Mighty: A Comprehensive Tool for studying
Generalization, Meta-RL and AutoRL

Aditya Mohan* Theresa Eimer*
Institute of Artificial Intelligence Institute of Artificial Intelligence
Leibniz University Hannover Leibniz University Hannover

a.mohan®@ai.uni-hannover.de

Carolin Benjamins Marius Lindauer André Biedenkapp
Institute of Artificial Intelligence Institute of Artificial Intelligence = Machine Learning Lab
Leibniz University Hannover L3S Research Center University of Freiburg

Leibniz University Hannover

Abstract

Robust generalization, rapid adaptation, and automated tuning are essential for
deploying reinforcement learning in real-world settings. However, research on
these aspects remains scattered across non-standard codebases and custom orches-
tration scripts. We introduce Mighty, an open source library that unifies Contextual
Generalization, Meta-RL, and AutoRL under a single modular interface. Mighty
cleanly separates a configurable Agent - specified by its learning algorithm, model
architecture, replay buffer, exploration strategy, and hyperparameters - from a
configurable environment modeled as a Contextual MDP in which transitions, re-
wards, and initial states are governed by context parameters. This design decouples
inner-loop weight updates from outer-loop adaptations, enabling users to compose,
within one framework, (i) contextual generalization and curriculum methods (e.g.
Unsupervised Environment Design), (ii) bi-level meta-learning (e.g. MAML, black-
box strategies), and (iii) automated hyperparameter and architecture search (e.g.
Bayesian optimization, evolutionary strategies, population-based training). In this
paper, we present Mighty’s design philosophy and core features and validate the
ongoing base implementations on classic control and continuous control tasks. We
hope that by providing a unified, modular interface Mighty will simplify experi-
mentation and inspire further advances in robust, adaptable reinforcement learning.
Mighty is available at https://github.com/automl/Mighty.

1 Introduction

Reinforcement Learning (RL) has emerged as a powerful paradigm for training agents to make
decisions in complex and dynamic environments. Despite impressive successes in domains such
as games [Silver et al., 2016, Badia et al., 2020, Vasco et al., 2024] and robotics [Lee et al., 2020],
standard RL algorithms frequently overfit to their training conditions and struggle to generalize to
new tasks or variations in the environment [Benjamins et al., 2023, Kirk et al., 2023, Mohan et al.,
2024]. Addressing this challenge requires methods that not only learn efficiently on a single task but
also adapt rapidly to novel settings and automatically tune their own learning process.

Recent research has advanced in three complementary directions. (i) Generalization in RL, which
trains agents over a distribution of environment variants - often modeled as contextual MDPs - to

*Equal contribution.

18th European Workshop on Reinforcement Learning (EWRL 2025).

https://github.com/automl/Mighty

TASK TASK
adapt
I:l policy buffer <—a§§g‘— RUNNER
observation update model env -
online
inner-loop reward -
updates: ‘ action Task/RL
standard RL stats:
outer loop algorithm = : . ll'etu;'n, N MAML
adaptation: transition dynamics | reward function V? ue IUnC-
ion, loss
Meta RL initial state distribution metrics
algorithm s

MIGHTY's CONCEPT MIGHTY's MODULES

Figure 1: Overview of Mighty’s concept and modules.

ensure robust transfer to unseen configurations [Benjamins et al., 2023, Cho et al., 2024]; (ii) Meta-
Reinforcement Learning (Meta-RL), which learns across a family of related tasks so that agents can
rapidly adapt to new tasks via bi-level optimization methods [Kaushik et al., 2020, Beck et al., 2023];
and (iii) Automated Reinforcement Learning (AutoRL), which integrates outer-loop optimization-
e.g. Bayesian optimization, evolutionary strategies, or population-based training - directly into the RL
pipeline to automate hyperparameter and architecture selection [Parker-Holder et al., 2022, Mohan
etal., 2023, Eimer et al., 2023]. Although each paradigm has yielded powerful algorithms, researchers
often find themselves integrating disparate libraries and custom scripts for environment generation,
base RL training, and outer-loop optimization. This fragmentation imposes significant engineering
overhead, slows iteration of new ideas, and hinders reproducible comparisons [Dizon-Paradis et al.,
2024].

To address these challenges, we introduce Mighty: a unified modular library that streamlines the
implementation, evaluation, and comparison of algorithms at the intersection of generalization, Meta-
RL, and AutoRL. Mighty conceptualizes each task as the interaction of two core elements: the agent
- specified by its policy and/or model parameterizations, exploration strategy, replay buffer, learning
algorithm, and hyperparameters - and the environment -modeled as a contextual MDP [Hallak et al.,
2015], where context parameters govern transitions, rewards, and initial states. Rather than scattering
isolated scripts for curricula, adaptation, and tuning, Mighty enforces a clean separation along two
axes of variation: (i) Inner-loop updates, which refine the agent’s weights via typical RL training
steps; and (ii) Outer-loop adaptations, which systematically adjust the agent’s configuration, modify
environmental contexts, or both. Through this separation, Mighty enables composing curriculum and
context scheduling for robust generalization, bi-level or evolutionary Meta-RL for rapid adaptation,
and automated hyperparameter optimization - all without ad-hoc orchestration code. An overview of
our framework is shown in Figure 1.

In the following sections, we detail the core components and functionalities of Mighty, describe our
experimental setup and results, and discuss potential future directions for research and development.
Through this work, our goal is to provide the RL community with a powerful tool to enhance the
generalizability of RL agents and inspire innovative approaches in Meta-RL.

2 Design Philosophy

Mighty aims to make generalization research, MetaRL, and AutoRL easier to implement and run. To
achieve this goal, we focus on three core principles in designing Mighty: flexibility, integration with
existing libraries, and CPU execution.

Flexibility. Research on generalization, MetaRL, and AutoRL currently takes many different forms:
methods use black-box outer loops, add an additional inner loop relying on algorithm statistics, or
directly work upon the environment. Consequently, we support the development of diverse methods
instead of constraining them through library design. Therefore, we enable as many different ways of
interacting with the core RL loop as possible. In particular, this also includes access to information
on training stages such as transitions, predictions, networks, and environments to meta-methods. We
prioritize such flexibility to enable all sorts of interaction patterns above, e.g., runtime efficiency,

because we believe that a sufficient number of libraries focuses on runtime optimization. Instead, we
aim to inspire the development of novel methods by providing an open and flexible platform on top
of base RL algorithms.

Integrations. In order to achieve the desired level of flexibility inherent in Mighty, it is necessary to
reimplement the foundational algorithms. However, to minimize unnecessary maintenance burdens,
we aim to leverage existing libraries wherever possible to extend functionality. This involves the uti-
lization of diverse environment libraries such as Gymnasium [Towers et al., 2024], Pufferlib [Suarez,
2025], and CARL [Benjamins et al., 2023] to facilitate capabilities such as parallel evaluation,
run-time optimization, and modeling of intra-environment variations for enhanced generalization.
We also rely on Hydra [Yadan, 2019] as a command-line interface which enables out-of-the-box
parallelization in clusters and hyperparameter optimization. Lastly, our flexible interface allows
for easy connection points with other libraries. We provide an example of such an integration in
Mighty’s evosax [Lange, 2022] runner: in less than 100 lines of code, we implement a runner class
that can use any evosax algorithm for either hyperparameter optimization or policy optimization.
These integrations let us focus on our core mission while still providing important quality of life
features in Mighty.

Environment Optimization First. Much of machine learning relies on improving prediction
efficiency, e.g. through optimal GPU usage, for improved runtimes. In part due to the introduction of
JAX to the community [Lu et al., 2022, Park et al., 2025], RL is adopting a similar trend. While this
is certainly important in many use cases with high compute cost, it also comes with implementation
complexity, and many environments are still bound to the CPU only. Thus, we choose a different
approach and focus on usability instead of speed for agent implementations and instead rely on
vectorized CPU environments for speedups. Pufferlib [Suarez, 2025] specifically optimizes for
most environment steps per second, allowing us to focus on flexibility instead of speed in Mighty
itself. This allows Mighty consistently high training speeds even on CPUs for all but edge cases (e.g.
extremely costly applications or fully sequential environment interactions). Therefore, we believe that
this choice strikes a balance between efficient runtimes and flexibility in implementation in Mighty’s
target use cases.

3 Existing Tools for RL and Meta RL

The rapidly growing ecosystem of RL libraries spans diverse design philosophies - from low-level
composability to turnkey baselines and massive-scale engines - making direct comparison and tool
selection challenging. To clarify these trade-offs, we categorize existing frameworks into three
archetypes: Modular Research Frameworks, Monolithic Baselines, and Scalable Platforms. This
categorization highlights the trade-offs between composability, ease of use, scalability, and motivates
the need for a unified interface that spans all three dimensions.

3.1 Modular Research Frameworks

Modular research frameworks expose the internal building blocks of an RL pipeline - networks,
replay buffers, data collectors, and transforms - as standalone components that can be recombined
to quickly prototype new algorithms. TorchRL [Bou et al., 2023] pioneered this approach in the
PyTorch ecosystem, introducing the TensorDict abstraction to seamlessly pass the observed actions
and rewards between modules. Tianshou [Weng et al., 2022] offers a similarly flexible design
with separate Policy, Collector, and Buffer classes, enabling researchers to switch custom
exploration strategies or data collection schemes with minimal boilerplate. While these libraries
excel at inner loop algorithm development and fine-grained experimentation, they leave higher-order
workflows - such as curriculum learning, meta-adaptation across tasks, and automated hyperparameter
optimization - to external scripts or user-written loops. Mighty uses a similar modular architecture
for inner-loop methods (Policy, Model, Agent, Update, Exploration), but in contrast, it builds
on this composable foundation and adds outer loop constructs in the form of different Runners that
orchestrate variation of the environment, metalearning updates and hyperparameter optimization
within the same framework.

3.2 Monolithic Baselines

Monolithic baselines such as stable baselines3 (SB3) [Raffin et al., 2021] and CleanRL/PureJaxRL
[Huang et al., 2022, Lu et al., 2022] prioritize ease of use and reproducibility. With just a few lines
of code, users can train state-of-the-art algorithms (e.g., PPO [Schulman et al., 2017], DQN [Silver
et al., 2016], SAC [Haarnoja et al., 2018]) on standard benchmarks, benefiting from sensible defaults
and integrated logging. However, this simplicity comes at the cost of extensibility: SB3’s algorithms
hide most of the training loop behind a single 1earn () call, and CleanRL’s single file scripts are not
designed for import or extension. Neither framework provides built-in hooks for systematic curricu-
lum scheduling, meta-level adaptation, or inner-loop hyperparameter tuning. Mighty complements
these baselines by preserving their turnkey usability for standard experiments while exposing the
same high-level API to more advanced outer loop workflows, so that curriculum, meta-learning, and
AutoRL can be applied with equal ease.

3.3 Scalable Platforms

Scalable platforms such as RLIib [Liang et al., 2018, Wu et al., 2021] and STOIX [Toledo, 2024]
focus on maximizing throughput and supporting distributed execution. RLIib integrates tightly with
the Ray ecosystem to run thousands of environment replicas across CPU clusters or multi-GPU
setups, and offers seamless Ray Tune integration for large-scale hyperparameter sweeps. STOIX uses
JAX’s jit and pmap primitives to compile both agent and environment code for extreme speed, even
in single-file examples. Although these systems shine when running large experiments, their APIs do
not natively unify component modularity with built-in meta-learning or curriculum design. RLIib’s
meta-learning methods must be configured through complex JSON schemas, and STOIX’s examples
are not structured as importable libraries. Mighty occupies the middle ground, offering efficient
single-node performance via PyTorch, straightforward multicore environment parallelism, and a
modular interface, while also providing first-class support for metaadaptation, curriculum scheduling,
and automated optimization, all within the same cohesive framework.

4 Features and Usage

Mighty’s main goal is to accelerate experimentation by combining an intuitive interface with robust,
modular components. This design enables researchers to focus on advancing learning strategies and
improving generalization capabilities instead of on low-level algorithm code. Here we highlight some
of Mighty’s features that help achieve this goal: (i) our user interface, (ii) the modular algorithms,
and (iii) the flexible integration of meta-methods.

4.1 User Interface

Mighty is designed with user-friendliness and flexibility as top priorities. Thus, the interface to the
user and interface opportunities for other libraries are essential for Mighty. Choosing Hydra [Yadan,
2019] for the command line accomplishes both: structured configuration files make it possible to
expose all relevant training details in Mighty without overwhelming new users (see Figure 2). On
the other hand, it integrates Mighty into Hydra’s plugin offerings. This is particularly important for
experimentation on clusters and hyperparameter optimization, both of which are plug-and-play for
Mighty and avoid brittle dependency chains. Our examples show that with only a few lines added
to the configuration file, users can run parallel hyperparameter optimization runs or distribute runs
across seeds and environments on a HPC cluster. Additional helpers, such as live plotting of current
results and an integration with Weights & Biases [Biewald, 2020], help users keep track of these data
and make debugging and analysis simple.

Furthermore, Mighty is extensible, meaning that each component in Mighty’s algorithms can be
subclassed, and thus replaced in the configuration by a local component. Therefore, it is not necessary
to clone the entire Mighty code to add a new functionality by hacking the scripts: users can choose
what they want to add, e.g., a replay buffer, and implement a new subclass of MightyReplay. The
target algorithm can then be configured to use this new replay buffer by specifying the corresponding
import path. In this case, the user can run the new replay buffer class without touching the algorithm
loop itself. This keeps the codebases small, easy to maintain, and focused on the research goal.

Base Configuration With Defaults Example Algorithm Configuration

defaults: 1 # @package _global_
- _self_ 2 algorithm: PPO
- algorithm: ppo 3
- environment: pufferlib_ocean/bandit 4 algorithm_kwargs:
- search_space: dqn_gym_classic 5 rollout_buffer_class:
- override hydra/job_logging: colorlog 6 _target_: mighty.mighty_replay.
- override hydra/hydra_logging: colorlog MightyRolloutBuffer
- override hydra/help: mighty_help 7 rollout_buffer_kwargs:
8 buffer_size: 256
runner: standard 9 gamma: 0.98
debug: false 10 gae_lambda: 0.8
seed: 0 11
output_dir: runs 12 learning_rate: 3e-4
wandb_project: null 13 batch_size: 32
tensorboard_file: null 14 gamma: 0.99
experiment_name: mighty_experiment 15 ppo_clip: 0.2
16 value_loss_coef: 0.5
algorithm_kwargs: {} 17 entropy_coef: 0.0
18 max_grad_norm: 0.5
eval_every_n_steps: 5e3 19
n_episodes_eval: 10 20 n_epochs: 20
checkpoint: null 21 minibatch_size: 256
save_model_every_n_steps: 5eb 22 kl_target: 0.01
23 use_value_clip: True
hydra: 24 value_clip_eps: 0.2
run: 25
dir: ${output_dir}/${experiment_namel}_$ 26 policy_class: mighty.mighty_exploration
{seed} .StochasticPolicy
sweep: 27 policy_kwargs:
dir: ${output_dir}/${experiment_name}_$ 28 entropy_coefficient: 0.0
{seed}

Figure 2: Configuration examples: Left a base config file with defaults to configure only necessary
information; Right configuration for PPO with important training details available at a glance.

class DoubleQLearning (QLearning) :
"""Double Q-learning update."""

def get_targets(self, batch, g_net, target_net):
"""Compute targets with target network"""
next_actions = q_net(batch.next_obs)
.argmax (dim=1)

target_qs = target_net (batch.next_obs)
.gather (1, next_actions)

targets = batch.rewards + (1-batch.dones) * self.gamma * target_gs
q_vals = q_net(batch.observations)

.gather (1, batch.actions)
return q_vals, targets

Figure 3: Extending an update class in Mighty: double Q-learning inherits the original Q-learning
update and only overwrites the target generation. No other elements of DQN need to be altered in
any way as long as this class is selected via the command line.

Let us look at an example. To integrate domain randomization [Tobin et al., 2017] through Syl-
labus [Sullivan et al., 2025], we need around 100 lines of code each to interface Syllabus and build a
custom task wrapper. With our Mighty project template (containing basic code structure, runscripts
and configuration files) as a base, less than 200 lines of Python code and three configuration files are
enough for a full evaluation, including hyperparameter optimization and cluster deployment (see the
example project repository including results).

4.2 Agent Framework

Mighty implements three base RL algorithms: DQN [Mnih et al., 2015], SAC [Haarnoja et al., 2018],
and PPO [Schulman et al., 2017]. Each of these agents is composed of four core components which
can easily be extended:

https://github.com/automl/mighty_project_template
https://github.com/automl/mighty_dr_example/tree/main

16

def run(self) -> Tuple[Dict, Dict]:

es_state = self.es.initialize(self.rng)
for _ in range(self.iterations):
Get population
X, es_state = self.es.ask(es_state)
eval_rewards = []

Evaluate individuals
for individual in x:
self.apply_parameters (individual)
eval_results = self.evaluate ()
eval_rewards.append(eval_results["mean_eval_reward"])
Feedback to ES
fitness = self.fit_shaper.apply(x, eval_rewards)
es_state self.es.tell(x, fitness, es_state)
eval_results self .evaluate ()
return {"step": self.iterations}, eval_results

Figure 4: Evosax run function for policy search. Agent-related functionality has a unified interface,
so the runner can be focused on the evosax functionality.

1. Exploration Strategy: Defines how the agent’s action predictions are transmitted to the
environment, e.g., by adding random sampling on top of the predictions.

2. Replay Buffer: A storage mechanism that records past interactions. Takes the form of a
replay buffer that stores single transitions or a rollout buffer that stores full trajectories.

3. Update Function: The algorithmic core responsible for updating the agent policy.

4. Model parametrization: The underlying neural network that approximates the policy or
value function(s).

This modular approach enables users to seamlessly substitute or extend individual components
according to their research needs. Figure 3, for example, shows the double Q-learning update, which
is built as an extension of the Q-learning update class. As these four components contain much of
the algorithm functionality, we expect most user needs in the realm of generalization, MetaRL, and
AutoRL research to be met without the need to implement a fully new algorithm class or review the
interaction loop.

4.3 Meta-Learning Framework

The core strength of Mighty lies in its capability to incorporate meta-methods. There are two types of
interaction that can be combined: outer-loop runners and inner-loop meta-components.

Runners interact with RL tasks directly. They can alter the agent or environment and execute (partial)
runs. They also have access to training results and artifacts such as evaluation rewards, training
environments, or policy parameters. This enables hyperparameter optimization, policy search using
evolutionary algorithms (as seen in our evosax [Lange, 2022] runner), and even complex MetaRL
methods like e.g. MAML [Finn et al., 2017] that adapt both environment and policy jointly. Moreover,
the structure of these runners is very simple, one only needs to implement a run method (see Figure 4
for a simple online runner and the evosax runner). This simplicity makes runners a great way to
integrate other learning paradigms or packages.

Meta-Components interact with the algorithm in the inner loop in a single lifetime. They have
access to six interaction hooks (pre- and post-steps, episodes, and updates) and access to all available
training information. This includes transitions, losses, predictions, update batches, and more. It
enables meta-components to serve as base classes for different meta-methods such as curriculum
generators [Mehta et al., 2020], intrinsic rewards [Yuan, 2022], sparsity and activations [Ma et al.,
2025, Delfosse et al., 2024, Loni et al., 2023], and hyperparameter schedules [Eimer et al., 2023,
Mohan et al., 2023]. Like runners, they only need to implement their needed hooks and are thus
extremely flexible. They can also be stacked to enable research on combinations of different learning
paradigms.

While meta-components are in principle single-lifetime approaches, they can be extended to multiple
runtimes via runners. Therefore, runners can evolve meta-components across multiple trials, thus
enabling a plethora of interactions with the core RL loop. Due to their modularity and flexibility, such
meta-methods can be implemented for and applied to all compatible base algorithms. Runners and

meta-components can be freely combined and stacked, and we can do so with little code overhead.
This approach is unique to Mighty and will enable new directions in RL by letting researchers work
in the intersections of different meta-research directions.

4.4 Currently Implemented Methods

Mighty is primarily a platform for implementing new research, but it comes with several built-
in options as seen in Table 1 and our documentation. We ensured that the added functionality
demonstrates extensions for each of Mighty’s components. The ez-greedy [Dabney et al., 2021]
exploration, prioritized replay buffer [Schaul. et al., 2016], and DDQN [van Hasselt et al., 2016]
update combined with network variations each expand upon the core agent components. The
evosax runner shows how to access different elements of the training pipeline and execute runs,
while the different meta-components give examples of online interactions with hyperparameters
(cosine annealing; Loshchilov and Hutter [2017]), transitions & training batches (RND and NovelD;
Burda et al. [2019], Zhang et al. [2021]) and contextual environments (PLR and SPaCE; Jiang et al.
[2021], Eimer et al. [2021a]). Thus, most users will have a template for the interaction they are
implementing while having access to a robust set of core algorithms. Mighty also contains examples
for environments from Gymnasium [Towers et al., 2024], Pufferlib [Suarez, 2025], CARL [Benjamins
et al., 2023] and DACBench [Eimer et al., 2021b], including the use of context distributions.

Table 1: Current scope of Mighty.

Networks Algorithms Policies = Environments Meta Runners
MLP (flexible) DQN e-greedy Gymnasium PLR Online RL
CNN (flexible) DDQN ez-greedy Pufferlib SPaCE Evosax

ResNet PPO stochastic CARL RND/NovelD
Combinations SAC DACBench Cosine Annealing LR

5 Empirical Validation

We validate our implementations by comparing them with OpenRL benchmark results (where
available) [Huang et al., 2024]. Our aim is not to outperform existing baselines, but to demonstrate
that Mighty achieves comparable performance at similar training budgets. Table 2 reports the
number of training steps, average wall clock time, and comparison of the final results between our
implementations and the OpenRL reference values. The trends broadly align: PPO and DQN on
CartPole closely track OpenRL, and PPO on MountainCar reproduces the expected -200 plateau.
Deviations appear where exploration and continuous-control dynamics matter more: DQN on
MountainCar remains at -200 on our runs while OpenRL occasionally escapes. SAC in Walker2D and
HalfCheetah remains close to the mean performance reported by OpenRL, and within the variance of
their performance across seeds. In general, the results demonstrate that Mighty’s implementations
reproduce the results of established baselines, both in sample efficiency and runtime.

Table 2: Return across 5 seeds, runtime on a MacBook Pro with an Apple M2 Max chip.

Algo. Environment Steps Time (min) Final Return OpenRL Return
DQN MountainCar 5 x 10° 51,1 —200.00 =£0.00 —189.92 +£11.00
DQN CartPole 5 x 10° 60.41 486.40 +£30.77 499.92 +£0.00
PPO MountainCar 5 x 10° 3.03 —200.00 =+£0.00 —200.00 +0.00
PPO CartPole 5% 10° 3.67 479.80 +£17.21 487.48 £6.79
PPO Pendulum 5 x 10° 405 —255.00 =+£11.14 - -

SAC Walker2D 10° 353.13 4478.67 +689.22 4471.15 +£1896.34
SAC HalfCheetah 10° 302.53 10588.34 +874.19 10958.60 +£1335.62

6 Conclusion

In this work, we have introduced Mighty, a unified modular library designed to streamline and
accelerate research at the intersection of contextual generalization, Meta-RL, and AutoRL. By

https://automl.github.io/Mighty/

treating inner-loop learning (i.e., standard policy updates and environment interactions) and outer-
loop adaptation (i.e., curriculum or context scheduling, meta-parameter updates, and hyperparameter
search) as distinct, first-class abstractions, Mighty eliminates the need for ad-hoc orchestration
scripts. This clean separation not only reduces engineering overhead—allowing researchers to
focus on algorithmic innovation rather than low-level integration—but also fosters reproducibility,
since all components (agents, environments, meta-components, and runners) can be combined in
a standardized way without custom glue code. Thus, we believe that Mighty will empower the
community to iterate more rapidly on new algorithms and advance the state of robust, adaptable RL.

Acknowledgements

Aditya Mohan acknowledges funding by the German Research Foundation (DFG) under LI 2801/10-1.
Theresa Eimer acknowledges funding by the German Research Foundation (DFG) under LI 2801/7-1.
André Biedenkapp acknowledges funding through the research network “Responsive and Scalable
Learning for Robots Assisting Humans” (ReScale) of the University of Freiburg. The ReScal.e
project is funded by the Carl Zeiss Foundation.

References

A. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, Z. Guo, and C. Blundell. Agent57:
Outperforming the atari human benchmark. In H. Daume III and A. Singh, editors, Proceedings of
the 37th International Conference on Machine Learning (ICML’20), volume 98. Proceedings of
Machine Learning Research, 2020.

J. Beck, R. Vuorio, E. Liu, Z. Xiong, L. Zintgraf, C. Finn, and S. Whiteson. A survey of meta-
reinforcement learning. CoRR, abs/2301.08028, 2023.

C. Benjamins, T. Eimer, F. Schubert, A. Mohan, S. Dohler, A. Biedenkapp, B. Rosenhan, F. Hutter,
and M. Lindauer. Contextualize me — the case for context in reinforcement learning. Transactions
on Machine Learning Research, 2023.

L. Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb. com/.
Software available from wandb.com.

A. Bou, M. Bettini, S. Dittert, V. Kumar, S. Sodhani, X. Yang, G. D. Fabritiis, and V. Moens. Torchrl:
A data-driven decision-making library for pytorch, 2023.

Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. Efros. Large-scale study of curiosity-
driven learning. In The Seventh International Conference on Learning Representations (ICLR’19).
ICLR, 2019. Published online: iclr.cc.

J. Cho, V. Jayawardana, S. Li, and C. Wu. Model-based transfer learning for contextual reinforcement
learning. In Proceedings of the 38th International Conference on Advances in Neural Information
Processing Systems (NeurIPS’24). Curran Associates, 2024.

W. Dabney, G. Ostrovski, and A. Barreto. Temporally-extended e-greedy exploration. In The Ninth
International Conference on Learning Representations (ICLR’21). ICLR, 2021. Published online:
iclr.cc.

Q. Delfosse, P. Schramowski, M. Mundt, A. Molina, and K. Kersting. Adaptive rational activations
to boost deep reinforcement learning. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=g90ysX1sVs.

O. Dizon-Paradis, S. Wormald, D. Capecci, A. Bhandarkar, and D. Woodard. Resource usage
evaluation of discrete model-free deep reinforcement learning algorithms. Reinforcement Learning
Journal, 2024.

T. Eimer, A. Biedenkapp, F. Hutter, and M. Lindauer. Self-paced context evaluation for contextual
reinforcement learning. In M. Meila and T. Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning (ICML’21), volume 139 of Proceedings of Machine Learning
Research, pages 2948-2958. PMLR, 2021a.

https://www.wandb.com/
iclr.cc
iclr.cc
https://openreview.net/forum?id=g90ysX1sVs

T. Eimer, A. Biedenkapp, M. Reimer, S. Adriaensen, F. Hutter, and M. Lindauer. DACBench: A
benchmark library for dynamic algorithm configuration. In Z. Zhou, editor, Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI’21), pages 1668—1674. ijcai.org,
2021b.

T. Eimer, M. Lindauer, and R. Raileanu. Hyperparameters in reinforcement learning and how to
tune them. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors,
Proceedings of the 40th International Conference on Machine Learning (ICML’23), volume 202
of Proceedings of Machine Learning Research. PMLR, 2023.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks.
In D. Precup and Y. Teh, editors, Proceedings of the 34th International Conference on Machine
Learning (ICML’17), volume 70, pages 1126—1135. Proceedings of Machine Learning Research,
2017.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In J. Dy and A. Krause, editors, Proceedings of
the 35th International Conference on Machine Learning (ICML’18), volume 80. Proceedings of
Machine Learning Research, 2018.

A. Hallak, D. D. Castro, and S. Mannor. Contextual markov decision processes. arXiv:1502.02259
[stat. ML], 2015.

S. Huang, R. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta, and J. Aradjo. Cleanrl: High-quality
single-file implementations of deep reinforcement learning algorithms. Journal of Machine Learn-
ing Research, 23(274):1-18, 2022. URL http://jmlr.org/papers/v23/21-1342.html.

S. Huang, Q. Gallouédec, F. Felten, A. Raffin, R. F. J. Dossa, Y. Zhao, R. Sullivan, V. Makoviychuk,
D. Makoviichuk, M. H. Danesh, et al. Open rl benchmark: Comprehensive tracked experiments
for reinforcement learning. arXiv preprint arXiv:2402.03046, 2024.

M. Jiang, E. Grefenstette, and T. Rocktédschel. Prioritized level replay. In M. Meila and T. Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning (ICML’21),
volume 139 of Proceedings of Machine Learning Research. PMLR, 2021.

R. Kaushik, T. Anne, and J. Mouret. Fast online adaptation in robotics through meta-learning
embeddings of simulated priors. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, (IROS’20), 2020.

R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktidschel. A survey of zero-shot generalisation in deep
reinforcement learning. Journal of Artificial Intelligence Research (JAIR), 76:201-264, 2023.

R. T. Lange. evosax: Jax-based evolution strategies. arXiv preprint arXiv:2212.04180, 2022.

J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomotion over
challenging terrain. Science in Robotics, 5, 2020.

E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jordan, and I. Stoica.
RLIib: Abstractions for distributed reinforcement learning. In J. Dy and A. Krause, editors,
Proceedings of the 35th International Conference on Machine Learning (ICML’18), volume 80.
Proceedings of Machine Learning Research, 2018.

M. Loni, A. Mohan, M. Asadi, and M. Lindauer. Learning activation functions for sparse neural
networks. In A. Faust, C. White, F. Hutter, R. Garnett, and J. Gardner, editors, Proceedings of
the Second International Conference on Automated Machine Learning. Proceedings of Machine
Learning Research, 2023.

I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts. In The Fifth
International Conference on Learning Representations (ICLR’17). ICLR, 2017. Published online:
iclr.cc.

C. Lu, J. Kuba, A. Letcher, L. Metz, C. de Witt, and J. Foerster. Discovered policy optimisation.
Advances in Neural Information Processing Systems, 2022.

http://jmlr.org/papers/v23/21-1342.html
iclr.cc

G. Ma, L. Li, Z. Wang, L. Shen, P. Bacon, and D. Tao. Network sparsity unlocks the scaling potential
of deep reinforcement learning. In Forty-second International Conference on Machine Learning,
2025. URL https://openreview.net/forum?id=mIomgOskaa.

B. Mehta, T. Deleu, S. Raparthy, C. Pal, and L. Paull. Curriculum in gradient-based meta-
reinforcement learning. arXiv preprint arXiv:2002.07956, 2020.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Riedmiller,
A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529-533, 02 2015.

A. Mohan, C. Benjamins, K. Wienecke, A. Dockhorn, and M. Lindauer. Autorl hyperparameter
landscapes. In A. Faust, C. White, F. Hutter, R. Garnett, and J. Gardner, editors, Proceedings of
the Second International Conference on Automated Machine Learning. Proceedings of Machine
Learning Research, 2023.

A. Mohan, A. Zhang, and M. Lindauer. Structure in deep reinforcement learning: A survey and open
problems. Journal of Artificial Intelligence Research, 79, 2024.

S. Park, K. Frans, B. Eysenbach, and S. Levine. Ogbench: Benchmarking offline goal-conditioned rl.
In The Thirteenth International Conference on Learning Representations (ICLR’25). ICLR, 2025.
Published online: iclr.cc.

J. Parker-Holder, R. Rajan, X. Song, A. Biedenkapp, Y. Miao, T. Eimer, B. Zhang, V. Nguyen,
R. Calandra, A. Faust, F. Hutter, and M. Lindauer. Automated reinforcement learning (AutoRL): A
survey and open problems. Journal of Artificial Intelligence Research (JAIR), 74:517-568, 2022.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1-8, 2021.

T. Schaul., J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In The Fourth
International Conference on Learning Representations (ICLR’16). ICLR, 2016. Published online:
iclr.cc.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347 [cs.LG], 2017.

D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484—489, 2016.

J. Suarez. Pufferlib 2.0: Reinforcement learning at 1m steps/s. Reinforcement Learning Journal,
2025.

R. Sullivan, R. Pégoud, A. Rahmen, X. Yang, J. Huang, A. Verma, N. Mitra, and J. Dickerson.
Syllabus: Portable curricula for reinforcement learning agents. RLJ, 2025.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS, pages 23-30. IEEE, 2017.

E. Toledo. Stoix: Distributed single-agent reinforcement learning end-to-end in jax, Apr. 2024. URL
https://github.com/EdanToledo/Stoix.

M. Towers, A. Kwiatkowski, J. Terry, J. Balis, G. D. Cola, T. Deleu, M. Gouldo, A. Kallinteris,
M. Krimmel, A. KG, et al. Gymnasium: A standard interface for reinforcement learning environ-
ments. arXiv preprint arXiv:2407.17032, 2024.

H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double g-learning. In
D. Schuurmans and M. Wellman, editors, Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence (AAAI’16), page 2094-2100. AAAI Press, 2016.

10

https://openreview.net/forum?id=mIomqOskaa
iclr.cc
iclr.cc
https://github.com/EdanToledo/Stoix

M. Vasco, T. Seno, K.Kawamoto, K. Subramanian, P. Wurman, and P. Stone. A super-human vision-
based reinforcement learning agent for autonomous racing in gran turismo. RLJ, 4:1674-1710,
2024.

J. Weng, H. Chen, D. Yan, K. You, A. Duburcq, M. Zhang, Y. Su, H. Su, and J. Zhu. Tianshou: A
highly modularized deep reinforcement learning library. Journal of Machine Learning Research,
23(267):1-6,2022. URL http://jmlr.org/papers/v23/21-1127 .html.

Z. Wu, E. Liang, M. Luo, S. Mika, J. Gonzalez, and I. Stoica. RLIlib flow: Distributed reinforcement
learning is a dataflow problem. In M. Ranzato, A. Beygelzimer, K. Nguyen, P. Liang, J. Vaughan,
and Y. Dauphin, editors, Proceedings of the 35th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’21). Curran Associates, 2021.

0. Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019. URL
https://github.com/facebookresearch/hydra.

M. Yuan. Intrinsically-motivated reinforcement learning: A brief introduction. arXiv preprint
arXiv:2203.02298, 2022.

T. Zhang, H. Xu, X. Wang, Y. Wu, K. Keutzer, J. Gonzalez, and Y. Tian. Noveld: A simple yet
effective exploration criterion. In M. Ranzato, A. Beygelzimer, K. Nguyen, P. Liang, J. Vaughan,
and Y. Dauphin, editors, Proceedings of the 35th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’21). Curran Associates, 2021.

11

http://jmlr.org/papers/v23/21-1127.html
https://github.com/facebookresearch/hydra

	Introduction
	Design Philosophy
	Existing Tools for RL and Meta RL
	Modular Research Frameworks
	Monolithic Baselines
	Scalable Platforms

	Features and Usage
	User Interface
	Agent Framework
	Meta-Learning Framework
	Currently Implemented Methods

	Empirical Validation
	Conclusion

