
RNAformer: A Simple Yet Effective Deep Learning
Model for RNA Secondary Structure Prediction

Jörg K.H. Franke, Frederic Runge, Ryan Köksal, Rolf Backofen, Frank Hutter
Department of Computer Science

University of Freiburg
Freiburg, Germany

frankej@cs.uni-freiburg.de

Abstract

Traditional RNA secondary structure prediction methods, based on dynamic pro-
gramming, often fall short in accuracy. Recent advances in deep learning have
aimed to address this, but may not adequately learn the biophysical model of
RNA folding. Many deep learning approaches are also too complex, incorpo-
rating multi-model systems, ensemble strategies, or requiring external data like
multiple sequence alignments. In this study, we demonstrate that a single deep
learning model, relying solely on RNA sequence input, can effectively learn a
biophysical model and outperform existing deep learning methods in standard
benchmarks, as well as achieve comparable results to methods that utilize multi-
sequence alignments. We dub this model RNAformer and achieve these benefits
by a two-dimensional latent space, axial attention, and recycling in the latent
space. Further, we found that our model performance improves when we scale it
up. We also demonstrate how to refine a pre-trained RNAformer with fine-tuning
techniques, which are particularly efficient when applied to a limited amount of
high-quality data. A further aspect of our work is addressing the challenges in
dataset curation in deep learning, especially regarding data homology. We tackle
this through an advanced data processing pipeline that allows for training and
evaluation of our model across various levels of sequence similarity. Our models
and datasets are openly accessible, offering a simplified yet effective tool for RNA
secondary structure prediction.

1 Introduction

The functions of RNAs are largely determined by their structures [Vicens and Kieft, 2022] and
therefore, the longstanding RNA secondary structure prediction problem is of paramount importance
in computational biology [Bonnet et al., 2020]. Generally, RNA secondary structure prediction
methods can be roughly categorized into de novo and homology modeling approaches. De novo
methods predict the structure solely from the primary sequence, while homology modeling utilizes
evolutionary information from a set of homologous sequences, typically as multiple sequence align-
ments (MSAs). While MSA-based methods often achieve higher accuracy, they face several practical
limitations. The prediction of RNA structures for known families is itself of less practical relevance
and can be accurately determined via comparative analysis [Szikszai et al., 2022]. Furthermore,
obtaining MSAs is time-consuming and computationally intensive, with often only a few available
homologs for a given RNA, which further limits the practical use of these approaches [Singh et al.,
2021a]. Due to these limitations, de novo prediction methods are typically preferred [Szikszai et al.,
2022].

Traditional methods for de novo prediction structure prediction employ dynamic programming
(DP) based on thermodynamic nearest neighbor parameters derived from optical melting experi-
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ments [Mathews et al., 1999] to find the lowest energy structure, typically tending to maximize the
number of Watson-Crick base pair interactions [Vicens and Kieft, 2022]. More recently, deep-learning-
based approaches have conquered the field with superior performance on benchmark datasets [Zhao
et al., 2021]. Additionally, these methods are capable of predicting an arbitrary adjacency matrix,
allowing them to consider any type of base interaction [Singh et al., 2019a], including non-canonical
pairs, pseudoknots [Staple and Butcher, 2005], and base multiplets, rather than being limited to
nested structures [Hofacker et al., 1994]. However, when using additional evolutionary information
from a set of homologous sequences (MSA), the predictive performance could still be improved over
de novo approaches [Singh et al., 2021a]. Other approaches to further improve the performance of
de novo structure prediction leverage additional information from large-scale pre-trained models on
RNA sequence data [Chen et al., 2022], the combination of multiple models into an ensemble [Singh
et al., 2019a], or consist of complex systems that incorporate multiple algorithms Sato et al. [2021],
Singh et al. [2021a]. This increased complexity negatively affects the runtime and usability, and
limits the possibilities to adapt the model to new data. A lean and simple but efficient deep learning
model could boost research in the field of RNA secondary structure prediction and serve as a starting
point for future work.

However, especially in RNA secondary structure prediction, recent work has questioned whether the
reported high accuracy of these methods reflects their ability to learn the underlying biophysical model
of the folding process [Flamm et al., 2021], or are a result of similarities between the training and test
datasets. One reason for this is that most RNA secondary structure training/test sets are biased toward
certain large families, such as tRNAs. This leads to the need for improved data processing pipelines
that better evaluate and reflect the model’s ability to learn the underlying biophysical dynamics of
the folding process. It is notably important to prevent homologies between the training and test
datasets [Justyna et al., 2023], where homologies can be sequence-based or structure-sequence-based.
Therefore, recently proposed methods applied different data processing pipelines to avoid such
homologies, including filtering sequence similarities, BLAST search Altschul et al. [1997], or using
covariance models to remove sequences based on sequence and structure similarity [Singh et al.,
2021a]. For this reason, the specific training/test set combination poses a significant bias to the
prediction quality, leading to a set of incomparable methods that all claim state-of-the-art results on
different training/test set characteristics.

In this work, we tackle these challenges by introducing a lean deep learning architecture tailored
to RNA secondary structure prediction. Our approach, the RNAformer, is capable of capturing
long-range interactions while working on a 2D structure representation to leverage the advantages of
deep learning methods. Our method does not require additional information like MSAs, embeddings,
nor artificial improvements e.g. via ensembling techniques, but still outperforms previous de novo
prediction methods in common RNA secondary structure prediction benchmarks while being on par
with the current state-of-the-art homology modeling methods. We achieve this primarily through
modeling the two-dimensional pairing matrix in the latent space, axial attention [Ho et al., 2019],
latent space recycling [Jumper et al., 2021], and by applying fine-tuning methods on high-quality RNA
samples. Using our advanced data processing pipelines, we can compare our model to existing state-
of-the-art deep learning approaches on both intra- and inter-family secondary structure prediction
tasks, addressing the problem of a lack of standardized benchmarks among approaches. Overall, our
contributions can be summarized as follows:

• We propose a deep learning architecture termed RNAformer for RNA secondary structure
prediction based on axial attention and latent space recycling (Section 3).

• We discuss the difficulties of dataset curation in RNA secondary structure prediction and
train our methods at different levels of similarity (Section 4).

• We show that our method is capable of learning the underlying folding dynamics of an MFE
model in an inter-family prediction setting.

• We achieve state-of-the-art performance on the commonly used benchmark datasets TS0,
TS1-3, and TS hard, outperforming de novo prediction methods while being on par with the
current best-performing homology modeling methods (Section 5).

• We provide an open source implementation of our model and publish all datasets1.

1Code, Models, and Datasets: github.com/automl/RNAformer
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2 Related Work

2.1 Non Deep Learning Base Methods

Early methods of computational biology sought to predict RNA structures using a dynamic pro-
gramming (DP) approach based on thermodynamic nearest neighbor parameters to predict the single
most likely secondary structure as the one that results in the minimum amount of free energy. In
terms of traditional algorithms, Vienna RNAfold Hofacker et al. [1994] marked a breakthrough in
computational methods for RNA secondary structure prediction. It uses dynamic programming to
make predictions, based on optimizing for the Minimum Free Energy (MFE) model, implementing
the partition function to compute base pair probabilities. This was based on the rationale that an
RNA structure must be thermodynamically stable to perform its function effectively. It achieved
relatively high accuracy and efficiency and remains the most widely used and cited approach. Huang
et al. [2019] proposes LinearFold, a secondary structure prediction method based on 5’ to 3’ DP and
beam search. It runs in linear (O (n)) time, improving on existing DP-based approaches with cubic
(O
(
n3
)
) runtime. It does this by scanning an RNA sequence in a left-to-right direction, rather than

the traditional bottom-up fashion. This allows the use of the effective beam pruning heuristic, making
it the first approach to achieve linear runtime and space.

IPknot is a computational method based on maximizing the expected accuracy (MEA) of a predicted
structure with pseudoknots by decomposing a pseudoknot structure into a set of pseudoknot-free
sub-structures and approximates a base-pairing probability distance that considers pseudoknots
[Sato et al., 2011]. It uses a heuristic method for refining base-pair probabilities to improve its
prediction accuracy, as well as, integer programming with threshold cutoff to improve on the MEA
approach. The updated version in 2022 employs the LinearPartition Zhang et al. [2020] model to
automatically select the optimal threshold parameters based on the pseudo-expected accuracy. This
aimed to solve previous scalability issues for longer sequences, allowing for linear time computation.
CONTRAfold Do et al. [2006] is based on conditional log-linear models (CLLMs), a flexible class
of probabilistic models that generalize upon Stochastic Context-Free Grammars (SCFGs) using
discriminative training and feature-rich scoring. It aimed to close the gap between probabilistic and
thermodynamic models. It achieved the highest single-sequence prediction accuracy at the time
of publication, providing an effective alternative to the empirical measurement of thermodynamic
parameters for RNA secondary structure prediction. EternaFold Wayment-Steele et al. [2022] is a
multitask model trained on the varied data types in the EternaBench dataset, consisting of more than
20,000 synthetic RNA constructs designed on the RNA design platform Eterna Lee et al. [2014].
However, EternaFold was recently outperformed by RNA-FM and we excluded EternaFold from our
evaluations.

PKiss Theis et al. [2010] introduces three heuristic strategies for folding RNA sequences into
structures inclusive of kissing hairpin motifs. It is based primarily on the construction of kissing
hairpin motifs from the overlay of two simple canonical pseudoknots to overcome the challenge that
the overlay does not adhere to Bellman’s Principle of Optimality. The three strategies employed
consist of varying levels of computational complexity, with the simplest being found to yield the
best performance. However, while some of these methods can predict structures with pseudoknots or
noncanonical base pairs, none of them can predict both.

2.2 Deep Learning Base Methods

Singh et al. [2019b] introduces with SPOT-RNA the first algorithm which employs deep neural
networks for end-to-end predictions of RNA secondary structures. It uses an ensemble of models
with residual networks bidirectional LSTM Schuster and Paliwal [1997], and dilated convolution
Yu and Koltun [2016] architectures. SPOT-RNA was trained on a large set of intra-family RNA data
for de novo predictions and was further fine-tuned on a small set of experimentally derived RNA
structures for predictions, including tertiary interactions. Its successor, SPOT-RNA2 is a homology
modeling method that incorporates evolutionary information through multi-sequence alignments
(MSAs), sequence profiles, and features derived from direct coupling analysis for the prediction of
RNA secondary structures Singh et al. [2021b]. It is based on an ensemble of models but solely uses
dilated convolutions. Predictions are intra-family wise, independent of the curation of the dataset
since homologies between the evolutionary information and the training or test sets were not explicitly
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excluded during evaluations. SPOT-RNA2 achieved state-of-the-art accuracy on their curated test sets
based on data from the Protein Data Bank (PDB) wwp [2019].

UFold [Fu et al., 2022] employs a UNet [Ronneberger et al., 2015] architecture for de novo secondary
structure prediction, additionally reporting results for predictions on data that contained tertiary
interactions after fine-tuning the model. UFold treats an RNA sequence as an image of all possible
base-pairing maps with an additional map for pair probabilities, represented as square matrices.

MXFold2 [Sato et al., 2021] seeks to learn the scoring function for a subsequent DP algorithm using a
CNN/BiLSTM architecture. The network is trained to predict scores close to a set of thermodynamic
parameters. In contrast to other described methods, MXFold2 is restricted to predicting a limited set
of base pairs due to its DP algorithm.

ProbTransformer Franke et al. [2022] is based on a Transformer architecture with the addition of a
hierarchical latent distribution as a probabilistic enhancement for either an encoder- or decoder-based
Transformer. It is the first model capable of sampling different structures of this latent distribution,
shown by reconstructing structure ensembles of a distinct dataset with multiple structures for a given
input sequence. This aimed to accommodate the ambiguities and stochastic nature of secondary
structure data and in the folding process itself.

E2Efold [Chen et al., 2020] uses a Transformer encoder architecture for de novo prediction of RNA
secondary structures. The algorithm was trained on a dataset of homologous RNAs and showed
significantly reduced accuracy across several other works [Sato et al., 2021, Fu et al., 2022], which
indicates strong overfitting. We use the same data as the respective work for evaluations and thus
exclude E2Efold from our evaluations.

RNA-FM [Chen et al., 2022] uses sequence embeddings of an RNA foundation model that is trained
on 23 million RNA sequences from 800000 species to perform intra-family predictions of RNA
secondary structures in a downstream task. The foundation model consists of a 12-layer transformer
architecture, while the downstream models use a ResNet32 architecture.

In contrast to these related works, our approach models the pairing matrix in the latent space using
axial attention. This makes the model independent of the sequence length in contrast to all CNN-based
approaches since their receptive field depends on the depth/sequence length ratio, while still allowing
to predict pseudoknots and multiplets.

3 RNAformer

The RNAformer is inspired by the protein folding algorithm, AlphaFold [Jumper et al., 2021], which
models a multi-sequence alignment (MSA) and a pair matrix in the latent space and processes it
with the use of axial attention [Ho et al., 2019]. In contrast to AlphaFold and similar to Lin et al.
[2023] in protein folding, we dispense the use of an MSA due to its well-known limitations [Singh
et al., 2021a]. We further simplify this architecture to only use axial attention for modeling a latent
representation for the pairing between all nucleotides of the input RNA sequence without the need
for an additional structure module.

In the following we describe the RNAformer in detail; please find an overview of our architecture in
Figure 1. We input a RNA sequence X ∈ {A, C, G, U, N}N of length N and embed it twice, one
row- and one column-wise embedding to generate a 2D latent representation. The embeddings can be
represented as:

Erow = Embedrow(X), Ecol = Embedcol(X), (1)

where Erow ∈ RN×d and Ecol ∈ RN×d are the row-wise and column-wise embeddings respectively,
with d being the embedding dimension. The broadcasting and combination of these two matrices to
form a 2D latent space can be represented as:

L(0) = Erow ⊕ ET
col, (2)

where L(0) ∈ RN×N×2d is the 2D latent space, and ⊕ denotes the broadcasting and addition
operation; i.e., L(0)[i, j] = Erow[i] +ET

col[j]. For the positional encoding, we make use of the rotary
position embedding Su et al. [2024]. The resulting latent representation will be further processed by
a stack of M RNAformer blocks

L(i) = RNAformerBlock(L(i−1)), for i = 1, 2, . . . ,M. (3)
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Figure 1: An overview of the RNAformer architecture.

Each block consists of row-wise and column-wise axial attention, followed by a ‘transition’ convolu-
tional layer which serves a similar role as the point-wise feed-forward layer in the vanilla transformer
architecture. We found the convolutional structure to perform better in our architecture, which we
attribute to the fact that, while the axial attention layers can capture long-range information across the
entire input structure, the convolutional network can help to model local structures like stem-loops.

We apply residual connections, pre-layer norm, and dropout to all three layers; the RNAformer block
can then be represented as:

L(i)′ = L(i) + AxialAttentionLayerrow(L
(i))

L(i)′′ = L(i)′ + AxialAttentionLayercol(L
(i)′)

L(i+1) = L(i)′′ + TransitionConvLayer(L(i)′′).

(4)

Here, the TransitionConvLayer consists of two convolutional layers with a SiLU activation func-
tion [Elfwing et al., 2018] in the middle, and an AxialAttentionLayer consists of a linear layer to
create the query, key, and value for the AxialAttention and a linear layer to project its output. An axial
attention, introduced by Ho et al. [2019], applies attention mechanisms over each axis independently,
enabling efficient processing of higher-dimensional data. In more detail, the axial attention mecha-
nism can be mathematically represented with indices for rows i and columns j for each 2-dimensional
input to the attention mechanism Vaswani et al. [2017]: query Q ∈ RN×N×d, key K ∈ RN×N×d,
and value V ∈ RN×N×d for a sequence length of N and a latent dimension of d. We compute for
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each column j = 1, · · · , N

AxialAttentionrow(Q,K, V, j) = softmax

(
Q:,j,:K

T
:,j,:√

d

)
V:,j,:

and for each row i = 1, · · · , N

AxialAttentioncol(Q,K, V, i) = softmax

(
Qi,:,:K

T
i,:,:√

d

)
Vi,:,:.

Our model achieves a complete receptive field by applying attention consecutively along each axis,
in contrast to convolutional networks (CNN) that expand this field over multiple layers. So in a
CNN the number of layers to achieve a full receptive field depends on the input length. This could
be harmful for a high variance in the input sequence length. Our approach may be better suited for
secondary structure prediction since each layer accesses the whole sequence and can iteratively refine
the structure prediction. To generate a prediction, we apply a linear layer after the RNAformer blocks
and output the binary pairing probability matrix P ∈ RN×N of the secondary structure directly:

P = sigmoid(Linear(L(M)))

We note that directly outputting the secondary structure’s binary pairing probability matrix P ∈
RN×N is advantageous in many ways: if we were to instead output dot-bracket notation, like the
ProbTransformer [Franke et al., 2022], this would make it unpractical to predict multiples, hard to
predict pseudoknots and also require postprocessing to create a pair matrix.

To artificially increase the model depth, we apply recycling in the latent space, similar to AlphaFold, al-
lowing the model to reprocess and correct predictions internally. Therefore, we apply the RNAformer
blocks multiple times by normalizing and adding the block output to the embedded input and then
infer the RNAformer blocks again. During training, gradients are only computed for the last recycling
iteration. We additionally found that we can achieve a similar increase in performance by recycling
solely during the fine-tuning stage, which is more efficient than applying recycling in the pre-training
stage.

4 Data Pipelines

In recent years, several deep learning models have been proposed for RNA secondary structure
prediction, with each of them claiming state-of-the-art performance on various datasets. However,
we find that these reported results are often misleading due to the different data processing pipelines
used to derive the training data. One way to ensure a fair comparison would be to retrain the models
on the same training datasets; this is computationally infeasible and often even impossible due to the
undisclosed training pipelines used. An alternative strategy is to define different levels of sequence
similarity between the training set and the test and validation sets to then compare only against
methods that use the same setting. We used this latter strategy and observed three different levels of
similarity used in recent publications to define the training datasets. Next, we explain the initial data
pool, the validation and test sets, as well as the data processing pipelines in further detail. All data
processing pipelines used were provided by RnaBench [Runge et al., 2024].

4.1 Training Data Pool

We use the same training data pool for all experiments and apply different similarity settings to
derive training subsets that allow the comparison against different methods trained on data of the
same similarity setting. For the initial data pool, we collect data from the following public sources:
the bpRNA-1m meta-database [Danaee et al., 2018], the ArchiveII [Sloma and Mathews, 2016]
and RNAStrAlign [Tan et al., 2017] dataset provided by [Chen et al., 2020], all data from RNA-
Strand [Andronescu et al., 2008], as well as all RNA-containing data from the Protein Data Bank
(PDB) [wwp, 2019], downloaded in September 2023. Secondary structures for PDB samples
were derived from the 3D structure information using DSSR [Lu et al., 2015]. For annotation of
pseudoknots, we use bpRNA [Danaee et al., 2018] while ignoring base multiplets.

We use the test sets provided by Singh et al. [2019a] and Singh et al. [2021a]: TS0 derived from the
bpRNA-1m meta-database, TS1 derived from high-resolution structures in the PDB, TS2 derived
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from NMR structures, TS3 also derived from PDB, and TS-hard, a subset of TS1 and TS3. For
validation, we use the two sets VL0 and VL1 [Singh et al., 2019a, 2021a]. Supplementary Material B
provides an overview of our datasets.

4.2 Reducing Data Homology

To obtain datasets at different levels of similarity to the test data, we apply either sequence similarity,
sequence similarity with a subsequent BLAST search, or all three similarity pipelines to both the
samples from the training pool and the validation data. This allows us to compare between methods
in the same settings originally used.

Sequence Similarity. UFold [Fu et al., 2022], SPOT-RNA [Singh et al., 2019a], MXFold2 [Sato
et al., 2021], RNA-FM [Chen et al., 2022], and the ProbTransformer [Franke et al., 2022] report
results on the testset TS0, using a similarity pipeline that considers sequence similarity between the
training and test data. To achieve this, we remove sequence similarity between the training, validation
and test sets, we follow the literature and apply CD-Hit [Fu et al., 2012] with a similarity cutoff of
80% between all sets.

BLAST Search. In addition to removing similar sequences via CD-Hit, Singh et al. [2019a]
(SPOT-RNA) applied a BLAST-search [Altschul et al., 1997] at a high e-value of 10 to further
remove training and validation samples that are hit by BLAST for any of the test samples. For a fair
comparison with SPOT-RNA on TS1 and TS2, we apply the same two pipelines.

Covariance Models. While both the previously described pipelines only consider similarity on
a sequence level, Singh et al. [2021a] recently proposed the use of covariance models to split the
data in a family-based manner, including structure information. Inspired by this approach, we use
BLASTN [Altschul et al., 1997] to search for homologs for each sample of the test set TS-hard
using NCBI’s nt database as reference. We create sequence- and structure-aware alignments using
LocARNA-P [Will et al., 2012]. Note again that at this point, our pipeline differs from the approach
of Singh et al. [2021a] that uses SPOT-RNA for the prediction of the consensus structure of the
alignment which appears sub-optimal. For each of the resulting alignments, we build a covariance
model using Infernal [Nawrocki and Eddy, 2013] and remove training and validation samples with a
hit to the covariance model at an e-value of 0.1.

5 Experiments

We evaluate the RNAformer in three settings: (1) The learning of a simplified biophysical model as
proposed by [Flamm et al., 2021], (2) intra-family predictions including pseudoknots and non-
canonical base pairs, and (3) predictions on experimental data from the PDB, by training an
RNAformer model on low-quality data and finetuning on high-quality PDB data. We test our
finetuning in the intra- and inter-family prediction setting.

In line with the current literature, we report the F1 score for all results. Following [Mathews, 2019],
we also report the F1-shifted, considering a predicted pair to be correct even if it is displaced by one
position on one side to account for the dynamic nature of RNA.

Training Details. During the training of each experiment, we minimize the mean binary cross-
entropy loss between the prediction P and the true adjacency matrices of the secondary structure.
Since the adjacency matrices are heavily unbalanced, we mask 60% (during fine-tuning 80%) of
the unpaired entries in the adjacency matrix before calculating the cross-entropy loss. We find that
this masking helps to stabilize the training while not harming the training progress significantly. We
further use a cosine learning rate schedule with warm-up and AdamW Loshchilov and Hutter [2019]
for all experiments. We train RNAformer models with 6 blocks and latent dimensions of 64, 128, and
256, resulting in a total model size of about 2M , 8M , and 32M parameters. Depending on the model
size, we train the RNAformer on 1 A10 or 8 A100 GPUs. Due to the two-dimensional latent space and
a maximum sequence length of 500, we fit only one sample in the large RNAformer configuration on
one A100 (40GB) though we use FlashAttention for a memory-efficient implementation of the axial
attention Dao et al. [2022]. Therefore, we make use of gradient accumulation to achieve larger batch
sizes. For a list of hyperparameters of the different experiments, we refer the reader to Supplementary
Material A.
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Table 1: We train different sizes of our model on the Rfam dataset on three different random seeds
and report the mean performance.

Model Rfam TS

F1 Score Solved

RNAformer 32M+ 0.967 83.5%
RNAformer 32M 0.948 68.1%
RNAformer 8M 0.919 49.7%
RNAformer 2M 0.846 22.9%

RNAfold Lorenz et al. [2011] 1.0 100%

5.1 Learning a Biophysical model

Setup. Flamm et al. [2021] recently proposed to evaluate deep learning-based models regarding their
capabilities of learning a simplified biophysical model derived from predictions of a model based
on thermodynamic parameters. In this experiment, we assess whether the RNAformer can replicate
such a biophysical model in an inter-family prediction setting before we apply it to more advanced
settings and real-world data. In particular, we evaluate to which degree the RNAformer can learn
to mimic the predictions of RNAfold [Lorenz et al., 2011]. To test the scalability of our model, we
trained multiple RNAformer models with 2M , 8M , and 32M parameters. We train the largest model
with and without recycling to see the benefit of it.

Data. We derive a training dataset from families of the Rfam database version 14.9 [Kalvari
et al., 2020] by selecting all families with a covariance model with maximum CLEN of ≤ 500
and sample a large set of sequences for each family from the covariance models using Infernal.
We then build an initial dataset with two-thirds of the sequences from families with CLEN ≤ 200
and one-third of sequences from the families with CLEN > 200 to increase the family diversity.
We randomly select 25 and 30 families from this set for validation and testing, respectively, and
leave all samples from other families for training. All sequences are folded using RNAfold. We
apply a length cutoff at 200 nucleotides since we expect RNAfold predictions to be more reliable
for sequences below this threshold, since it reduces computational costs, and because all datasets of
experimentally derived RNA structures from the literature consistently report a maximum sequence
length below 200 nucleotides. We split these datasets into training, validation, and test families
detailed in Supplementary Material B.

Results. We trained the RNAformer three times with random initialization on the dataset described
previously. As shown in Table 1, we increasingly approach RNAfold’s results with increasing model
size. Our largest models achieve a mean F1 score on the test set of 94.8(±0.026) without recycling
and 96.7±0.017 with recycling, respectively. The best model predicts 84% of the structures correctly
(see Table 1). This result indicates that the RNAformer can learn the underlying biophysical model of
the RNAfold modeling the folding process. A more comprehensive evaluation, also for all following
experiments and including the performance on different base-pairs, is shown in Supplementary
Material C.

5.2 Learning Structure Predictions for bpRNA

Setup. While the learning of a biophysical model is limited to canonical base pair interactions of
nested RNA structures from predictions of RNAfold, our second experiment involves non-canonical
interactions and pseudoknotted structures. We compare our model against others that report results
using the same level of similarity: RNA-FM [Chen et al., 2022], SPOT-RNA [Singh et al., 2019a],
MXFold2 [Sato et al., 2021], UFold [Fu et al., 2022], and ProbTransformer [Franke et al., 2022]. To
also assess the influence of recycling in this case, we evaluate our model twice, once with recycling
and once without.

Data. To be comparable to previous work, we train the RNAformer in an intra-family setting using a
training set where we only applied the sequence similarity pipeline described in Section 4. The test
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Table 2: The mean performance of three runs with different random seeds of the RNAformer with
and without recycling () in comparison to the best competitors on the TS0 benchmark dataset. We
evaluated all competitors based on their open-sourced models.

Model TS0

F1 Score F1-Shifted

RNAformer 32M 0.725 0.775
RNAformer 32M 0.714 0.751
RNAformer 8M 0.702 0.744
RNAformer 2M 0.669 0.713

RNA-FM Chen et al. [2022] 0.667 0.713
UFold Fu et al. [2022] 0.630 0.687
ProbTransformer Franke et al. [2022] 0.625 0.674
SPOT-RNA Singh et al. [2019a] 0.586 0.624
MXFold2 Sato et al. [2021] 0.550 0.596

set TS0 lacks base interactions with more than one pairing partner, so we exclude all samples that
contain base multiplets from the training data.

Results. The comparison of intra-family predictions on the TS0 dataset is shown in Table 2. We
observe that our model clearly outperforms all other methods, achieving an F1 score of 0.73 (with a
low standard deviation of 0.002 across the three random seeds), solving 17% of the task. Remarkably,
the RNAformer variant without recycling still achieves the second-best results (F1: 0.71; 14% solved),
while the next best competitor is RNA-FM (F1: 0.67; 10% solved), followed by the ProbTransformer
(F1: 0.63; 11% solved), UFold (F1: 0.63; 4% solved) and SPOT-RNA (F1: 0.59; 0.5% solved).

We conclude that recycling appears generally beneficial and that our model is capable of learning
more complex structures, including non-canonical interactions and pseudoknots.

Furthermore, we note that RNA-FM leverages large-scale pre-training on vast amounts of sequence
data while SPOT-RNA uses an ensemble of five models.

5.3 Learning Structure Predictions from Experimental Data

The current gold standard secondary structure data is experimental data that is obtained from 3D
structure information provided by the PDB. The main difference to other data sources is that many
samples contain base multiplets. However, one problem with experimental data from the PDB is
that there is relatively little diversity with many samples belonging to few types of RNAs. Therefore,
removing homologies between the training and the test data is even more important when dealing
with experimental data to avoid overfitting. For our experiments, we therefore apply additional
pre-processing pipelines that consider sequence and structure similarity.

However, the amount of high-quality data is limited and thus some of the recent methods approached
the problem with finetuning [Singh et al., 2019a, Fu et al., 2022]. We adopt the finetuning strategy
and pre-train a single model for all following experiments, using the strictest data pipeline, including
covariance models to save computational costs. We finetune two models: One model that is finetuned
using the similarity pipeline of SPOT-RNA [Singh et al., 2019a] to evaluate on TS1 and TS2, and one
model that is finetuned with the similarity pipeline of SPOT-RNA2 [Singh et al., 2021a] to evaluate
on the test sets TS1, TS2, TS3, and TS-Hard. We use a low-rank adaptation, instead of full-parameter
finetuning, to reduce the trainable parameter count and decrease the memory consumption Hu et al.
[2022].

5.3.1 Intra-Family Predictions on TS1 and TS2

Singh et al. [2019a] apply a sequence similarity cutoff of 80% between training and test samples,
followed by a BLAST-search to further remove homologous sequences from the training set. This data
pipeline is the strictest similarity pipeline applied so far for de novo prediction methods. However,
RNA homologies are typically sequence- and structure-based, and thus the predictions can still be
considered intra-family because the data pipeline only considers sequence similarity measures. We
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Table 3: The mean performance of three fine-tunings with different random seeds of the RNAformer
in comparison to the best competitors on the TS1 and TS2 benchmarks. We evaluated all competitors
based on their open-sourced models.

Model TS1 TS2

F1 F1-Shifted F1 F1-Shifted

RNAformer 32M 0.743 0.776 0.805 0.836
SPOT-RNA Singh et al. [2019a] 0.714 0.734 0.800 0.833
ContraFold Do et al. [2006] 0.625 0.651 0.761 0.793
ipknot Sato et al. [2011] 0.604 0.621 0.733 0.753
RNAFold Lorenz et al. [2011] 0.593 0.618 0.775 0.799
LinearFold-V Huang et al. [2019] 0.592 0.619 0.771 0.799
PKiss Janssen and Giegerich [2015] 0.535 0.555 0.767 0.789

compare the performance of the RNAformer and SPOT-RNA on the testsets TS1 and TS2, provided
by Singh et al. [2019a] for SPOT-RNA [Singh et al., 2019a].

Results. In addition to SPOT-RNA, we report results for the following non-deep learning methods:
ContraFold, ipKnot, RNAfold, LinearFold, and PKiss. The comparison of all methods is on the
testsets TS1 and TS2 and shown in Table 3. For the RNAformer, we evaluate three different random
seeds to assess the stability across different training runs.

The RNAformer achieves state-of-the-art performance, outperforming all other methods on TS1 with
an average F1 score of 0.743 (±0.002), followed by SPOT-RNA with an F1 score of 0.714. The next
best non-deep learning method, ContraFold, is far behind, achieving an F1 score of 0.625.

For the testset TS2, the results show less variance. However, the RNAformer still achieves the
best result with an average F1 score of 0.805 (± 0.007), again followed by SPOT-RNA. For the
non-deep learning-based methods, RNAfold as well as LinearFold both show better performance than
ContraFold, achieving F1 scores of 0.775, 0.771, and 0.761, respectively.

5.3.2 Comparison to Homology Modeling Methods

Table 4: The mean performance of three fine-tunings with different random seeds of the RNAformer
in comparison to two models requiring MSA on the TS1-3 and TS-hard benchmarks. We evaluated
SPOT-RNA2 based on their open-sourced model.

Model Requires TS1 TS2 TS3 TS-Hard

MSA F1 F1-Shift F1 F1-Shift F1 F1-Shift F1 F1-Shift

RNAformer 32M 0.739 0.771 0.802 0.837 0.702 0.720 0.662 0.684

SPOT-RNA2 ✗ 0.737 0.769 0.790 0.836 0.743 0.768 0.666 0.700
CentroidAlifold∗ ✗ 0.688 – 0.733 – 0.667 – 0.653 –

∗ Results obtained from SPOT-RNA2 [Singh et al., 2021a].

We also evaluate RNAformer in the same setting as the current state-of-the-art MSA-based method,
SPOT-RNA2, using the testsets TS1, TS2, TS3, and TS-hard. To do so, and similar to SPOT-RNA2,
we use all three pipelines to generate the training data. The resulting finetuning set contains 28%
fewer training samples than the fine-tuning set from the previous experiment where we do not apply
a covariance model to remove similarity and due to the additional similarity with TS3 and TS-hard.
The resulting training set can be considered inter-family-based with respect to TS-hard due to the
inclusion of sequence and structure-aware alignments and the resulting covariance models.

Results. We summarize the comparison against homology modeling methods in Table 4. We report
the mean performance across three random seeds. The standard deviation lies between 0.002 and
0.007. As one can expect, the performance of the RNAformer on the test sets TS1 and TS2 slightly
decreases in comparison to the previous experiment. This is likely a result of training samples that
have been removed due to similarity to TS3 or TS-hard.
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However, we observe that the RNAformer is on par with the current state-of-the-art homology
modeling method SPOT-RNA2 while not utilizing MSA at all. The RNAformer achieves the best
results on the test sets TS1 and TS2, while SPOT-RNA2 achieves better performance on the sets
TS3 and TS-hard (F1 scores: 0.743 compared to 0.702±0.007; 0.666 compared to 0.662±0.004).
Remarkably, the next best non-deep learning competitor, CentroidAlifold is clearly outperformed by
both deep learning methods (results obtained from the SPOT-RNA2 publication [Singh et al., 2021a]).

6 Discussion

The RNAformer model, presented in our study, marks a notable advancement in the field of RNA
secondary structure prediction. By demonstrating that a relatively simple deep learning architecture
can reach state-of-the-art performance, the RNAformer challenges the prevailing notion in the field
that complexity, through ensemble methods or the integration of multiple sequence alignments
(MSAs), is necessary for high accuracy.

The scalability of the RNAformer with increasing model size is a promising feature. An increasing
number of parameters in our model improves the performance rather than leads to overfitting the data.
This could indicate that the model learns the underlying mechanics instead of just memorizing the
data. However, with the current model size and with a reasonable sequence length of 500, we are
already limited to training one sample per A100 GPU. Further scaling thus either requires larger GPUs
or model-distributed training. Nevertheless, despite the computational demands of the modeling of
the pairing matrix directly in the latent space and the axial attention based architecture, the inference
per sequence requires less than a second on a modern GPU.

Another feature of our model is the effectiveness of fine-tuning on high-quality data, which compen-
sates for the limitations of training on larger, but lower-quality datasets. This approach could have
important implications for how training datasets are compiled and used, especially in the context of
limited availability of high-quality RNA secondary structure data. Also, fine-tuning allows adapting
an existing pre-trained model to new data without the need for a more expensive pertaining.

Furthermore, our advanced data processing pipelines emphasize the importance of careful dataset cu-
ration and managing data homology in RNA secondary structure prediction. While our approach helps
to minimize biases, it also highlights the challenges in preparing datasets that are both comprehensive
and unbiased, an area that requires ongoing attention.

Our approach to dataset curation and homology management could raise important considerations for
data usage in the field. By highlighting the need for careful dataset preparation and the challenges of
avoiding biases, our study contributes to setting standards for dataset creation and usage, which is
crucial for the reliability and reproducibility of scientific research.

Future work involving our method could extend to the field of 3D RNA structure prediction. By
adapting our 2D latent space approach, there is potential to enhance the accuracy and efficiency of
3D RNA structural modeling, a frontier that remains challenging.

7 Conclusion

We introduce RNAformer, a novel deep learning architecture for RNA secondary structure prediction.
We utilize axial attention and latent space recycling, showing that our model’s performance scales
with model size. With a carefully designed data processing pipeline and fine-tuning strategies, we
achieved state-of-the-art accuracy, outperforming existing de novo methods and performing on-
par with existing homology-based (MSA-based) structure prediction methods. We address recent
concerns on deep learning based methods by replicating a biophysical RNA folding algorithm, which
demonstrates that our model is generally capable of learning a biophysical folding process. The
accuracy of our method could potentially be enhanced by increasing the number of parameters,
utilizing more data, or by employing an ensemble. However, because our model is open source, we
can encourage the community to elaborate on these opportunities jointly.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.12.579881doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.12.579881
http://creativecommons.org/licenses/by/4.0/


Acknowledgments

This research was funded by the German Research Foundation (DFG) under SFB 1597 (SmallData),
grant no. 499552394, and through grant no. 417962828. The authors gratefully acknowledge the
Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing
computing time on the GCS JUWELS Cluster at Jülich Supercomputing Centre (JSC). The authors
acknowledge support by the state of Baden-Württemberg through bwHPC and the German Research
Foundation (DFG) through grant no INST 39/963-1 FUGG. Finally, we acknowledge funding by the
European Union (via ERC Consolidator Grant DeepLearning 2.0, grant no. 101045765). Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them.

References
Quentin Vicens and Jeffrey S Kieft. Thoughts on how to think (and talk) about RNA structure.

Proceedings of the National Academy of Sciences, 119(17):e2112677119, 2022.
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Supplementary Material

A A. Training Hyperparameters

Table 1: The hyperparameters of the RNAformer training.

Experiment BioPhys. Model bpRNA Exp. Data
Group Parameter Value

Training
GradientClipVal 1.0
MaxSteps 100k 50k 20k
RandomIgnoreMat 0.4
Batch Size 8

Optimizer

Optimizer AdamW
LearningRate 0.001
WeightDecay 0.1
Betas 0.9 / 0.98
NumWarmupSteps 2000
LR Schedule cosine annealing
LR DecayFactor 0.01

Model

MaxLen 200 500 500
Recycling 6
ResiDropout 0.4
EmbedDropout 0.4
InitializerRange 0.02

Table 2: The hyperparameters of the RNAformer finetuning.

Category Parameter Value

LoRA
r 32
Alpha 63
Dropout 0.1

Finetune Layer

attn_pair_row.Wqkv
attn_pair_row.out_proj
attn_pair_col.Wqkv
attn_pair_col.out_proj
pair_transition.conv1
pair_transition.conv2

Training

Epochs 4
Batch Size 32
RandomIgnoreMat 0.2
Recycling 6

Optimizer

LearningRate 0.001
WeightDecay 0.1
GradientClipVal 0.1
NumWarmupEpochs 2
LR Schedule cosine annealing
LR DecayFactor 0.1
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B B. Dataset

Table 3: Overview of datasets used in biophysical model experiment. This dataset is generated by
inferring RNAfold.

Length
Dataset # Samples Min Max Mean Median # Families Pseudoknots Non-Canonical Base Pairs Multiplets

Rfam-Train 410408 22 200 95.2 85.0 3796 0 (0.00%) 0 (0.00%) 0 (0.00%)
Rfam-Valid 2727 34 160 80.2 78.0 25 0 (0.00%) 0 (0.00%) 0 (0.00%)
Rfam-Test 3344 37 182 79.4 74.0 30 0 (0.00%) 0 (0.00%) 0 (0.00%)

Table 4: Overview of datasets used in bpRNA experiment. We filtered the training set with the use of
sequence similarity against the test and validation set.

Length
Dataset # Samples Min Max Mean Median Pseudoknots Non-Canonical Base Pairs Multiplets

TR0 38184 13 500 128.0 99.0 6123 (16.04%) 23696 (62.06%) 2612 (6.84%)
VL0 1184 33 497 128.1 107.0 82 (6.93%) 870 (73.48%) 0 (0.00%)
TS0 1305 22 499 136.1 109.0 129 (9.89%) 947 (72.57%) 0 (0.00%)

Table 5: Overview of datasets used in intra-family predictions experiment. We filtered the training
set with the use of sequence similarity and BLAST against the test and validation set. We only used
the test, validation and fine-tuning set for the intra-family predictions experiment, the model was
pretrained with the dataset from the homology modeling experiment.

Dataset # Samples Min Max Mean Pseudoknots Non-Canonical Base Pairs Multiplets

Train 64535 13 500 130.5 9886 (15.32%) 36217 (56.12%) 3881 (6.01%)
Valid 1325 33 497 130.6 133 (10.04%) 964 (72.75%) 27 (2.04%)
Fine-tune 4824 19 500 104.6 3483 (72.20%) 4406 (91.33%) 3881 (80.45%)
TS1 67 33 189 74.8 56 (83.58%) 62 (92.54%) 53 (79.10%)
TS2 39 33 155 51.3 26 (66.67%) 38 (97.44%) 29 (74.36%)

Table 6: Overview of datasets used in homology modeling experiment. We filtered the training set
with the use of sequence similarity, BLAST, and covariance models against the test and validation
set. This training set is used for the intra-family predictions experiment and the homology modeling
experiment.

Length
Dataset # Samples Min Max Mean Median Pseudoknots Non-Canonical Base Pairs Multiplets

Train 44091 13 500 141.3 110.0 7602 (17.24%) 26931 (61.08%) 2547 (5.78%)
Valid 1112 33 497 130.3 109.0 1029 (92.54%) 790 (71.04%) 15 (1.35%)
Fine-tune 3481 19 500 109.2 73.0 2171 (62.37%) 3066 (88.08%) 2547 (73.17%)
TS1 67 33 189 74.8 70.0 56 (83.58%) 62 (92.54%) 53 (79.10%)
TS2 39 33 155 51.3 42.0 26 (66.67%) 38 (97.44%) 29 (74.36%)
TS3 19 38 167 78.6 69.0 18 (94.74%) 18 (94.74%) 18 (94.74%)
TS-hard 28 34 189 65.6 50.5 20 (71.43%) 24 (85.71%) 21 (75.00%)

C C. Experiments
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