent agents capable of solving even highly
complex tasks. The simplicity of this paradigm promises great flex-
ibility and the potential to be applicable to a large variety of target
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domains. However, prominent success stories of RL have largely
focused on application domains with highly accurate, high-fidelity
simulators. For example, the ready availability of game engines has
spawned an increased interest in RL research, fueled by a string of
impressive results from playing Atari Games [35] over mastering
StarCraft II [50] to generally capable racing policies [24, 31, 52]. Be-
yond game playing, RL has been used to learn policies for magnetic
control of Tokamak plasmas [15] or navigation of stratospheric
balloons with difficult to predict weather conditions [5]. Despite
these impressive successes, we believe RL research is largely held
back by relying on having access to, or being able to design “per-
fect” environments. Consequently, RL agents are typically not able
to be transferred to settings that are even slightly different from
their training environment [8, 25, 32, 42, 56] or potentially need
additional environment interactions at deployment to be able to
act optimally in novel environments [4, 34].

A popular research direction in RL and robotics focused on ex-
posing the learning agents to a wider distribution of experiences
to mitigate this limitation. Domain randomization (DR) [40, 49]
and procedural content generation (PCG) [14, 51] train agents on
a distribution of related environments. This forces agents to learn
robust behaviors rather than overfitting to particularities of a sin-
gle environment. While these agents can be expected to be more
transferrable across (highly) similar environments [3, 33, 49], these
generalization capabilities often result in suboptimal solutions on
individual environments [42, 44]. This is to be expected however,
as such agents are not explicitly aware about which environment
they are acting on, and thus they need to learn behaviors that work
well on average. In a similar vein, robustness can be achieved by
modeling this objective as a min-max problem. In this setting the
goal is to learn a policy that maximizes the reward under the worst
possible adversarial setting [39, 57]. This approach can mitigate
worst-case outcomes but further sacrifices performance in average
case scenarios as the learned policies act highly conservatively.

Contextual reinforcement learning (cRL) [8] offers a more prin-
cipled approach to generalization by making environment charac-
teristics, the so called context [28, 36], explicit in the training of
agents. Contexts could, for example be physical properties of the
system and consist of masses of a robot [42] or payloads [16], sur-
face conditions [30] and decision time [10]. Such cRL works assume
that context is either readily available, e.g., from sensor readings
[8, 24, 32, 42], or that it is unobservable and needs to be inferred
[7, 38, 44, 54]. Learning in such a manner facilitates much improved
zero-shot generalization capabilities [32] as agents can learn how
to adapt to the environment such that they can act optimally on
every environment and not just in the average case.
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Figure 1: Schematic of a cMDP with common state & action
spaces with transition, reward, and initial-state distributions
conditioned on a context 𝑐. The diagram shows two learning
pipelines: (i) context-oblivious policy 𝜋 (𝑠) receives only the
state observation; (ii) context-aware policy𝜛(𝑠, 𝑐) additionally
observes the context. Both are trained across contexts 𝑐 ∼ C.

While cRL has proven to be effective in learning generalizable
policies, especially with respect to zero-shot generalization, cRL still
lacks a principled understanding and mechanisms to (1) learning
from observations and potentially heterogeneous contexts; (2) design-
ing architectures and learning rules that directly leverage contextual
structure; (3) integrate abstract, high-level contexts such as uncer-
tainty of observations, roles of agents in a multi-agent system or
resource budgets. Solutions to these challenges will advance the
field of multi-agent systems to unlocking truly contextual intelli-
gence. The rest of the paper elaborates the contextual RL problem,
provides a novel taxonomy of contexts based on which we sketch
potential solution approaches to the three challenges we identified.

2 LEARNING GENERALIZABLE POLICIES
Contextual Markov Decision Processes (cMDP) [28, 36] (see Figure 1)
extend the classic MDP formalism [6] to capture task generaliza-
tion. An MDP 𝑀 = (S,A,T ,R, 𝜌) comprises a state space S, an
action space A, transition dynamics T , a reward function R and
a distribution over the initial states 𝜌 . By introducing a context
variable 𝑐 ∈ C, we can define, characterize, and parameterize the
environment’s rules, thereby generating distinct task instances as
contextual variations. In a cMDP, the action A and state spaces
S stay the same whereas the transition dynamics T𝑐 , rewards R𝑐

and initial state distributions 𝜌𝑐 vary depending on the context
𝑐 ∈ C. Consequently, the context-dependent initial distribution
and altered dynamics can expose the agent to different regions
of the state space across contexts. Following Benjamins et al. [8]
we allow the context space C to be discrete or described by a dis-
tribution 𝑝C . Thus, a cMDP M represents a family of related of
MDPs M = {𝑀𝑐 }𝑐∼𝑝C and can be seen as a sub-class of partially
observable MDPs (POMDPs) [22].

When learning policies 𝜋 on a cMDP, one can choose to either
train context-oblivious policies 𝜋 : S → A or context-aware ones
𝜛 : S × C → A. With domain randomization (DR) or procedural
context generation (PCG), the goal is to learn policies that are robust
to perturbations. Thus, learning agents typically can not explicitly1
access the context during learning, leading to context-oblivious
policy 𝜋 that are robust to perturbations caused by sampling a new
context 𝑐 ∼ 𝑝C . To facilitate learning with either DR or PCG, it is

1Relevant context might still be implicitly observable to an agent.

important to carefully choose the distribution 𝑝C to avoid expos-
ing learning agents to highly different and potentially opposing
experiences. Since the state S and action spaces A are shared in
a cMDP, the same action might cause diametrically opposing out-
comes (either in the reward function, the transition dynamics or
both) for the same observed state. For example, assume a binary
context and a binary action. Let the reward be the xor of the action
and context values 𝑟 = 𝑎 ⊕ 𝑐 for a given state 𝑠 . Since an agent does
not know the context 𝑐 in this example, it is impossible to figure out
which action value is the optimal choice. While this toy example
exaggerates the problem, it exemplifies why the choice of context
distribution is highly critical for DR and PCG and often might need
some form of curriculum learning approach to provide the most
stable results [see, e.g. 3, 33]. With dedicated curricula it is possible
to control which experiences an agent is exposed to.

Context-aware policies 𝜛 on the other hand can explicitly take
context information into account when choosing an action in a
particular state. Thus, such policies can avoid the issue presented in
the previous paragraph since the context allows agents to differen-
tiate between outcomes. However, a new complication now arises
from the design decision on how to adequately incorporate context
into learning policies. Commonly, context is treated as another
observable element and thus is stacked to the (observation-)state
vector 𝜛(𝑠, 𝑐) → 𝑎 [see, e.g., 1, 10, 41, 47, 53, 56]. While this can
help in learning more general policies it is no silver bullet [8, 38].
Different algorithms seem to be more suited to this naïve treatment
of context [8] and this integration of context seems to not-trivially
affect the learning dynamics, requiring potentially vastly different
hyperparameter settings during training [17].

A different line of work explores the use of hypernetworks [26]
for contextual RL, in which such neural architectures learn to pro-
duce the weights of (or parts of) the policy networks, thereby adapt-
ing the policy’s behavior to the context at hand [7, 9, 19]. Counter
to the simple concatenation, this approach enables a more ded-
icated context feature learning as context and observations are
processed in two separate representation learning streams, before
being merged in downstream layers. Importantly though, counter
to approaches that simply learn context specific representations
before merging them with observation specific features [11, 24],
hypernetwork approaches directly modify the policies behavior
and do not simply condition policies on richer representations.

Counter to the approaches that treat context largely as another
observable, Prasanna et al. [42] try to exploit contextual informa-
tion by more directly injecting context into latent representations
of the Dreamer architecture [27]. Thereby, instead of learning how
different streams of knowledge interact, this injection can be seen
as a form of modulation of the latent representations that have been
learned from the observations. This approach enabled learning of
policies that had better out-of-distribution generalization abilities,
when compared with classic concatenation an domain randomiza-
tion approaches. Crucially, the analysis highlighted that contextual
knowledge allowed the world model to be more robust to counter-
factual observations. Similarly, Gumbsch et al. [25] aimed to learn
when shifts in context occur (e.g., a door is opened/closed) to enable
more proactive planning. Ultimately, this approach allowed them
to learn temporal abstractions via hierarchies induced by context.



Furthermore, context-aware policies do not necessarily need
explicit access to context. Instead, with system identification style
approaches [20, 55, 58], as most often found in robotics [30] and
meta-RL [4], attempt to estimate or recognize environment dynam-
ics from a history of observations [38]. An important consequence
of learning from a history of observations is that it enables online
adaptation of context. Thus context is not treated as an unchanged
quantity as it is done in the prior approaches. Essentially, context is
quantified for a short snapshot and not for a whole episode or even
longer period. Ndir et al. [38] for example used this fact to learn
context representations that are directly tailored to the current be-
havior of a policy, i.e., factors that are relevant to the states a policy
will traverse through, rather than ones that globally aim to estimate
a contexts influence on the transition dynamics. While this work
was limited to small scale simulation settings, this approach has
been recently demonstrated to enable policies to generalize even
on real-world robotic hardware [30].

Having formalized the learning of generalizable policies via
cMDPs, we have presented two broad policy families that tackle this
problem. For both we discussed lines of work that aim to address
challenges of learning general policies. Across these lines of work a
common thread emerges: the way context is represented, injected, and
learned dramatically shapes the resulting learning dynamics. While
recent cRL methods have achieved impressive performance, they
still treat context as a static, homogeneous signal. This limitation
motivates a more nuanced view of context in which we recognize
its heterogeneous nature and its evolution on multiple time-scales.

In the next section we therefore propose a new taxonomy of con-
texts that classifies contexts by their structural properties, influence
on dynamics, and temporal granularity. By making these distinc-
tions explicit, we can design curricula, architectures, and learning
mechanisms that fully exploit the rich, multi(-time)-scale character
of context, moving us closer to genuine “contextual intelligence”.

3 A TAXONOMY OF CONTEXT
Existing approaches treat the context variable as a monolithic, static
signal. When Hallak et al. [28] first formalized cMDPs, the frame-
work only considered static contexts, i.e., a context 𝑐 that is sampled
once and remains unchanged while interacting with the MDP𝑀𝑐

it instantiates. This is fundamentally misaligned with how intelli-
gence operates in the real world where contexts can differ dramati-
cally in what they influence (dynamics, rewards, observations), how
they are presented to the agent (explicitly observable vs. latent),
and when they change (once per episode, intermittently within an
episode, or continuously). To capture this heterogeneity we propose
a taxonomy that decomposes contexts into allogenic (environment-
imposed) and autogenic (agent-driven) factors.

Allogenic Context. Such contexts are exogenous: they are imposed
by the environment and are independent of the agent’s own actions.
An agent can observe or infer them, but it cannot influence their
evolution. As such, this form of context provides more global knowl-
edge about the environments reward and transition dynamics. This
form of context thus aligns with the notion of context introduced
by Hallak et al. [28]. Some examples of allogenic contexts include
(1) physical constants (gravity [8], length of limbs of a robot [42],
payload weights or atmospheric pressures); (2) hardware variations

(motor torque, sensor noise levels, center of mass [16] or actuator
latency); (3) environment layouts (map topology , wall placement
[14], terrain type or lighting conditions).

Autogenic Context. This type of contexts are endogenous: they
arise from the agent’s own behavior, internal state, or learning
process and can therefore be influenced and even deliberately con-
trolled by the policy. Consequently, this form of context is further
removed from the notion of context as introduced in [28]. Some ex-
amples of these more agent-driven factors include (1) internal states
(battery level, wear-and-tear of actuators, limb failure [18], fatigue,
or a hidden skill repertoire); (2) self-generated task parameters (in-
teraction frequencies [10], goals set by a higher-level planner [21],
curriculum difficulty chosen by the agent, or the current sub-task).

Whereas allogenic contexts describe factors that the environ-
ment imposes on the agent and the thereby resulting behavior,
autogenic contexts describe how agent behavior can shape the en-
vironment or the interaction with it. This observation highlights a
fundamental open problem: how can we enable agents to reason
jointly about allogenic and autogenic factors that exhibit
fundamentally different influences and dependencies? Ex-
isting cRL methods assume monolithic context and thus are not
setup to exploit the heterogeneous structure revealed by our tax-
onomy. Addressing this gap requires new algorithmic primitives
that (1) identify which aspects of the current situation are allogenic
versus autogenic, (2) condition policies appropriately on each type,
and (3) dynamically blend the two streams of information during
learning and execution together with the regular observations.

4 TEMPORAL HIERARCHY OF CONTEXT
While leveraging heterogeneous sources of contextual information
already brings us closer to contextual intelligence, we believe that
we can further exploit the structure of context by paying additional
attention to the temporal nature of context.

Allogenic context represents global information about the tran-
sition dynamics. In most episodic settings these factors are approx-
imately stationary: they remain essentially constant throughout
an episode, exhibit only minor stochastic fluctuations, and only
rarely undergo abrupt, large-scale shifts [see, e.g., 25]. For instance,
consider a robot that must leave a paved footpath to let a pedestrian
pass. The friction and compliance of the grass beside the path differ
dramatically from those of the pavement; however, once the robot
has switched surfaces, the relevant properties of the new surface
stay roughly unchanged until another transition occurs.

Autogenic context however evolves as a direct consequence of
the agents own actions and internal state. Such variables change
more smoothly and more frequently within an episode, yet their
evolution is still slower than that of raw observations. A concrete
example is a robot’s battery charge: as the charge depletes, the robot
preferentially selects low-energy maneuvers, causing the battery
level to drift gradually rather than jump abruptly.

Allogenic contexts are largely piecewise-stationary and may
experience sudden jumps, whereas autogenic contexts vary contin-
uously and at a finer time-scale. Recognising and modelling these
distinct temporal signatures is crucial for building agents that can
both anticipate broad environmental changes and adapt fluidly
to their own evolving internal state. This observation highlights



our second fundamental open problem: how can we learn with
sources of information that evolve at various different fre-
quencies? The typical cRL assumption of single monolithic context
again will likely prohibit many approaches to directly exploit the
notion of temporal dynamics discussed here. Notable exceptions
here are the work by [25] and the work on clockwork VAEs [46]
which have not yet been explored for cRL. To close this gap we need
new algorithmic primitives that (1) exploit the temporal dynamics
of allogenic and autogenic contexts (e.g., via multi-timescale rep-
resentation learning [46] or change-point detection); (2) balance
exploration and exploitation with respect to both context streams
(probing the environment to detect abrupt allogenic shifts versus
exploiting the current autogenic context [23]); (3) integrate the two
streams with the raw observation stream, adhering to the temporal
structures without drowning out dynamic information with static
ones (e.g., via dedicated encoder branches whose representations
are dynamically blended during execution).

5 BEYOND PHYSICAL QUANTITIES
In recent developments, the focus of cRL has predominantly been
directed towards physical quantities. While this is particularly entic-
ing with the outlook on embodied AI, we believe that cRL research
should broaden its focus to include more abstract context types [e.g.,
12, 37, 43]. Our taxonomy admits abstract contexts that might not
be directly measurable but are crucial for many MAS applications.

TeamRoles. In variousmulti-agent reinforcement learning (MARL)
settings [2], agents may adopt different functional roles within an
environment. This is particularly evident in cooperative settings,
where a team of agents might have distinct roles that must be filled
to achieve a common goal. In a soccer team, for example, one can
distinguish between defenders, midfielders, and attackers. While all
agents share the same objective, they must exhibit different behav-
iors to ensure success. These roles, however, need not remain static
throughout a game. If, for example, a defender possesses the ball
in front of an empty goal, it should recognize that, momentarily,
offensive behavior is required beyond what its normal role would
permit. Thus, via dedicated communication protocols, roles might
be exchanged when agents fulfill the necessary requirements.

Furthermore, in MARL settings, some agents might be human
and thus require different coordination strategies than artificial
agents. When approaching a human agent during a package deliv-
ery scenario, an artificial agent should prioritize the human’s safety.
However, when approaching another artificial agent in the same
scenario, these safety considerations might not apply, allowing for
a different approach procedure.

Resource Awareness. Previous examples have already elaborated
on how battery power could inform more appropriate decision
making in robotic agents. However, resource awareness can also
comprise allogenic components. An autonomous factory or robot-
ics warehouse could exploit knowledge of resource availability to
increase production during peak renewable energy generation and
reduce it to essential operations when only non-renewable energy
is available. This extends beyond energy considerations and allows
a manufacturing system might adjust its production schedule based
on material availability or even carbon credit budgets.

Similarly, a more simple gardening robot might reduce water
usage during droughts or defer watering if the weather forecast
reliably predicts rain. In agricultural settings, such systems could
further consider soil moisture levels, seasonal water allocation
permits, and competing demands from other agricultural zones,
demonstrating how resource contexts can be both physical and
regulatory in nature. Meanwhile, energy, compute, and network
bandwidth are naturally modeled as continuous autogenic variables.
By conditioning policies on such contexts, robots can automatically
trade off task urgency against resource consumption—a capability
essential for long-duration missions.

Regulatory / Ethical Context. Finally, our world is governed not
only by the laws of physics, but also by those of our societies [29]. A
self-driving car might leverage the fact that the German Autobahn
has no general speed limit, but must immediately adhere to speed
limits upon crossing into neighboring countries. Beyond speed
regulations, such vehicles must adapt to varying right-of-way rules,
permitted lane-changing behaviors, and even culturally-specific
expectations about pedestrian interactions. What is considered
polite yielding behavior in one country might be seen as dangerous
hesitation in another [45].

Legal regimes (such as speed zones) and ethical constraints (such
as privacy budgets) and other forms of human preferences are
allogenic yet abstract. Adequately encoding this form of context will
be far from trivial but necessary to enable safe coexistence in our
shared physical world. The challenge lies not just in representing
these constraints, but in enabling agents to reason about their
interactions. Thus, while RL from human feedback [13] has helped
in shaping preference based-reward signals, we do not believe that
it is enough to indirectly expose agents to human preferences but
explicitly condition their behavior on these preferences.

These examples illustrate that contextual intelligence extends
beyond low-level physics; it encompasses any factor that influences
optimal decision-making. This observation highlights our final
fundamental open problem: how can we incorporate high-level
and abstract contexts into the learning process? To tackle this
challenge an important aspect is to expose non-physical contexts to
learning agents in settings where they might already be available
or otherwise derive simulators that enable us to make progress
towards this open problem.

6 CONCLUSION
The future of autonomous agents hinges on contextual intelligence.
While the field has made great progress, we argue that crucial
characteristics of what constitute context have not yet been taken
into account. Agents that understand the difference between what
they can change and what they must adapt to, that operate across
temporal scales, and that reason about abstract contexts like roles
and regulations will enable entirely new classes of applications. We
call on the community to abandon the notion that context is merely
another input feature. Context is the foundation on which we can
build dedicated architectures, learning mechanisms, and theoretical
frameworks. Otherwise, RLwill remain confined to narrow domains
with perfect simulators.
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