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ABSTRACT

RNA is a crucial regulator in living organisms and malfunctions can lead to severe diseases. To
explore RNA-based therapeutics and applications, computational structure prediction and design
approaches play a vital role. Among these approaches, deep learning (DL) algorithms show great
promise. However, the adoption of DL methods in the RNA community is limited due to various
challenges. DL practitioners often underestimate data homologies, causing skepticism in the field.
Additionally, the absence of standardized benchmarks hampers result comparison, while tackling low-
level tasks requires significant effort. Moreover, assessing performance and visualizing results prove
to be non-trivial and task-dependent. To address these obstacles, we introduce RnaBench (RnB), an
open-source RNA library designed specifically for the development of deep learning algorithms that
mitigate the challenges during data generation, evaluation, and visualization. It provides meticulously
curated homology-aware RNA datasets and standardized RNA benchmarks, including a pioneering
RNA design benchmark suite featuring a novel real-world RNA design problem. Furthermore, RnB
offers baseline algorithms, both existing and novel performance measures, as well as data utilities and
a comprehensive visualization module, all accessible through a user-friendly interface. By leveraging
RnB, DL practitioners can rapidly develop innovative algorithms, potentially revolutionizing the field
of computational RNA research.

1 Introduction

RNA molecules play critical roles in the regulation of various biological processes, such as cellular differentiation
and development [Morris and Mattick, 2014]. These functions are intricately tied to the hierarchical formation of
RNA structures [Tinoco Jr and Bustamante, 1999]. Initially, rapid intra-molecular nucleotide interactions lead to
the creation of local geometries, known as the secondary structure, which governs the interaction regions with other
cellular components [Gandhi et al., 2018]. Consequently, this secondary structure guides the subsequent formation of
the ultimate 3-dimensional shape, referred to as the tertiary structure [Tinoco Jr and Bustamante, 1999]. Therefore,
accurately predicting the secondary structure of RNA and designing RNA sequences that fold into desired structures are
two fundamental challenges in computational biology [Bonnet et al., 2020], holding significant implications in fields
such as medicine, synthetic biology, and biotechnology.

The potential of deep learning (DL) algorithms in biological structure prediction tasks is undeniable. We have witnessed
significant impacts of DL methods in the field of protein structure prediction, as evidenced by notable advancements
achieved by recent studies [Jumper et al., 2021, Lin et al., 2022]. Additionally, the field of cheminformatics has

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.09.574794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.09.574794
http://creativecommons.org/licenses/by/4.0/


RnaBench: A Comprehensive Library for In Silico RNA Modelling A PREPRINT

experienced an explosion of generative DL-based algorithms, due to their potential in the exploration of the chemical
space and the prediction of novel compounds [Engkvist et al., 2021]. Given these successes, it is reasonable to expect
that accurate DL-based methods could have similar transformative effects on RNA computational biology. However, it
is puzzling that they have not received the same level of attention and recognition in this particular domain.

The initial success of the DL algorithm, SPOT-RNA [Singh et al., 2019], paved the way for numerous DL-based
approaches that have achieved state-of-the-art performance in RNA secondary structure prediction [Zhang et al., 2019,
Rezaur Rahman Chowdhury et al., 2019, Chen et al., 2020, Singh et al., 2021, Fu et al., 2022, Saman Booy et al.,
2022, Wayment-Steele et al., 2022, Jung et al., Chen et al., 2022, Franke et al., 2022, Chen and Chan, 2023]. However,
subsequent investigations revealed that the observed performance gains were potentially driven primarily by learning
homologies within the data [Flamm et al., 2021, Szikszai et al., 2022], and overfitting became a concern [Sato et al.,
2021]. Consequently, skepticism regarding DL methods has arisen within the research community. To regain trust
and establish DL methods in the field, it is crucial to develop appropriate data pipelines and standardized datasets that
properly account for biological homologies. However, this requirement often poses challenges for non-domain experts.

RNA design refers to the reverse problem in which the objective is to identify an RNA sequence that can fold into a
given target structure [Zuker and Stiegler, 1981, Hofacker et al., 1994]. Various approaches have been proposed to tackle
this challenge, including stochastic local search [Andronescu et al., 2004], constraint programming [Garcia-Martin
et al., 2013], evolutionary algorithms [Esmaili-Taheri et al., 2014], ant-colony optimization [Kleinkauf et al., 2015],
and reinforcement learning [Eastman et al., 2018, Runge et al., 2019]. However, the lack of standardized benchmark
datasets poses a significant hurdle for the development and evaluation of DL methods in this field. Currently, the only
widely recognized benchmark dataset available is the Eterna100 testset [Anderson-Lee et al., 2016], which consists
of 100 synthetic samples lacking any training data. Furthermore, evaluation protocols differ across approaches that
report on this test set, further complicating the comparison and assessment of different methods. Consequently, these
challenges have impeded the progress and adoption of DL methods in RNA design, leading to their scarcity in the field.

To address the existing challenges and facilitate the entry of DL methods into the field of RNA structure prediction and
design, we introduce RnaBench (RnB)1 — a comprehensive RNA benchmark library. RnB has been developed with
the aim of providing high-quality datasets, standardized evaluation protocols, and comprehensive analysis, to tackle
the important and intriguing challenges of RNA structure prediction and design in computational biology. The key
contributions of RnB are as follows:

• RnB includes three benchmarks for RNA secondary structure prediction, accompanied by standardized evaluation
protocols (Section 3.1).

• RnB offers meticulously curated RNA datasets that take into account biological homology, ensuring that DL
algorithms are trained on relevant and representative data (Section 3.1.1).

• We introduce novel performance measures that address previously untracked aspects of algorithm performance,
allowing for more comprehensive evaluations (Section 3.1.2).

• RnB presents the first RNA design benchmark suite, complete with standardized evaluation protocols, providing
developers with a means to assess their algorithms in the context of RNA design (Section 3.2).

• We develop a novel RNA design benchmark based on a real-world Riboswitch design problem, enabling the
application of generative DL algorithms to the RNA design problem, akin to approaches in cheminformatics
(Section 3.3).

• RnB incorporates a comprehensive visualization module that facilitates the analysis and interpretation of predictions
(Section 3.4).

2 Related Work

Existing RNA libraries [Lorenz et al., 2011, 2016, Reuter and Mathews, 2010] primarily serve the needs of biological
researchers and experimental practitioners, providing utilities for tasks such as file conversions, specific computational
prediction methods, and analysis. However, these libraries lack curated data, data pipelines, and tools for comparing
algorithm performance.

While various databases house large amounts of biological data [Berman et al., 2000, Griffiths-Jones et al., 2003,
Danaee et al., 2018, wwp, 2019, Consortium, 2020] and software tools exist that provide interfaces to interact with
such databases [Cock et al., 2009], the careful curation of data remains a responsibility placed on the users, demanding
substantial domain knowledge. Currently, the only data processing pipeline geared towards supporting algorithm
development directly is RNAcmap [Zhang et al., 2021], which facilitates the automatic search for homologous sequences
through direct coupling analysis. However, data curation still relies on the users. In contrast, RnaBench is specifically

1Our code is publicly available via addsomeurlhere.
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Table 1: Overview of the benchmarks of RnaBench.

Benchmark Task Set # Samples Min – Max Length

Intra-family Structure Prediction
test 1458 22 – 499

valid 1247 33 – 497
train 58271 23 – 500

Inter-family Structure Prediction

test 153 33 – 189
valid 17 33 – 159
train 56621 12 – 500

fine-tune 2766 12 – 500

Biophysical Model Structure Prediction
test 3344 37 – 182

valid 2720 34 – 160
train 615204 24 – 500

Inverse RNA Folding Design
test 1379 12 – 497

valid 402 16 – 500
train 66772 12 – 500

Constrained Design Design
test 315 21 – 274

valid 89 16 – 447
train 77148 12 – 500

Riboswitch Design Generative Design train 685109 67 – 91

designed to address these limitations by providing comprehensive pipelines and standardized datasets. Our focus is
to enable non-domain experts and algorithm developers to readily apply algorithms to RNA structure prediction and
design tasks, reducing the effort required for data curation and promoting out-of-the-box applications.

Regarding benchmarking, the only current available benchmark for RNA secondary structure prediction is Etern-
aBench [Wayment-Steele et al., 2022], which relies on synthetic RNA data derived from human design approaches
on the Eterna crowdsourcing platform [Lee et al., 2014]. In RnaBench, we shift the focus to experimentally derived
data. Additionally, EternaBench assesses the prediction of structure ensembles represented as base pair probabilities.
While this is generally desirable due to the dynamic nature of RNA [Ganser et al., 2019], recent research has shown that
appropriate DL algorithms can learn structure distributions from single structure data [Franke et al., 2022]. Therefore,
in RnaBench, we concentrate on the more commonly approached problem of single secondary structure prediction.

For RNA design, the widely used Eterna100 benchmark dataset [Anderson-Lee et al., 2016] is also based on synthetic
data from the Eterna platform. This dataset comprises only 100 samples without any training and validation data.
Further, the commonly used version one of this benchmark includes tasks that have been proven to be unsolvable with
certain folding algorithms [Koodli et al., 2021], which has been resolved in the less commonly known version two of
the Eterna100 testset. RnaBench overcomes this limitation by including multiple test sets, training and validation data,
and a range of folding algorithms to address these challenges effectively.

3 RnaBench

In this section, we introduce RnaBench (RnB), a comprehensive open-source library dedicated to in silico RNA data
modeling. RnB offers a diverse range of benchmarks that encompass RNA secondary structure prediction (Section 3.1),
RNA design (Section 3.2), and a novel Riboswitch design benchmark that addresses a real-world RNA design challenge,
thereby pioneering generative RNA design with specific properties (Section 3.3). Complementing the benchmarks,
RnB provides robust data utilities and advanced visualization tools (Section 3.4), empowering algorithm developers
to thoroughly evaluate and analyze the performance of their methods. We note that we use several publicly available
datasets for our benchmarks in RnaBench. Table 1 provides an overview of the data. Consistent with the literature [Singh
et al., 2019], we use a length cutoff at 500 nucleotides for all datasets. More details about each dataset can be found in
Appendix B.
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3.1 RNA Secondary Structure Prediction Benchmark

RNA secondary structure prediction algorithms can be roughly divided into two classes: (1) de novo prediction methods
that seek to predict a structure directly from the sequence of nucleotides and (2) homology modeling methods that
require a set of homologous RNA sequences for their predictions [Singh et al., 2021], called an RNA family. Predictions
can then be applied either within given families (intra-family predictions) or across different families (inter-family
prediction). De novo prediction methods are typically preferred, particularly when working with novel RNAs, as
searching for homologous sequences can be time-consuming and challenging, and in many cases, no family information
is available [Szikszai et al., 2022]. By emphasizing de novo prediction methods in our benchmark for secondary
structure prediction, we aim to provide a comprehensive evaluation of algorithms that can tackle the challenges of RNA
structure prediction without relying on prior knowledge of homologous sequences or families. Our secondary structure
prediction benchmark provides three tasks; Intra-family prediction, inter-family prediction, as well as learning of a
simplified biophysical model as proposed by Flamm et al. [2021]. The latter allows us to assess whether a folding
algorithm is generally capable of learning the underlying biophysical dynamics of RNA secondary structure formation.

3.1.1 Data

Test Data For assessing intra- and inter-family prediction performance, we use the commonly used validation and test
sets VL0, VL1, TS0, TS1, TS2, TS3, and TS-hard provided by Singh et al. [2019] and Singh et al. [2021]. Except for
TS0 and VL0 which we only use for intra-family predictions, these datasets are derived from experimentally supported
3D RNA structures from the RCSB Protein Data Bank (PDB) [wwp, 2019]. For the benchmark task of learning a
biophysical model, we further use RNAFold [Lorenz et al., 2011] and the RNA Family Database (Rfam) [Griffiths-Jones
et al., 2003] to generate a large set of training, validation, and test data in a family-based fashion to account for
homologies as described below.

Initial Training Data Pool Before processing the data for the respective tasks of intra- and inter-family predictions,
we collect a large initial pool of publicly available RNA sequence and structure pairs from the following sources: the
bpRNA-1m meta-database [Danaee et al., 2018], the ArchiveII [Sloma and Mathews, 2016] and RNAStrAlign [Tan
et al., 2017] datasets provided by Chen et al. [2020], all data from RNA-Strand [Andronescu et al., 2008], all datasets
used in Sato et al. [2021], the Rfam-learn dataset provided by Runge et al. [2019], all datasets used in [Kleinkauf
et al., 2015], the dataset provided by Taneda [2010], the Eterna100 datasets version 1 and 2 [Anderson-Lee et al., 2016,
Koodli et al., 2021] as well as all RNA containing data from PDB [wwp, 2019], downloaded in May 2022. Secondary
structures for PDB samples were derived from the 3D structure information using DSSR [Lu et al., 2015], which was
also used in previous work [Singh et al., 2019]. After removing duplicates and dropping samples with less than 90%
canonical nucleotides (A, C, G, U), our initial training pool encompasses 111295 samples. The final pool is provided
with RnaBench and subsequently used to derive training data for our benchmarks.

Intra Family Data For building data for intra-family predictions, we follow the pipeline of Singh et al. [2019]. In
particular, we resolve IUPAC nucleotides [Johnson, 2010] by mapping each nucleotide to either A, C, G, U, or N, where
N represents the standard wildcard used in the field to denote unknown nucleotides. We then remove sequence similarity
between the test set, the validation set and the training pool at an 80% similarity threshold using CD-HIT [Fu et al.,
2012]. To further remove similarities, we drop samples from the training and validation set that show any homology
with the test samples, using BLAST search [Altschul et al., 1997] with a large e-value of 10.

Inter Family Data Our inter-family data pipeline is set on top of the intra-family data pipeline to further account for
homologies in the data. We develop a novel pipeline inspired by the dataset curation of Singh et al. [2021] for TS-hard
and the data pipelines of Rfam. In particular, we first apply the intra-family pipeline to remove sequence similarities
between training, validation (we only use VL1 here), and test data. For each sample in the test sets, TS1, TS2, TS3, and
TS-hard, we use BLAST search to find homologous sequences, using NCBI’s nt database as a reference. We then use
LocARNA-P [Will et al., 2012] to derive multiple sequence alignments based on the sequence and structure similarity of
the homologs for each sample in the test set. We build covariance models from the alignments using Infernal [Nawrocki
and Eddy, 2013]. The covariance models are used to remove sequences from the train and validation sets that belong to
one of the covariance models at an e-value of 0.1.

Biophysical Model Data To generate the datasets for learning a simplified biophysical model, we sample a large
number of sequences from all families of the Rfam database with a covariance model of a maximum CLEN of 500
nucleotides. We use all sequences from covariance models with CLEN between 200 and 500 nucleotides and add twice
the amount of shorter sequences from covariance models with a CLEN of less than 200 nucleotides to account for the
length distribution of the other test sets. All sequences are folded with RNAFold [Lorenz et al., 2011]. From all families
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in the dataset, we sample 30 and 25 test and validation families at random and kept all samples of other families in
the initial pool for training. For compatibility with all other benchmark sets, we additionally remove the similarity
between the biophysical model data and all other test and validation sets as described for the intra- and inter-family data
pipelines.

Inter Family Fine Tuning Data We provide a training dataset of experimental data only that is consistent with the
intra- and inter-family benchmark sets as well.

3.1.2 Evaluation

For evaluation, we employ commonly used and novel performance measures. The commonly used performance
measures for RNA secondary structure prediction are Precision, Recall, F1 Score, Shifted F1 Score, and Matthews
Correlation Coefficient (MCC). Further, we use the Weisfeiler-Lehman (WL) Graph Kernel [Shervashidze et al., 2011]
for comparing the structure graphs. To our knowledge, the WL kernel was never used to assess the performance of RNA
secondary structure prediction algorithms before but shows some advantages over commonly used measures such as F1
Score and MCC [?]. We also report the percentage of completely Solved Structures since this is the actual goal of single
secondary structure prediction. RnaBench further provides per-sample timing, while the mean runtime is provided as an
additional performance measure. We provide a more detailed description of every performance measure in Appendix C.

3.1.3 Baselines

We provide the following commonly used baseline algorithms: RNAFold [Lorenz et al., 2011], LinearFold-C and
LinearFold-V [Huang et al., 2019], ContraFold [Do et al., 2006], IpKnot [Sato et al., 2011], pKiss [Janssen and
Giegerich, 2015], and the DL approaches SPOT-RNA [Singh et al., 2019], MXFold2 [Sato et al., 2021], UFold [Fu et al.,
2022], the ProbTransformer [Franke et al., 2022], and the RNAformer [Franke et al., 2023]. We detail all baselines in
Appendix D.

3.2 RNA Design

For the RNA design benchmark, we propose two different tasks, inverse RNA folding, and constrained inverse RNA
folding. While the former considers the problem of finding an RNA sequence that folds into a given secondary structure,
the latter considers additional positional constraints in the designed sequence. For both tasks, we provide datasets with
and without pseudoknotted [Staple and Butcher, 2005] (non-nested) RNAs and support RNA design for a given G and
C nucleotide ratio (GC-content), since the GC-content could have a strong impact on the function of an RNA [Isaacs
et al., 2006, Chan et al., 2009, Wang et al., 2014].

3.2.1 Data

For the inverse RNA folding benchmark, we use the Eterna100 test sets version 1 and 2 [Anderson-Lee et al., 2016,
Koodli et al., 2021], the Rfam-learn test set [Runge et al., 2019], the test set provided by Taneda [2010], and the test
set derived from RNA-Strand provided by Kleinkauf et al. [2015], as well as all pseudoknot containing samples of
the ArchiveII [Sloma and Mathews, 2016] dataset as provided by Chen et al. [2020]. For constrained inverse RNA
folding, we use the test sets derived from the Rfam and the PseudoBase++ [Taufer et al., 2009] databases as provided
by Kleinkauf et al. [2015]. For all datasets, we ensure that there is no overlap between the structures of the test sets
and our initial training pool and sampled validation sets of appropriate sizes for each benchmark from the remaining
training data uniformly at random.

3.2.2 Evaluation

We evaluate RNA design using the performance measures described in Section 3.1.2, in addition to the traditional
number of solved tasks within a time limit. This approach enables us to assess algorithms for optimality, standardize
the evaluation process, and facilitate comprehensive analysis.

3.2.3 Baselines

We provide RNAInverse [Hofacker et al., 1994, Lorenz et al., 2011] and a deterministic algorithm as baselines. The
deterministic algorithm places an A at sites of unpaired nucleotides and the most stable base pair G-C at positions
that should pair in the structure. While remarkably simple, this algorithm is already capable of solving some of the
structures (Section 4) and can be considered as implementing the trivial solution.
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Figure 1: Performance of secondary structure prediction baselines on the inter-family prediction benchmark. (Left)
Performance across different performance measures on all types of base pairs. (Right) Performance on canonical base
pairs only.

3.3 Riboswitch Design Benchmark

Riboswitches [Mironov et al., 2002] are regulatory RNA elements, typically located in the 5′ untranslated region of
messenger RNAs (mRNAs), that can specifically bind certain metabolites (ligand) to alter gene expression. They
consist of an aptamer for recognizing the ligand, closely connected to an expression platform that couples ligand
binding with gene regulation. The binding signal is transduced by a conformational change of the switch. Riboswitches
are typically found in bacteria but can also be artificially constructed. Since aptamers are capable of binding nearly
every molecular and supramolecular target [Vorobyeva et al., 2018], Riboswitches have become interesting tools
for different applications including modulation of cellular functions [Hallberg et al., 2017] or the development of
biosensors [Findeiß et al., 2017]. For our novel Riboswitch design benchmark, we reimplement an existing protocol for
the computational design of transcriptional activating theophylline dependent riboswitches proposed by Wachsmuth
et al. [2012]. Generally, we seek to enable evaluations of generative RNA design algorithms similar to approaches in the
field of generative design of small organic molecules [Franke et al., 2022]. In particular, the task of an algorithm is to
learn the distribution of Riboswitch sequences (and structures) from a large training set and to generate a set of similar
but different sequences. These sequences are then folded and evaluated. We further provide specific properties to allow
for conditional generative design. To the best of our knowledge, this is the first approach to establish a benchmark for
generative algorithms in the field of RNA computational biology.

3.3.1 Data

We generated 685,109 unique sequences and 39,671 distinct structures using the original design pipeline by Wachsmuth
et al. (2012), meeting the benchmark’s design criteria. Our dataset includes GC-content for all sequences and energies,
enabling property-based conditional generative design.

3.3.2 Evaluation

For evaluation, we reimplement the original protocol of Wachsmuth et al. [2012]. Each of the designed candidate
sequences is folded using RNAFold and verified for the existence of different sequence and structure features proposed
by Wachsmuth et al. [2012]. A candidate that passes all criteria counts as valid and we report the number of unique valid
candidates and the fraction of unique structures in the final pool of valid candidates. More details about the evaluation
can be found in Appendix C. Additionally, we allow analyzing predictions with respect to different measures that assess
the learning behavior from a distribution learning point of view.

Novelty Effective generative models generate novel RNA sequences that are not present in the training set, ensuring
broad coverage, mitigating overfitting, and avoiding memorization of the training data. Therefore, novelty is a key
criterion in assessing RNA algorithms, as the limited training data represents only a fraction of the expansive RNA
space. In our evaluation, we assess the novelty of two key features: sequence and structure. For sequence novelty, we
directly compare the generated RNA sequences to those in the training set. This demonstrates the models’ ability to
explore the vast landscape of RNA sequences and produce diverse outputs. To evaluate structure novelty, we focus on
essential RNA structural elements like stem and hairpin lengths, as well as the size of inner loops. We also examine the
novelty of structure pairs to understand the unique relationships and interactions captured by the generative models. This
analysis helps us evaluate the model’s capacity to explore and generate previously unseen structural motifs, contributing
to the discovery of novel RNA patterns. We use two measures to assess the novelty, IOU (Intersection over Union)
complement and Novelty.
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Table 2: Riboswitch generation evaluation on a 50k random subset of samples of the original dataset.

Feature Novelty Diversity †

IoU Complement Novelty Diversity Diameter

Stem length 1.0 1.0 1.5 5.75
Hairpin length 0.988 0.4 1.99 8.5
Inner loop 1st length 0.988 0.402 1.98 9.0
Inner loop 2nd length 0.995 0.725 0.953 8.0
Sequence 1.0 1.0 0.053 0.075
Structure pairs 1.0 1.0 0.432 1.0

†: To assess diversity, we employ a specific distance measure for each feature. We use the Hamming distance to
evaluate the sequence, utilize WL for evaluating the structure pairs, and employ the Euclidean distance measure for the
remaining features.

Diversity We assess models based on their capability to generate a diverse set of distinct RNA structures, penalizing
repetitions and emphasizing the generation of unique and varied RNAs.

Diversity differs from novelty in that it quantifies the variation between elements within the generated dataset. To
measure this variation, we employ different metrics such as Hamming distance for sequences. The Hamming distance
measures the dissimilarity between RNA sequences while disregarding the distances between sequences of different
lengths. For assessing diversity in structure pairs, we employ the Weisfeiler-Lehman (WL) Graph Kernel. Diversity
and Diameter are two key measures used to assess the diversity of generated RNA structures. By incorporating these
measures, our evaluation provides a comprehensive analysis of model diversity, ensuring the generation of a wide range
of unique RNA structures. This approach enables us to explore the intricate landscape of RNA secondary structures and
advance the field of RNA design.

KL Divergence In RNA, we utilize the Kullback-Leibler (KL) divergence to evaluate the realism and diversity of
the generated RNA structures. It compares the distributions of key features, such as structural motifs (e.g., hairpin
lengths and counts) and sequence features (e.g., GC-content), between the original and generated datasets. This analysis
provides valuable insights into the extent to which the generated sequences deviate from the characteristics of the
original data, refer to table 3.

Table 2 shows an example of the distribution learning metrics for a subset of the dataset of the riboswitch design
benchmark. We note, however, that the evaluation regarding distribution learning metrics is not restricted to the
riboswitch design benchmark, but could be used during evaluations of the general RNA design benchmarks and the
RNA secondary structure prediction benchmarks as well. In the latter case, these metrics could e.g. inform about
common failure cases of a model.

3.3.3 Baselines

We use the proposed design procedure of Wachsmuth et al. [2012] as a baseline. Originally, Wachsmuth et al. [2012]
constructed riboswitch candidates from (1) the TCT8-4 theophylline aptamer sequence and structure, (2) a spacer
sequence of 6 to 20 nucleotides (nt), (3) a sequence of 10nt to 21nt complementary to the 3′-end of the aptamer, and
(4) a U-stretch of 8nt at the 3′-end of the construct. To generate candidates, Wachsmuth et al. [2012] designed a large
library of random sequences for the spacer region (6-20nt) and a library of sequences complementary to the 3′-end
of the aptamer (10-21nt). From these sets, randomly sampled sequences were combined with the aptamer and the
8-U-stretch.

3.4 Visualization and Utilities

We provide a set of additional utilities with RnaBench. In particular, we implement different low-level tasks, like
converting between different RNA secondary structure representations and reading different file formats, as well as data
loading utilities for all datasets to facilitate the application of models with different requirements. We further provide
a comprehensive visualization module that supports the plotting of RNA structures, as well as a detailed analysis of
the predictions. All plots in the paper are directly generated from within RnaBench. As an additional feature, we
support RNA 3D data by providing a pipeline for downloading, parsing, and loading of cleaned RNA 3D Structures.
In particular, we use the RNAsolo [Adamczyk et al., 2022] repository to obtain non-redundant 3D RNA structures
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at different resolution thresholds and provide data utilities for parsing and loading the data. Finally, we provide a
simple RMSD calculation to assess predictions of 3D structures. We believe that this feature of RnaBench might be
particularly useful to train algorithms for the Critical Assessment of Techniques for Protein Structure Prediction (CASP)
competition, which included a specific track on RNA structure prediction this year for the first time.

3.5 API

RNA secondary structures can be represented in different ways, either as strings represented in dot-bracket format [Ho-
facker et al., 1994], as lists of pairs, or as binary adjacency matrices or contact maps with dimensions L× L, where L
is the length of the sequence. Since the dot-bracket notation cannot represent all nucleotide interactions and a matrix
representation does not contain information about the nesting of a structure, we use a list of pairs representation for Rn-
aBench. More precisely, we represent each nucleotide interaction in the structure as a triple of the two pairing positions
and a page-number [Danaee et al., 2018] that describes the level of nesting of the pair. To interact with RnaBench, the
user simply defines a function that wraps the model predictions. We detail the different RNA representations as well as
the API in Appendices B and E, respectively.

4 Experiments

In this section, we demonstrate the benefits of RnaBench with three experiments. We assess the performance of the two
DL baselines compared to traditional methods on the inter-family prediction benchmark and evaluate our deterministic
baseline for RNA design on the inverse RNA folding benchmark across all available folding algorithms. Finally, we
plot an example of a 5SrRNA of Drosophila melanogaster (RNAcentral Id: URS00003B4856_7227) to show the
flaws of commonly used performance measures, F1 Score, MCC, and shifted F1 Score, as well as the benefits of our
new performance measure, the Weisfeiler-Lehman graph kernel. We show additional results, e.g. an evaluation of the
Riboswitch design baseline in Appendix C.

Figure 2: Evaluation of the deterministic baseline for RNA
design on inverse RNA folding tasks across all folding base-
lines.

RNA Secondary Structure Prediction The results for
the evaluation on the inter-family benchmark are shown
in Figure 1. The DL baselines generally outperform all
other baselines, with SPOT-RNA showing the best overall
performance. However, the traditional baselines can only
predict the most common, so-called canonical base pairs
(A-U, G-C, G-U, and vice-versa), and show superior per-
formance on tasks that only contain these types of pairs
(Figure 1, right). While the two DL methods thus seem to
improve on non-canonical base pair predictions, they fail
to achieve the same performance on the most common
base pairs, compared to more traditional methods.

RNA Design It was recently shown that the perfor-
mance of neural network-based approaches for RNA
design decreases when changing the folding algo-
rithm [Koodli et al., 2021]. The results of the evaluation
of our deterministic baseline across all folding baselines
are shown in Figure 2. We observe, that even for our deterministic design algorithm, the performance strongly de-
pends on the choice of the folding algorithm. Interestingly, the best performing baseline on the folding benchmark,
SPOT-RNA, can hardly handle the predictions of our RNA design baseline, resulting in the worst performance. Clearly,
our deterministic baseline describes a corner case for structure prediction, since it completely ignores U nucleotides.
However, a folding algorithm should be capable of folding any sequence, even if they only consist of G, C, and A
nucleotides, so there is still room for improvement.

Metric Comparison We plot the secondary structure of a 5SrRNA of Drosophila melanogaster and simulate
predictions by shifting all base pairs by one or two positions. The RNA structures are shown in Figure 3. While the
structure remains the same, both F1 Score derived measures drop to zero after shifting by one position. Similarly, the
MCC drops to a negative value and all three measures stay at these values after another shift by one position. The
Weisfeiler-Lehman kernel on the other hand captures the shifting well and the resulting scores successively decrease.
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Figure 3: Example of different performance measures using a 5SrRNA of Drosophila melanogaster. The original
5SrRNA (left) with all base pairs shifted by one (middle) and two (right) positions. Scores are computed against the
original 5SrRNA.

5 Discussion

We present RnaBench (RnB), a comprehensive RNA benchmarking library. RnB was developed to standardize the
evaluation of algorithms in the field of RNA secondary structure prediction and RNA design as a response to a lack of
benchmarks and issues with data curation in the field. In particular, we propose a new data pipeline to split datasets based
on biological homology and provide carefully curated training validation and test sets to enable out-of-the-box training
and evaluation of algorithms. Additionally, we propose new performance measures to improve the comparability of
algorithms. The result is a standardized benchmark for de novo RNA secondary structure prediction and the first RNA
design benchmark. Moreover, we propose a novel Riboswitch design task geared towards generative algorithms, inspired
by recent progress in the field of cheminformatics. Finally, we demonstrate that RnB’s comprehensive visualization
module supports the analysis of predictions and helps to capture the strengths and weaknesses of different algorithms,
leading to a better understanding and interpretability of the results. However, there are also limitations to our work.
Generally, high-quality RNA structure data is rare. While we try to gather as much experimentally supported structure
data as possible, still most of the secondary structure data is derived from comparative sequence analysis. However, the
generation of high-quality data is out of the scope of this work. Secondly, RNA design is fundamentally linked to RNA
folding. A design algorithm can only be as good as the underlying folding engine that folds the designed candidate. We
provide a range of folding algorithms to address this issue, however, novel solutions to RNA design that alleviate the
dependency are desirable. Nevertheless, we believe that RnaBench is a useful tool to establish deep learning algorithms
in the field of RNA computational biology and to support and boost research in the field.
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Appendix

RNA is one of the major regulatory molecules inside living cells and has been connected to diseases like cancer [Prensner
et al., 2011] and Parkinson’s [Cao et al., 2018]. While more than 70% of the human genome is transcribed into RNA,
only roughly 2% of the genome encodes for proteins [ENCODE Project Consortium and others, 2004, Consortium
et al., 2012]. Thus, there is a large number of RNAs that are transcribed from DNA but do not code for proteins. The
functions of these so-called non-coding RNAs (ncRNAs) remain largely unknown. However, understanding RNA-based
regulatory networks is of great interest in fields like biotechnology, synthetic biology, and medicine. Computational
RNA structure prediction and design could have a key role to support research as well as experimental screening
approaches and boost research in the field. With RnaBench, we present an interface that supports the development of
novel algorithms by providing standardized benchmarks, datasets, and utilities that enable out-of-the-box applications.

The supplementary material is structured as follows: In Section A, we report technical details and external software
that we use, before describing all our data in detail in Section B. We then detail the performance measures used in
RnaBench in Section C, describe the baselines in Section D, and demonstrate the API in Section E.
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A Technical Details and Code Availability

We use the following external software in RnaBench.

Baselines For secondary structure prediction, we use RNAFold from the ViennaRNA package [Lorenz et al., 2011]
version 2.5.0, LinearFold [Huang et al., 2019] version 1.0, ContraFold [Do et al., 2006] version 2.02 as provided via
anaconda, SPOT-RNA [Singh et al., 2019] downloaded from https://github.com/jaswindersingh2/SPOT-RNA,
MXFold2 [Sato et al., 2021] version 0.1.2, IPknot [Sato et al., 2011] version 1.1.0, and pKiss [Janssen and Giegerich,
2015] version 2.2.14 provided by anaconda. For RNA design, we use RNAInverse version 2.5.0 as provided by the
ViennaRNA package.

Data For our data pipelines, we use BLAST-N [Altschul et al., 1997] version 2.12.0, Infernal [Nawrocki and Eddy,
2013] version 1.1.4, bpRNA [Danaee et al., 2018], downloaded via https://github.com/hendrixlab/bpRNA,
CD-HIT [Fu et al., 2012] version 4.8.1, LocARNA-P [Will et al., 2012] version 2.0.0RC10, and get 3D data from
RNAsolo [Adamczyk et al., 2022] with BGSU version 3.286 as described at http://rna.bgsu.edu/rna3dhub/
nrlist.

Utilitites For different low-level utilities, we mainly depend on Biopython [Cock et al., 2009]. We use forgi [Thiel et al.,
2019] version 2.1.2 for extracting secondary structure motifs. For plotting molecular structures, we use Varna [Darty
et al., 2009] version 3.9.

Our benchmark package and source code are attached to the supplementary material and will be open-sourced with the
acceptance of this paper.

B Data

In this section, we detail all datasets that we use for RnaBench. However, we start with an explanation of the different
RNA secondary structure representations as shown in Figure 4 in Section B.1. Then, we describe the datasets and
databases that we used to build our initial training data pool of 111,295 samples in Section B.2. In Section B.3, we
describe the test sets used for the RNA secondary structure prediction benchmarks, and in Section B.4, we detail the
test sets used for our RNA design benchmark.

B.1 RNA Secondary Structure Representations

RNA sequences are described with the four nucleobases Adenine, Cytosine, Guanine, and Uracil2 (A, C, G, U;
commonly referred to as nucleotides). While RNA 3D structures are typically represented as a list of (x, y, z) atom
coordinates, RNA secondary structures can be viewed as a graph, where nodes correspond to nucleotides of the RNA
sequence and edges describe connections between nucleotides that form base-pairs via hydrogen bonds. From the
computational point of view, these graphs can be represented in different ways e.g. using string notations [Hofacker
et al., 1994] (Figure 4, middle), binary adjacency matrices (contact maps) of size L × L, where L is the length of
the RNA sequence (Figure 4, right), or a list of pairs that indicates the indices of interacting nucleotides of the RNA
sequence. The most common types of base pairs are formed between A and U, G and C, or G and U, known as canonical
pairs, but all other combinations are possible and have been reported. Depending on the requirements of the application,
the structure representations have different advantages. String notations are simple and allow to indicate different levels
of nesting, i.e. pseudoknots [Staple and Butcher, 2005], in the structure via different types of brackets. However, While
most nucleotide interactions are formed between two pairing partners, substructures might be formed by interactions of
more than two nucleotides (base triples, base multiplets). The common string notations cannot describe these types of
interactions, while contact maps can. Due to the binary nature of the adjacency matrix representation, however, these
lack pseudoknot information. Therefore, we represent RNA secondary structures as lists of pairs in RnaBench, but
additionally, add the pseudoknot information to the pairs. This allows us to get the best of both worlds. We display
different types of secondary structure representations in Figure 4.

2Extensions are known e.g. to represent modified nucleotides as described at the Ligand Expo website hosted by the RCSB PDB
at http://ligand-expo.rcsb.org/index.html, or using the IUPAC nomenclature described by the International Nucleotide
Sequence Database Collaboration (INSDC) at https://www.insdc.org/documents/feature_table.html#7.4.1.
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Figure 4: Three representations of the same RNA secondary structure. (Left) Common graph representation of the
RNA. (Middle) We display the dot-bracket notation in the graph structure. Paired nucleotides are indicated as a pair
of matching brackets, unpaired nucleotides are indicated by a dot. (Right) Matrix representation of the RNA. This
so-called contact map is a binary L× L square matrix, where L is the sequence length of the RNA. Pairing nucleotides
are shown in yellow.

B.2 Datasets of the Training Data Pool

In this section, we detail the datasets and databases that we use for the creation of the initial training data pool. For all
datasets, we use only sequences that do not contain any gap symbols.

bpRNA-1m Meta-Database The bpRNA-1m meta-database [Danaee et al., 2018] is a publicly available collection
of annotated RNA sequences and structures, comprising 102,318 samples. The data is gathered from the follow-
ing public databases: the Comparative RNA Web (CRW) [Cannone et al., 2002], tmRNA database [Zwieb et al.,
2003], tRNAdb [Andersen et al., 2006], Signal Recognition Particle (SRP) database [Larsen et al., 1998], RNase P
database [Brown, 1998], tRNAdb 2009 database [Jühling et al., 2009], all data from the RCSB Protein Data Bank
(PDB) [wwp, 2019] that consists of one RNA molecule as of 12 June 2017, and all families from the RNA Family
database (Rfam) [Griffiths-Jones et al., 2003], version 12.2. The annotations in bpRNA-1m include pseudoknots [Staple
and Butcher, 2005] and non-canonical base pairs.

ArchiveII We use the ArchiveII dataset as provided by Chen et al. [2020], that was originally proposed by Sloma
and Mathews [2016]. The ArchiveII dataset consists of 3975 samples from the following RNA families: small subunit
ribosomal RNA [Gutell, 1994], large subunit ribosomal RNA [Gutell et al., 1993, Schnare et al., 1996], 5S ribosomal
RNA [Szymanski et al., 1998, Daub et al., 2008], Group I self-splicing introns [Waring and Davies, 1984, Damberger
and Gutell, 1994], RNase P RNA [Brown, 1998], signal recognition particle RNA [Larsen et al., 1998], tRNA [Sprinzl
et al., 1998], and tmRNA [Zwieb and Wower, 2000].

RNAStralign RNAStralign is a database of known homologous sequences and structures. The families included in
this database are: 5S ribosomal RNA [Szymanski et al., 2002], Group I intron [Zhou et al., 2008], tmRNA [Zwieb et al.,
2003], tRNA [Jühling et al., 2009], 16S ribosomal RNA [Cannone et al., 2002], Signal Recognition Particle (SRP)
RNA [Gorodkin et al., 2001], RNase P RNA [Brown, 1998] and telomerase RNA [Nawrocki et al., 2015]. Our version
of RNAStralign contains 37,136 samples.

RNA-Strand RNA-Strand [Andronescu et al., 2008] is a database of 4666 RNAs with known secondary structures of
any type and organism. RNA-Strand is available at http://www.rnasoft.ca/strand/.

Datasets provided by Sato et al. [2021] We use the following datasets provided by Sato et al. [2021]: The TrainSetA,
TestSetA, TrainSetB, TestSetB [Rivas et al., 2012], and the bpRNA-new set [Sato et al., 2021].
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Rfam-Learn Dataset We also gathered the Rfam-Learn dataset provided by [Runge et al., 2019]. However, we only
report this dataset for completeness, since we dropped the entire dataset during data preparation because the RNA
sequences of this set are already masked due to the task of inverse RNA folding that was tackled by Runge et al. [2019].

Dataset provided by Taneda [2010] We also include the dataset provided by Taneda [2010]. This dataset contains
29 samples.

Eterna100 We include the Eterna100 dataset version 1 [Anderson-Lee et al., 2016] and 2 [Koodli et al., 2021]. We
use the first solution for each RNA structure if available. The datasets were downloaded from https://github.com/
eternagame/eterna100-benchmarking.

Datasets provided by Kleinkauf et al. [2015] We use all training sets as provided by Kleinkauf et al. [2015].
The datasets were downloaded from https://github.com/RobertKleinkauf/antarna/tree/antaRNAdp/
Constraints. In particular, we use the Pseudobase++ [Taufer et al., 2009] train set and the Rfam [Griffiths-Jones
et al., 2003] train set for our initial pool.

Protein Data Bank We download all RNA containing samples from PDB [wwp, 2019] in May, 2022. We process the
3D structures using DSSR [Lu et al., 2015] and obtain structure annotations using bpRNA [Danaee et al., 2018]. The
dataset contains a total of 13,334 samples.

B.3 Secondary Structure Prediction Benchmark Test and Validation Datasets

For our secondary structure prediction benchmark, we use the validation and test datasets provided by Singh et al.
[2019] and Singh et al. [2021]. For validation, we use VL0 and VL1, provided by Singh et al. [2019]. Our versions of
these datasets contain 1300 and 29 samples, respectively. VL0 is derived from the bpRNA meta-database and VL1 is
derived from PDB samples at a resolution threshold of 3.5Å. We now detail the different test sets TS0, TS1, TS2, TS3,
and TS-hard.

TS0 The TS0 dataset is derived from the bpRNA meta-database and consists of 1305 samples. We use the TS0 dataset
provided by Singh et al. [2019].

TS1 We use the TS1 dataset provided by Singh et al. [2019]. The dataset consists of 67 samples derived from
high-resolution (<3.5Å) 3D RNA structures from PDB, downloaded in March 2019.

TS2 The TS2 dataset is derived from NMR structures of the PDB and consists of 39 samples. Again we use the
original version of this set as provided by Singh et al. [2019].

TS3 The TS3 dataset we use here is provided by Singh et al. [2021] and contains 19 samples. The dataset was derived
from PDB 3D structure data downloaded in April 2020.

TS-Hard The testset TS-hard is derived from the high-resolution datasets TS1 and TS3 and contains 28 samples.
Originally, this dataset was created by Singh et al. [2021].

B.3.1 Secondary Structure Prediction Benchmark Dataset Overview

We show the length distributions of all datasets of the RNA secondary structure benchmarks. Figure 5 shows the datasets
for the inter-family prediction benchmark, Figure 6 for the intra-family prediction benchmark, and Figure 7 shows the
length distribution of the datasets of the biophysical model benchmark. We observe that the length distribution of our
inter-family benchmark differs between the training, validation and test splits, while these sets are more similar for
the other two benchmarks. We mainly attribute this to the more strict pipeline for removing data homologies for the
inter-family benchmark compared to the other two benchmarks and again note the importance of carefully curated
datasets that account for homologies.

B.4 RNA Design Benchmark Test Datasets

For the design benchmark, we use different test sets from the literature. The validation data is sampled from the training
set after ensuring that there is no overlap between the test and training sets. We now detail the different test sets.
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Figure 5: Length distribution of all datasets of the Inter-Family Benchmark.

Rfam-Learn The Rfam-Learn dataset was created by Runge et al. [2019] and contains 100 samples. The dataset
was derived from sequences of the Rfam database version 13.0. and structures are predicted structures using
RNAFold [Lorenz et al., 2011].

Rfam Testset provided by Taneda [2010] The testset provided by Taneda [2010] contains 29 samples. The dataset
was derived from the Rfam database version 9.0.

RNA-Strand set provided by Kleinkauf et al. [2015] The RNA-Strand dataset provided by Kleinkauf et al. [2015]
contains a total of 50 samples. We download the dataset from https://github.com/RobertKleinkauf/antarna/
tree/antaRNAdp/Constraints.

ArchiveII We use all pseudoknot containing RNAs from the ArchiveII dataset.

Pseudobase++ Testset The pseudobase++ dataset provided by Kleinkauf et al. [2015] contains 252 samples and can
be downloaded via https://github.com/RobertKleinkauf/antarna/tree/antaRNAdp/Constraints.

Rfam Testset provided by Kleinkauf et al. [2015] The Rfam testset provided by Kleinkauf et al. [2015] consists
of 63 samples that can be donloaded from https://github.com/RobertKleinkauf/antarna/tree/antaRNAdp/
Constraints.

Eterna100 Koodli et al. [2021] recently showed that the original version of the Eterna100 test set contains 19 samples
that are unsolvable with the set of thermodynamic parameters implemented in the ViennaRNA package [Lorenz et al.,
2011] version 1. We, therefore, use two versions of the Eterna100 dataset, version 1 as provided by Anderson-Lee
et al. [2016] and version 2 as provided by Koodli et al. [2021]. Both datasets can be downloaded from https:
//github.com/eternagame/eterna100-benchmarking. The datasets contain 100 samples each.
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Figure 6: Length distribution of all datasets of the Intra-Family Benchmark.

B.4.1 RNA Design Benchmark Dataset Overview

We show the length distribution of the inverse RNA folding benchmark datasets in Figure 8 and for the constrained-
design benchmark in Figure 9. For the inverse RNA folding benchmark, we observe the largest difference between
training and test data, with a cluster of samples with a length between 300 and 400 nucleotides in the test data. These
samples are mainly coming from the ArchiveII dataset, which contains longer samples than the other test sets.

B.5 3D Data

RnaBench also includes pipelines for downloading, parsing, and loading 3D data. For our 3D data, we use RNA-
solo [Adamczyk et al., 2022], a repository of cleaned RNA 3D structures from PDB. The cleaning procedure includes
removing protein structures from the files as well as dividing RNAs into equivalence classes following the BGSU
guidelines. RNAsolo further provides RNA 3D structures at different resolution cutoffs, which can be chosen in the
download script.

C Evaluation

For evaluation, we use commonly used and novel performance measures, described in the following. The commonly
used performance measures for RNA secondary structure prediction are based on a confusion matrix, which describes
the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) of a given prediction.

Binary Classification Measures We use three standard measures:

Precision describes the fraction of correctly predicted base pairs and is calculated as

PR = TP/(TP + FP ) . (1)

Recall or sensitivity describes the true positive predictions, calculated as

RC = TP/(TP + FN) . (2)
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Figure 7: Length distribution of all datasets of the Biophysical Model Benchmark.

The F1 Score is the harmonic mean of sensitivity and precision

F1 =
2 · (PR ·RC)

(PR+RC)
. (3)

Shifted F1 Score Recent work in the field of secondary structure prediction proposed to use a shifted version of the
F1 Score to account for the dynamic nature of RNA [Mathews, 2019], in particular bulge migration events [Woodson
and Crothers, 1987]. The shifted F1 Score is calculated as the F1 score, but for a given pair (i, j) all pairs (i, j + 1),
(i+ 1, j), (i, j − 1), and (i− 1, j) are also considered correct.

Matthews Correlation Coefficient (MCC) While the F1 score emphasizes positives, the MCC is a more balanced
measure. The MCC can be calculated as follows.

MCC =
(TP · TN)− (FP · FN)√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
. (4)

Weisfeiler-Lehman (WL) Graph Kernel The WL kernel is a powerful metric for comparing graphs, as it captures
the structural information while being computationally efficient. It has been widely adopted in graph classification,
pattern recognition, and graph mining tasks, showcasing its effectiveness across various domains.

Solved Structures While it is the ultimate goal of secondary structure prediction, publications in the field typically
do not report the number of completely correct predicted structures.
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Figure 8: Length distribution of all datasets of the Inverse RNA Folding Benchmark.

We further allow analyzing predictions concerning different measures that assess the learning behavior from a distribution
learning point of view. In particular, we provide the following measures.

Intersection Over Union Complement IoUC between two sets G and O is given by IoUC = 1− |G∩O|
|G∪O| as a

measure of novelty.

Novelty The difference between IOUC metric and Novelty metric lies in the denominator of the division: IoUC
calculates the ratio of the intersection |G ∩O| to the union of the generated set G and training set |O|, while Novelty
calculates the ratio of the intersection to the size of the generated set |G| itself.

Diversity Internal Diversity and Diameter are two key measures used to assess the diversity of generated RNA
structures. These measures rely on a self-distance matrix d, referred to as the pairwise distance matrix, computed
between each pair of elements in the generated dataset according to an arbitrary distance measure. Diversity captures
the average difference within the pairwise distance matrix while excluding the distance of an element to itself. On the
other hand, Diameter [Edelsbrunner and Harer, 2010] represents the maximum difference observed in the pairwise
distance matrix.

Inference time RnaBench further provides per-sample timing, while the mean runtime is provided as an additional
performance measure.

C.1 Riboswitch Design

For the riboswitch design, we reimplement the evaluation procedure of Wachsmuth et al. [2012]. In particular,
all designed candidate sequences are validated based on features of the sequence and the structure of the con-
structs. These features include: A shape of exactly two hairpins, the existence of the exact aptamer hairpin
structure, the formation of the terminator hairpin between the 3′-end of the aptamer, the spacer and the region
complementary to the aptamer sequence, no pairing within the last seven nucleotides of the 8-U-stretch, and no
pairing between the spacer and the aptamer in a sequence of folding steps, simulating co-transcriptional folding
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Figure 9: Length distribution of all datasets of the Constrained Design Benchmark.

with a fixed elongation speed of five. Further, we assess the predicted sequences for the existence of the aptamer
sequence, a minimum size of four unpaired nucleotides in the spacer region, and the sequence of the 8-U stretch.

Table 3: KL Divergence between the train
and generated Data for Riboswitch Design

Feature Kl

GC content 4.1608
Length 0.0911
Energy 1.6382
Stem count 0.1835
Stem length 1.9648
Hairpin count 0.0000
Hairpin length 1.2705
Inner loop count 0.0101
Inner loop 1st length 0.3084
Inner loop 2nd length 1.2304

Additionally, as part of the generative assessment, we evaluate the novelty
and diversity of the generated sequences and their corresponding structure
pairs (see Table 2). We also compute the KL divergence between the
original data and the generated data for the Riboswitch design based on a
set of selected features such as structural motifs, such as hairpins, stems,
and internal loops. (see Table 3) This comprehensive evaluation provides
insights into the structural integrity, novelty, and diversity of the designed
RNA sequences.

D Baselines

We use selected baselines for all benchmarks in RnaBench.

D.1 RNA Secondary Structure Prediction

For the secondary structure prediction benchmark, we try to provide a
broad range of different approaches with RnaBench.

RNAFold RNAFold [Hofacker et al., 1994] is one of the most commonly used secondary structure prediction
algorithm, provided with the ViennaRNA package [Lorenz et al., 2011]. We use version 2.5.0 of RNAFold in RnaBench,
which uses the thermodynamic parameters of the 2004 Turner model [Mathews et al., 2004]. RNAFold applies an
energy minimization approach to find the most stable secondary structure, called the minimum free energy structure.
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ContraFold ContraFold [Do et al., 2006] is an algorithm that uses a Nussinov-like recursion [Nussinov et al., 1978] to
predict the secondary structure with the maximum expected accuracy (MEA), using McCaskill’s algorithm [McCaskill,
1990].

LinearFold LinearFold [Huang et al., 2019] uses a linear-time approximation of the partition function to predict
secondary structures. We use both versions of LinearFold, LinearFold-V based on the ViennaRNA folding engine, and
LinearFold-C based on the ContraFold engine.

pKiss pKiss [Janssen and Giegerich, 2015] is the successor of pknotsRG [Reeder and Giegerich, 2004] and can
predict two limited classes of pseudoknots using heuristics.

IPknot IPknot [Sato et al., 2011] predicts secondary structures with pseudoknots by maximizing expected accuracy
of the predicted structure. IPknot decomposes a pseudoknotted structure into a set of pseudoknot-free substructures and
approximates base pair probability distributions that consider pseudoknots.

SPOT-RNA SPOT-RNA Singh et al. [2019] was the first algorithm using deep neural networks for end-to-end
prediction of RNA secondary structures, using an ensemble of models with residual networks (ResNets) He et al.
[2016], bidirectional LSTM- [Hochreiter and Schmidhuber, 1997] (BiLSTMs) [Schuster and Paliwal, 1997], and dilated
convolution [Yu and Koltun, 2015] architectures. SPOT-RNA was trained on a large set of intra-family RNA data for
predictions on TS0, and further fine-tuned on a small set of experimentally-derived RNA structures.

MXFold2 MXFold2 Sato et al. [2021] combines deep learning with a Dynamic Programming (DP) approach using a
CNN/BiLSTM architecture to learn the scoring function for the DP algorithm. The network is trained to predict scores
close to a set of thermodynamic parameters to increase robustness. MXFold2 is restricted to predicting a reduced set of
base pairs due to limitations in the DP algorithm.

D.2 RNA Design

RNA design algorithms are typically depending on a specific secondary structure prediction algorithm. To remain
mostly independent of the folding algorithm, we choose to implement a simple solution to the RNA design problem.
However, we also include RNAInverse [Hofacker et al., 1994] as a commonly used inverse RNA folding algorithm.

RNAInverse RNAInverse [Hofacker et al., 1994] is a commonly used inverse RNA folding algorithm from the
ViennaRNA [Lorenz et al., 2011] package.

Deterministic Baseline We implement a design algorithm that is independent of the folding engine. Our deterministic
baseline predicts an A-nucleotide for each position that is unpaired and a G-C base pair for all positions ought to be
paired.

D.3 Riboswitch Design

As described in the main part of this work, we reimplement the original procedure of Wachsmuth et al. [2012] as a
baseline for our Riboswitch design benchmark.
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E API

We provide a simple interface for RnaBench as shown in the code example 1. To interact with RnaBench, define a
function that wraps your model predictions. This function then is evaluated in the benchmark. Depending on the
benchmark task, the returned dictionary contains a different set of performance measures to assess the performance of
the algorithm.

1 """
2 This code shows the general API of RnaBench
3 on the example of running a model on
4 the RNA secondary structure prediction benchmark.
5 """
6 import RnaBench
7

8 benchmark = RnaBench.RNAFoldingBenchmark ()
9

10 model = YourModel ()
11

12 def prediction_wrapper(task , *args , ** kwargs):
13 prediction = model(task.sequence)
14 return prediction
15 # metrics is a dictionary with all scores
16 metrics = benchmark(prediction_wrapper , *args , ** kwargs)

Code 1: Example API.

We also provide interfaces to get the data provided with a PyTorch [Paszke et al., 2019] data loader. The code example 2
shows an example.

1 """
2 This code demonstrates how to get the benchmark data
3 as a pytorch iterator.
4 """
5 import RnaBench
6 import torch
7

8 device = 0 if torch.cuda.is_available () else ’cpu’
9 batch_size = 8

10

11 # Instantiate the structure prediction benchmark
12 benchmark = RnaBench.RnaFoldingBenchmark ()
13 # Get torch DataLoader for train , valid , test
14 train , valid , test = benchmark.get_iterators(
15 device=device ,
16 batch_size=batch_size ,
17 )
18 for i, batch in enumerate(train):
19 # do some training here

Code 2: Usage example with a pyTorch DataLoader.

We provide a range of further examples with RnaBench as well as scripts to reproduce our experiments.
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