
Due: 29.01.2024 23:59:59 CET Deep Learning
Competition

F. Hutter & A. Valada
WS 2023/2024

The Flower Classification Challenge

This course focuses on the principles underlying deep learning. Therefore, the exercises typically ask you
to re-implement known algorithms and consider somewhat simplified settings. Beyond knowledge of these
foundations, a deep learning practitioner must also build up experience using the many powerful tools
available in the real world. We organize this competition to give you the opportunity to start doing so.

Participation is optional and your submissions will not be graded.

To avoid extra organisational overhead, you will compete in the same teams as for the exercises. The winners
will be announced during the last flipped classroom session (05.02.2024) and will receive nothing but eternal
glory, AutoML.org T-shirts and a spot on the course webpage. To mimick a real-world setting, we give you
a lot of freedom in how you tackle this challenge. However, with this freedom comes responsibility. So please
play fair and make it easy for us to evaluate your submission. In doubt, please contact us or create a thread
on the ILIAS forum.

To get access to the code, use the following link: https://classroom.github.com/a/IGEsVjCS.

The Challenge:

In this challenge, you are to train a model to perform class prediction on a flower dataset. Specifically, given
an image of a flower as input, your model must predict to which of 10 possible classes it belongs.

An example of the flower dataset

To encourage everybody to participate, we have two tracks in this competition:

� Fast networks, < 100k learnable parameters.
� Large networks, < 25M learnable parameters.

These two tracks shall be considered as separate competitions with separate winners. You may compete in
either (or both) tracks.

You are allowed to implement any architecture, and manually or automatically tune the hyperparameters of
the model. The following are just a few of the things you can experiment with:

� Learning rate and its optional scheduler
� Different optimizers and their hyperparameters
� Specialized model architectures
� Activation functions
� Regularization
� Data preprocessing
� Cross-validation to ensure you do not overfit to the validation set

Also, you do not have to shy away from more advanced techniques like warm-starting your model with
weights from other pre-trained models, or self-supervised learning. You are allowed to use all the scripts and

1

https://www.automl.org/
https://ml.informatik.uni-freiburg.de/teaching/winter-semester-2023/foundations-of-deep-learning/
mailto:dl-orga-ws23@cs.uni-freiburg.de
https://ilias.uni-freiburg.de/ilias.php?ref_id=3224870&cmd=showThreads&cmdClass=ilrepositorygui&cmdNode=zl&baseClass=ilrepositorygui
https://classroom.github.com/a/IGEsVjCS


Due: 29.01.2024 23:59:59 CET Competition WS 2023/2024

tools you already know from the exercises. However, you are not limited to them.

Here are a few important topics concerning the competition:

� Evaluation:
– The final performance will be measured in terms of classification accuracy of your model on an

unseen test set. Assume we will head out and photograph some flowers.
– To get a taste of how we shall evaluate your model, try running evaluate model.py. The script

loads your saved model from models folder and evaluates its accuracy on validation data loaded
from the dataset/test folder.

– To evaluate your model, we will populate this folder dataset/test with the unseen test data.
� Hardware:

– The fast networks can be trained on a CPU in a few minutes. The larger networks might require
GPUs.

– You may use any kind of hardware that is available to you. For example, Google Colab repeatedly
offers a VM with a GPU for at most 12 hours at a time for free.

– You are also free to use the pool computers.1 You can use ssh to log in remotely to these computers
as follows: ssh yourpoolaccount@login.informatik.uni-freiburg.de

Also, see Pool-FAQ for further information.
� Implementation Constraints:

– Your model should be written using PyTorch.
– Do not modify the code inside src/eval. Your model will be evaluated using this code.
– Other than that, you are free to extend/modify the baseline code given to you or write your own

code from scratch.
� Github Repository Constraints:

– Keep your repository under 150 MB.
– Github does not allow files larger than 100MB to be tracked in repositories. So if you are

competing in the Large Networks track, make sure your trained model is under this
limit.

– You are allowed to push only one trained model per track.
– Your code has to be in the master branch before the deadline.
– There is no limit on the number of pushes to the master branch.

As a starting point, we provide you with the following:

� dataset folder containing the original flower classification dataset and train/validation/test split.2 We
use only 10 out of the 17 classes provided by the dataset, so that is what you are given.

� data augmentations.py containing two sample data augmentation pipelines.
� training.py containing code to train your model.
� eval/evaluate.py containing the code we shall use to evaluate your model. Do not edit this file.
� main.py containing the code to load the data, train, evaluate, and, optionally, save the model.
You can run it from the root directory using python -m src.main.

� cnn.py containing SampleModel, as an example of what a (very basic) convolutional model looks like.
� A sample saved model in src/models. This file contains the weights of the SampleModel given above
trained for 50 epochs using the default pipeline that is provided to you.

� evaluate model.py which the organizers will use to evaluate your model.
You can run it from the root directory using python -m src.evaluate model.

� requirements.txt which contains the list of libraries required to run the given pipeline.

1Important: Your TF pool home directory disk quota is insufficient to install PyTorch. Please contact us as soon as possible
to request additional storage space.

2You are free to consider different splits, use cross-validation, or even use all the data to train your final model(s).

2

https://colab.research.google.com
http://poolmgr.informatik.uni-freiburg.de/?id=103


Due: 29.01.2024 23:59:59 CET Competition WS 2023/2024

Your submission must include:

– A fully functional training pipeline. This must include the code for your model, data aug-
mentations you use and the code for training the model.3

– requirements.txt updated with any additional libraries you use.
– The file(s) with the saved weights of your trained model(s),

Similar to models/sample model, in the models folder. The files must be saved as fast model

or large model4, depending on the track it belongs to.
– submission.md must be populated with the answers to the following questions:

* The track(s) you are competing in.
* The number of learnable parameters in your model(s).
You can find this out using torchsummary.summary.

* A brief description of your approach to the problem.
* Command to run to train your model(s) from scratch with your hyperparameter settings and
data augmentations. For example:
python -m src.main --model FastModel1 --epochs 60 --data-augmentation

resize to 64x64 --use-all-data-to-train

You’re free to edit main.py however you please to make this work (E.g., to accept hyper-
parameters as options, or hard-code them). You can also add new files, if you wish. We
must be able to train your model by running a single command.

* Command to run to evaluate your saved model(s) with your data augmentation pipeline.
For example:
python -m src.eval model --model FastModel1 --saved-model-file fast model

Again, you’re free to edit evaluate model.py however you want, but ultimately, evalu-
ation MUST be done by invoking eval model(...) function in eval/evaluate.py.
We must also be able to evaluate your model by running a single command.

– sample submission.zip contains a sample of what a submission must look like.

This competition is due on 29.01.2024 23:59:59 CET.

3If you use model warm-starting or other such methods, that should also be included in this pipeline. We must be able to
run your code and train your model from scratch, as you did.

4Github has a limit of 100MB for tracked files. Your large model must hence be smaller than 100MB.

3


