

A Human-in-the-Loop Fairness-Aware Model Selection Framework for Complex Fairness Objective Landscapes

INSTITUTE

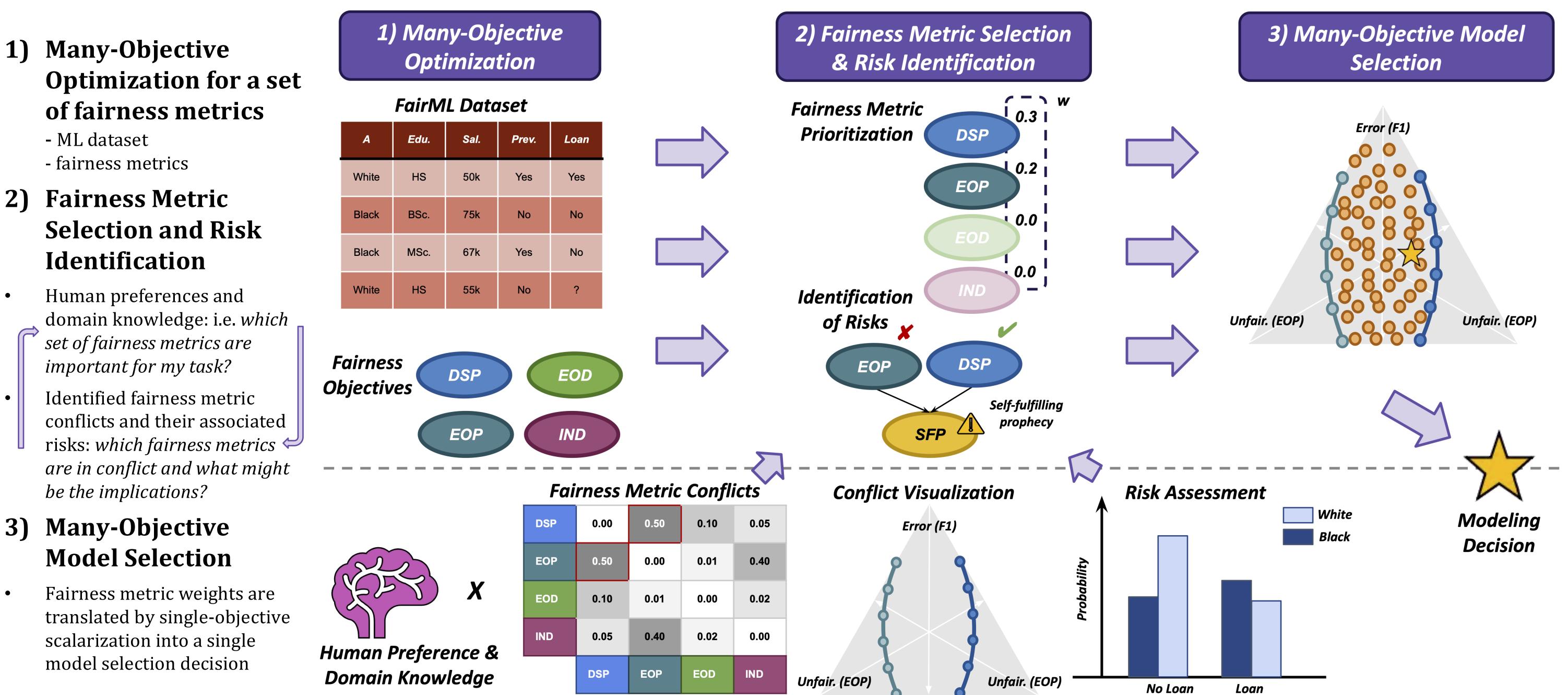
TÜBINGEN

Jake Robertson^{1,2}, Thorsten Schmidt¹, Frank Hutter^{1,3}, Noor Awad¹ ¹ University of Freiburg, ² Zuse School ELIZA, ³ ELLIS Institute Tübingen

Despite the recognized trade-offs among various algorithmic fairness concepts, existing fairness-aware ML methods typically focus on optimizing a single, user-specified fairness measure. This approach is problematic because:

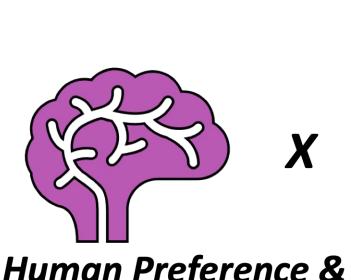
- Real-world FairML scenarios often involve intricate and varied stakeholder concerns, encompassing multiple fairness criteria
- Concentrating on one fairness notion may not only compromise other pertinent fairness metrics, but also potentially result in adverse downstream effects

Background


Fairness Metrics	Social Objectives	
Statistical Parity (DSP)	Equality	
Equal Opportunity (EOP)	Equity	
Equalized Odds (EOD)	Equity	
Inverse Distance (IND)	Individual Justice	

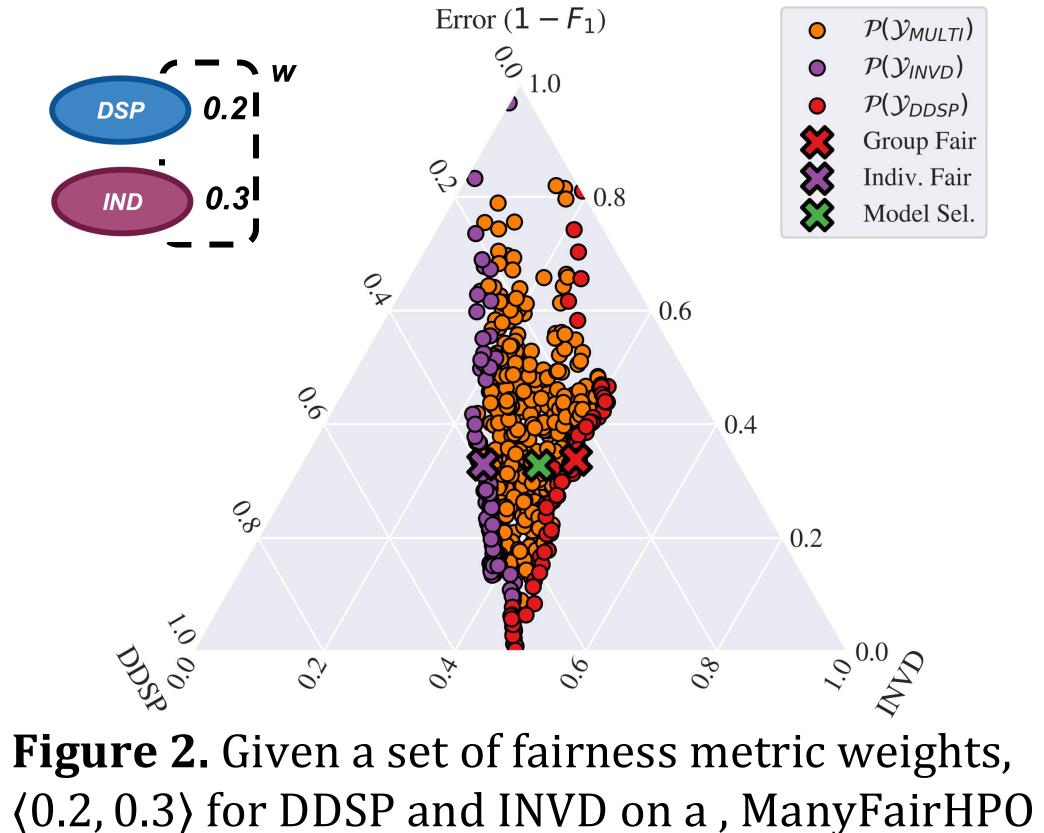
		Violated Metric										
		DSP	EOP	EOD	IND							
ric	DSP		SFP	SFP	SFP							
Satisfied Metric	EOP	?		?	?							
	EOD	?	?		?							
	IND	?	?	?								

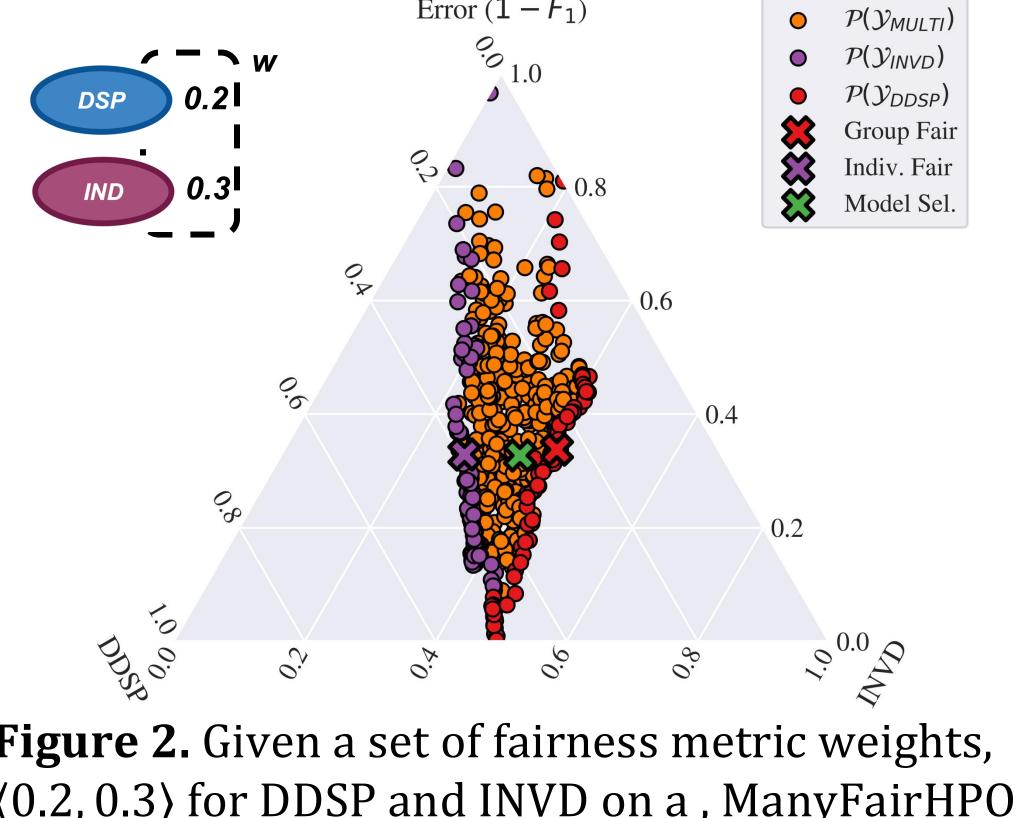
ManyFairHPO is a human-centered, optimizationdriven framework that allows fairness practitioners to specify, rank, and optimize for multiple fairness metrics. ManyFairHPO facilitates fairness modeling decisions that effectively balance fairness objectives and reduce conflict-associated risks


- Multi-objective Hyperparameter Optimization (MOHPO) involves adjusting typical ML design parameters (e.g. neural network structure) to approximate the Pareto Front of conflicting ML goals (e.g. accuracy and energy consumption)
- In fairness applications, MOHPO has been used to balance accuracy with a single, user-specified fairness criterion
- However, the established Impossibility Theorem shows that optimizing one fairness notion can unintentionally violate other relevant concepts
- This results in 1) a compromise between related social objectives and potentially 2) undesirable downstream effects (e.g. Self-Fulfilling Prophecy)

Many-Objective Fairness-Aware Hyperparameter Optimization (ManyFairHPO)

0.0 0.027 0.065 0.031 -0.0 0.135 0.326 0.078 $C(f_i, f_i)$


0.0 -0.014 0.055 0.002



-0.0 -0.0 0.002 0.001 -0.0 0.0 0.044 0.022

Fairness Metric Conflicts (Fairness Datasets)

Stakeholder Compromise

selects a model (green) that balances this conflict

	DDSI	0.0	0.011	01000	0.002	0.0	0.0	0.002	0.001	0.0	0.0	0.011	0.022	0.0	0.02/	0.000	01001	0.0	01100	0.020	0.070	''] '
XGB	DEOD	0.056	0.0	0.114	0.02	0.0	-0.0	0.002	0.002	0.019	0.0	0.038	0.087	0.073	0.0	0.017	0.102	0.051	-0.0	0.033	0.095	0.3
	DEOP	0.027	0.015	-0.0	0.001	-0.0	-0.001	0.0	0.001	0.027	-0.03	-0.0	0.104	0.116	0.003	0.0	0.123	0.097	0.007	0.0	0.141	
	INVD	0.065	0.032	0.101	-0.0	0.0	0.001	0.002	-0.0	0.028	0.063	0.115	0.0	0.066	0.093	0.169	0.0	0.074	0.134	0.304	0.0	0.2
	DDSP	-0.0	0.009	0.076	0.027	0.0	0.08	0.278	0.077	-0.0	0.014	0.038	0.182	-0.0	0.07	0.115	0.039	0.0	0.144	0.247	0.032	0.1
RF	DEOD	-0.006	-0.0	0.098	0.022	-0.078	-0.0	0.222	-0.006	-0.002	0.0	0.011	0.202	0.083	0.0	0.043	0.101	0.01	-0.0	0.044	0.176	
	DEOP	0.014	0.023	0.0	-0.001	-0.171	-0.12	-0.0	-0.103	0.028	0.008	-0.0	0.234	0.136	0.005	0.0	0.103	0.022	0.005	-0.0	0.213	0.0
	INVD	0.023	0.033	0.031	0.0	-0.111	0.03	0.277	-0.0	0.104	0.116	0.104	-0.0	0.048	0.075	0.099	-0.0	0.037	0.286	0.337	-0.0	
																						-0.1
	DDSP	-0.0	0.001	0.005	0.0	0.0	-0.004	0.025	0.017	0.0	0.001	0.005	-0.011	-0.0	0.053	0.068	0.078	-0.0	0.026	0.03	0.01	
Z	DEOD	-0.0	-0.0	0.004	-0.001	0.004	-0.0	0.026	0.02	-0.001	-0.0	0.003	-0.011	0.051	0.0	0.021	0.058	-0.002	0.0	-0.013	0.028	-0.2
ZZ	DEOP	0.0	0.002	0.0	0.0	-0.023	-0.024	-0.0	0.002	-0.0	0.0	0.0	-0.012	0.081	0.025	0.0	0.099	-0.004	0.006	0.0	0.026	
	INVD	0.0	0.001	0.005	-0.0	-0.019	-0.022	0.002	0.0	0.011	0.011	0.016	0.0	0.083	0.098	0.099	-0.0	-0.0	0.029	0.027	-0.0	-0.3
DDSP DEOD DEOP INVD German				DDSP	-	DEOP npas	INVD	DDSP DEOD DEOP INVD Lawschool			DDSP DEOD DEOP INVD Bank				DDSP DEOD DEOP INVD Adult				-			

Figure 1. Fairness metric conflicts discovered by ManyFairHPO on common fairness datasets. Problem specific conflicts can guide practitioners in selecting and prioritizing fairness metrics and identifying and assessing fairness metric conflict related risks