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In a Nutshell

Despite the recognized trade-offs among various
algorithmic fairness concepts, existing fairness-aware
ML methods typically focus on optimizing a single,
user-specified fairness measure. This approach is
problematic because:

1. Real-world FairML scenarios often involve
intricate and varied stakeholder concerns,
encompassing multiple fairness criteria

Concentrating on one fairness notion may not only
compromise other pertinent fairness metrics, but
also potentially result in adverse downstream
effects

ManyFairHPO is a human-centered, optimization-
driven framework that allows fairness practitioners to
specify, rank, and optimize for multiple fairness
metrics. ManyFairHPO facilitates fairness modeling
decisions that effectively balance fairness objectives
and reduce conflict-associated risks
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Multi-objective Hyperparameter Optimization (MOHPO) involves adjusting
typical ML design parameters (e.g. neural network structure) to approximate the
Pareto Front of conflicting ML goals (e.g. accuracy and energy consumption)

In fairness applications, MOHPO has been used to balance accuracy with a single,
user-specified fairness criterion

However, the established Impossibility Theorem shows that optimizing one
fairness notion can unintentionally violate other relevant concepts

This results in 1) a compromise between related social objectives and
potentially 2) undesirable downstream effects (e.g. Self-Fulfilling Prophecy)
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Figure 1. Fairness metric conflicts discovered by ManyFairHPO on common fairness Figure 2. Given a set of fairness metric weights,
datasets. Problem specific conflicts can guide practitioners in selecting and prioritizing (0.2,0.3) for DDSP and INVD on a, ManyFairHPO
fairness metrics and identifying and assessing fairness metric conflict related risks selects a model (green) that balances this conflict
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